Propylene oxide

Other names: (±/-)-1,2-Epoxypropane; (±/-)-Methyloxirane; 1,2-Epoxypropane; 1,2-Propylene oxide; 2,3-Epoxypropane; 2-Methyl oxirane; 2-Methyloxiran; 3-Methyl-1,2-epoxypropane; AD 6; AD 6 (suspending agent); Epihydrin; Epoxyp propane; Ethylene oxide, methyl-; M ethylethylene oxide; Methyloxacyclopropane; Methyloxirane; NCI-C50099; Oxirane, 2-methyl-; Oxirane, methyl-; O xyde de propylene; Propane, 1,2-epoxy-; Propane, epoxy-; Propene oxide; Propylene epoxide; UN 1280.

InChI: InChI=1S/C3H6O/c1-3-2-4-3/h3H,2H2,1H3

InChI Key: GOOHAUXETOMSMM-UHFFFAOYSA-N

Formula: C3H6O

SMILES: CC1CO1

Molecular Weight: 58.08

CAS: 75-56-9

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAff</td>
<td>803.30</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>BasG</td>
<td>772.70</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔcH°_liquid</td>
<td>-1917.40 ± 1.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔcH°_liquid</td>
<td>-1893.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔcH°_liquid</td>
<td>-1885.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔG°</td>
<td>-50.99</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>ΔH°_gas</td>
<td>-94.68 ± 0.63</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔH°_gas</td>
<td>-117.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔH°_liquid</td>
<td>-122.60 ± 0.63</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔH°_liquid</td>
<td>-145.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δfus H°</td>
<td>9.64</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>Δvap H°</td>
<td>28.31</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δvap H°</td>
<td>27.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δvap H°</td>
<td>27.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δvap H°</td>
<td>27.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>IE</td>
<td>10.22 ± 0.02</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.10</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.22 ± 0.02</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.44</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.26</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\log P_{oct/wat}$</td>
<td>0.41</td>
<td></td>
<td>Crippen Method</td>
</tr>
<tr>
<td>P_c</td>
<td>5440.00 ± 101.32</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>P_c</td>
<td>4922.84 ± 34.47</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>S°_{gas}</td>
<td>287.40 ± 0.84</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>S°_{liquid}</td>
<td>196.27</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>S°_{liquid}</td>
<td>194.60</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>308.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>307.70</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>307.45</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>307.90 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>308.00 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>308.15 ± 1.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>307.97 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_fus</td>
<td>488.20 ± 5.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_fus</td>
<td>482.30 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>161.25</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>161.02 ± 0.05</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>161.22 ± 0.05</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>V_c</td>
<td>0.20 ± 0.00</td>
<td>m³/kg-mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>V_c</td>
<td>0.19 ± 0.01</td>
<td>m³/kg-mol</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>
Temperature Dependent Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Temperature (K)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{p,\text{gas}}$</td>
<td>70.70</td>
<td>J/mol×K</td>
<td>301.73</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>125.10</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>122.19</td>
<td>J/mol×K</td>
<td>300.00</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>η</td>
<td>0.00</td>
<td>Pa×s</td>
<td>301.73</td>
<td>Joback Method</td>
</tr>
<tr>
<td>Δ_{fus}^H</td>
<td>6.53</td>
<td>kJ/mol</td>
<td>161.23</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{fus}^H</td>
<td>6.57</td>
<td>kJ/mol</td>
<td>161.30</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{vap}^H</td>
<td>31.60</td>
<td>kJ/mol</td>
<td>266.50</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{vap}^H</td>
<td>32.90</td>
<td>kJ/mol</td>
<td>274.50</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{vap}^H</td>
<td>30.10</td>
<td>kJ/mol</td>
<td>278.50</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{vap}^H</td>
<td>28.20</td>
<td>kJ/mol</td>
<td>303.50</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{vap}^H</td>
<td>27.35</td>
<td>kJ/mol</td>
<td>307.70</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{vap}^H</td>
<td>28.50</td>
<td>kJ/mol</td>
<td>318.50</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{fus}^S</td>
<td>40.52</td>
<td>J/mol×K</td>
<td>161.23</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_{fus}^S</td>
<td>40.74</td>
<td>J/mol×K</td>
<td>161.25</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>

Sources

- **NIST Webbook**: http://webbook.nist.gov/cgi/inchi/InChI=1S/C3H6O/c1-3-2-4-3/h3H,2H2,1H3

Legend

- **PAff**: Proton affinity (kJ/mol).
- **BasG**: Gas basicity (kJ/mol).
- $\Delta_c^H_{\text{liquid}}$: Standard liquid enthalpy of combustion (kJ/mol).
- $C_{p,\text{gas}}$: Ideal gas heat capacity (J/mol×K).
- $C_{p,\text{liquid}}$: Liquid phase heat capacity (J/mol×K).
- η: Dynamic viscosity (Pa×s).
- Δ_G^o: Standard Gibbs free energy of formation (kJ/mol).
- $\Delta_{H^o,\text{gas}}$: Enthalpy of formation at standard conditions (kJ/mol).
Δ\textsubscript{H}^\textcircled{\text{liquid}}: Liquid phase enthalpy of formation at standard conditions (kJ/mol).

Δ\textsubscript{fus}H\textcircled{\text{fus}}: Enthalpy of fusion at standard conditions (kJ/mol).

Δ\textsubscript{fus}H\textsubscript{fus}: Enthalpy of fusion at a given temperature (kJ/mol).

Δ\textsubscript{vap}H\textcircled{\text{vap}}: Enthalpy of vaporization at standard conditions (kJ/mol).

Δ\textsubscript{vap}H: Enthalpy of vaporization at a given temperature (kJ/mol).

IE: Ionization energy (eV).

log\textsubscript{P\text{oct/wat}}: Octanol/Water partition coefficient.

P\textsubscript{c}: Critical Pressure (kPa).

Δ\textsubscript{fus}S\textsubscript{fus}: Entropy of fusion at a given temperature (J/mol×K).

S^\circ\textsubscript{gas}: Molar entropy at standard conditions (J/mol×K).

S^\circ\textsubscript{liquid}: Liquid phase molar entropy at standard conditions (J/mol×K).

T\textsubscript{boil}: Normal Boiling Point Temperature (K).

T\textsubscript{c}: Critical Temperature (K).

T\textsubscript{fus}: Normal melting (fusion) point (K).

T\textsubscript{triple}: Triple Point Temperature (K).

V\textsubscript{c}: Critical Volume (m3/kg-mol).

Latest version available from:
https://www.chemeo.com/cid/10-426-7/Propylene%20oxide

Generated by Cheméo on Sun, 23 Feb 2020 02:41:56 +0000.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.