1-Octanamine

Other names: 1-AMINOOCTANE

1-Octylamine Amine 8D Armeen 8

CAPRYLAMINE
Caprylylamine
Monoctylamine
Monooctylamine

NSC 9824 Octanamine Octylamine n-C8H17NH2 n-Octylamine

n-Octylamine, mono-

Inchi: InChl=1S/C8H19N/c1-2-3-4-5-6-7-8-9/h2-9H2,1H3

InchiKey: IOQPZZOEVPZRBK-UHFFFAOYSA-N

Formula: C8H19N

SMILES: CCCCCCCN

Mol. weight [g/mol]: 129.24 CAS: 111-86-4

Physical Properties

Property code	Value	Unit	Source
affp	924.70	kJ/mol	NIST Webbook
affp	925.10	kJ/mol	NIST Webbook
affp	928.90	kJ/mol	NIST Webbook
basg	879.50 ± 9.20	kJ/mol	NIST Webbook
basg	895.00	kJ/mol	NIST Webbook
chl	-5635.38 ± 0.96	kJ/mol	NIST Webbook
gf	82.93	kJ/mol	Joback Method
hf	-173.50 ± 1.30	kJ/mol	NIST Webbook
hfl	-228.10 ± 1.20	kJ/mol	NIST Webbook
hfus	21.67	kJ/mol	Joback Method
hvap	54.60	kJ/mol	NIST Webbook
hvap	54.80 ± 0.50	kJ/mol	NIST Webbook
hvap	54.60	kJ/mol	NIST Webbook
hvap	54.63 ± 0.96	kJ/mol	NIST Webbook

ie	8.50	eV	NIST Webbook
log10ws	-2.75		Aqueous Solubility Prediction Method
logp	2.306		Crippen Method
mcvol	133.560	ml/mol	McGowan Method
рс	2617.00 ± 400.00	kPa	NIST Webbook
rhoc	249.44 ± 29.73	kg/m3	NIST Webbook
rinpol	1049.00		NIST Webbook
rinpol	1041.00		NIST Webbook
rinpol	1022.00		NIST Webbook
rinpol	1038.00		NIST Webbook
rinpol	1042.00		NIST Webbook
rinpol	1043.00		NIST Webbook
rinpol	1044.00		NIST Webbook
rinpol	1046.00		NIST Webbook
rinpol	1047.00		NIST Webbook
rinpol	1047.00		NIST Webbook
rinpol	993.00		NIST Webbook
rinpol	1051.00		NIST Webbook
rinpol	1057.00		NIST Webbook
rinpol	1058.00		NIST Webbook
rinpol	1032.00		NIST Webbook
rinpol	1028.00		NIST Webbook
rinpol	1041.00		NIST Webbook
rinpol	1038.00		NIST Webbook
ripol	1320.00		NIST Webbook
ripol	1316.00		NIST Webbook
ripol	1315.00		NIST Webbook
ripol	1317.00		NIST Webbook
ripol	1320.00		NIST Webbook
ripol	1318.00		NIST Webbook
tb	452.75 ± 1.00	K	NIST Webbook
tb	452.80	K	NIST Webbook
tb	452.15 ± 1.00	K	NIST Webbook
tb	451.65 ± 3.00	K	NIST Webbook
tb	452.65 ± 3.00	K	NIST Webbook
tb	449.20	K	NIST Webbook
tb	459.15 ± 6.00	K	NIST Webbook
tb	452.00 ± 2.00	K	NIST Webbook
tb	445.65 ± 5.00	K	NIST Webbook
tc	641.00 ± 3.00	K	NIST Webbook
tf	272.90	K	Aqueous Solubility Prediction Method
tf	272.75 ± 0.20	K	NIST Webbook
tf	273.15 ± 0.50	K	NIST Webbook

tf	272.15 ± 0.50	K	NIST Webbook
VC	0.512	m3/kmol	Joback Method
volm	1.66e-04	m3/mol	Thermodynamic study of (heptane + amine) mixtures. II. Excess and partial molar volumes at 298.15 K

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	319.30	J/mol×K	514.07	Joback Method	
cpg	292.59	J/mol×K	454.97	Joback Method	
cpg	331.84	J/mol×K	543.62	Joback Method	
cpg	343.86	J/mol×K	573.17	Joback Method	
cpg	355.37	J/mol×K	602.72	Joback Method	
cpg	366.38	J/mol×K	632.27	Joback Method	
cpg	306.22	J/mol×K	484.52	Joback Method	
cpl	309.30	J/mol×K	298.15	NIST Webbook	
hvapt	50.80	kJ/mol	380.50	NIST Webbook	
pvap	0.04	kPa		The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration	
pvap	0.07	kPa		The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration	

pvap	0.07	kPa	292.40	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.08	kPa	295.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.09	kPa	295.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.08	kPa	295.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.10	kPa	298.10	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.11	kPa	298.50	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.14	kPa	301.10	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.13	kPa	301.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.04	kPa	285.90	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.13	kPa	301.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.13	kPa	301.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.05	kPa	289.60	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.17	kPa	304.00	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.17	kPa	304.10	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.21	kPa	307.10	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.21	kPa	307.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.25	kPa	310.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.26	kPa	310.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.31	kPa	312.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.31	kPa	313.00	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.32	kPa	313.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.05	kPa	289.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.03	kPa	283.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.03	kPa	281.00	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.02	kPa	277.70	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.02	kPa	274.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.14	kPa	301.20	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration
pvap	0.13	kPa	301.30	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration

pvap	0.03	kPa	283.60	The Vaporization Enthalpy and Vapor Pressure of (d)-Amphetamine and of Several Primary Amines Used as Standards at T/K = 298 As Evaluated by Correlation Gas Chromatography and Transpiration	
rhol	769.46	kg/m3	308.15	Excess Molar Properties for Binary Systems of CnMIM-BF4 Ionic Liquids with Alkylamines in the Temperature Range (298.15 to 318.15) K. Experimental Results and Theoretical Model Calculations	
rhol	777.45	kg/m3	298.15	Excess Molar Properties for Binary Systems of CnMIM-BF4 Ionic Liquids with Alkylamines in the Temperature Range (298.15 to 318.15) K. Experimental Results and Theoretical Model Calculations	
rhol	779.95	kg/m3	298.15	Experimental Solid + Liquid Equilibria and Excess Molar Volume of Alkanol + Octylamine Mixtures. Analysis in Terms of ERAS, DISQUAC, and Modified UNIFAC	

rhol	761.47	kg/m3	318.15	Excess Molar Properties for Binary Systems of CnMIM-BF4 Ionic Liquids with Alkylamines in the Temperature Range (298.15 to 318.15) K. Experimental Results and	
				Theoretical Model	
				ivioaei	

Calculations

Value

627.00

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.57539e+01
Coeff. B	-4.28704e+03
Coeff. C	-6.70140e+01
Temperature range (K), min.	344.20
Temperature range (K), max.	477.55

Property code pvap $ln(Pvp) = A + B/T + C*ln(T) + D*T^2$ Equation Coeff. A 1.09173e+02 Coeff. B -9.98021e+03 Coeff. C -1.37762e+01 Coeff. D 8.43830e-06 Temperature range (K), min. 272.75

Sources

Joback Method:

https://en.wikipedia.org/wiki/Joback_method

Inermodynamic study of heptane + amine mixtures. V. Excess and Exparime of Elistic description of Alkanol + bis little of Eras, DISQUAC, and Modified UNIFAC:

https://www.doi.org/10.1016/j.fluid.2014.12.017

https://www.doi.org/10.1021/je0301895

https://www.doi.org/10.1021/je0301895

http://webbook.nist.gov/cgi/cbook.cgi?ID=C111864&Units=SI of Eras, DISQUAC, and Modified UNIFAC:

Information

Temperature range (K), max.

Thermodynamic study of (heptane + amine) mixtures. II. Excess and partial That appropriate on Enthalpy and Vapor Pressure of (d)-Amphetamine and of Serial Primary Amines Used as Standards at T/K = 298 As Evaluated by EUNERALINE GAS Chromatography and

Kob vapol Pressure Data:

The Yaws Handbook of Vapor

Pressure: Excess Molar Properties for Binary Systems of CnMIM-BF4 Ionic Liquids WRF AWAy1aWffflescin the Temperature Range (298.15 to 318.15) K. **Experimental Results and Theoretical** https://www.doi.org/10.1016/j.jct.2010.12.025

https://www.doi.org/10.1021/je400212t

https://www.cheric.org/files/research/kdb/mol/mol1273.mol

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1273

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1021/je301167q

http://link.springer.com/article/10.1007/BF02311772

Legend

Model Calculations:

Proton affinity affp: Gas basicity basg:

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity Liquid phase heat capacity cpl:

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Critical Pressure pc: pvap: Vapor pressure rhoc: Critical density rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume volm: Molar Volume

Latest version available from:

https://www.chemeo.com/cid/10-313-2/1-Octanamine.pdf

Generated by Cheméo on 2025-12-05 23:53:58.535379077 +0000 UTC m=+4727036.065419740.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.