Heptane, 2,2,4,6,6-pentamethyl-

Other names: 2,2,4,6,6-Pentamethylheptane

Permethyl 99A

InChl=1S/C12H26/c1-10(8-11(2,3)4)9-12(5,6)7/h10H,8-9H2,1-7H3

InchiKey: VKPSKYDESGTTFR-UHFFFAOYSA-N

Formula: C12H26

SMILES: CC(CC(C)(C)C)CC(C)(C)C

Mol. weight [g/mol]: 170.33 CAS: 13475-82-6

Physical Properties

Property code	Value	Unit	Source
gf	53.40	kJ/mol	Joback Method
hf	-313.79	kJ/mol	Joback Method
hfus	8.48	kJ/mol	Joback Method
hvap	49.00 ± 0.20	kJ/mol	NIST Webbook
hvap	48.97	kJ/mol	NIST Webbook
log10ws	-4.12		Crippen Method
logp	4.495		Crippen Method
mcvol	179.940	ml/mol	McGowan Method
рс	1851.52	kPa	Joback Method
rinpol	996.00		NIST Webbook
rinpol	985.00		NIST Webbook
rinpol	994.00		NIST Webbook
rinpol	990.04		NIST Webbook
rinpol	992.84		NIST Webbook
rinpol	994.39	994.39 NIST Webbook	
rinpol	987.85	.85 NIST Webbook	
rinpol	990.16	NIST Webbook	
rinpol	997.00		NIST Webbook
rinpol	1003.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	994.00		NIST Webbook
rinpol	990.00	990.00 NIST Webbook	
rinpol	995.00	995.00 NIST Webbook	
rinpol	995.00		NIST Webbook
rinpol	994.00		NIST Webbook
rinpol	997.00		NIST Webbook

rinpol	990.00	990.00		
rinpol	995.00			
rinpol	987.85	987.85 N		
rinpol	980.00		NIST Webbook	
rinpol	980.00		NIST Webbook	
rinpol	990.00		NIST Webbook	
rinpol	999.00		NIST Webbook	
rinpol	985.00		NIST Webbook	
rinpol	992.02		NIST Webbook	
rinpol	997.00		NIST Webbook	
ripol	957.00		NIST Webbook	
ripol	915.00		NIST Webbook	
ripol	915.00		NIST Webbook	
ripol	956.00		NIST Webbook	
ripol	954.00	954.00 NIS		
ripol	943.00		NIST Webbook	
tb	467.06	K	Joback Method	
tc	651.57	K	Joback Method	
tf	203.20 ± 3.00	K	NIST Webbook	
tf	203.00 ± 3.00	K	NIST Webbook	
tf	206.23 ± 0.05	K	NIST Webbook	
tf	206.17 ± 0.07	K	NIST Webbook	
tf	206.23 ± 0.03	06.23 ± 0.03 K		
tf	206.18 ± 0.06	06.18 ± 0.06 K		
tf	206.18 ± 0.08	06.18 ± 0.08 K		
tf	206.18 ± 0.08	06.18 ± 0.08 K NIST		
tf	206.23 ± 0.06	K	NIST Webbook	
VC	0.679	m3/kmol	Joback Method	

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	485.02	J/mol×K	590.07	Joback Method
cpg	501.08	J/mol×K	620.82	Joback Method
cpg	468.04	J/mol×K	559.31	Joback Method
cpg	516.26	J/mol×K	651.57	Joback Method
cpg	411.05	J/mol×K	467.06	Joback Method
cpg	431.10	J/mol×K	497.81	Joback Method
cpg	450.08	J/mol×K	528.56	Joback Method
cpl	350.98	J/mol×K	298.15	NIST Webbook
cpl	350.98	J/mol×K	298.15	NIST Webbook

dvisc	0.0021558	Paxs	298.91	Joback Method
dvisc	0.0009608	Paxs	340.95	Joback Method
dvisc	0.0005113	Paxs	382.99	Joback Method
dvisc	0.0003083	Paxs	425.02	Joback Method
dvisc	0.0002036	Paxs	467.06	Joback Method
dvisc	0.0280272	Paxs	214.84	Joback Method
dvisc	0.0063015	Paxs	256.88	Joback Method
rhol	745.20	kg/m3		Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 6,6-Pentamethylheptane (2) or ,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	723.26	kg/m3		Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of ,6,6-Pentamethylheptane and ,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	715.86	kg/m3		Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of ,6,6-Pentamethylheptane and ,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	708.42	kg/m3	343.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	700.70	kg/m3	353.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	775.80	kg/m3	253.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa

rhol	748.80	kg/m3	288.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	693.10	kg/m3	363.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	737.90	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa

rhol	730.60	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	723.20	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	715.80	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	745.50	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Direct Sugar to Hydrocarbon Diesel (DSH-76) and Binary Mixtures of N-Hexadecane and 2,2,4,6,6-Pentamethylheptane

rhol	738.20	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Direct Sugar to Hydrocarbon Diesel (DSH-76) and Binary Mixtures of N-Hexadecane and 2,2,4,6,6-Pentamethylheptane	
rhol	730.90	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Direct Sugar to Hydrocarbon Diesel (DSH-76) and Binary Mixtures of N-Hexadecane and 2,2,4,6,6-Pentamethylheptane	
rhol	723.50	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Direct Sugar to Hydrocarbon Diesel (DSH-76) and Binary Mixtures of N-Hexadecane and 2,2,4,6,6-Pentamethylheptane	
rhol	716.10	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Direct Sugar to Hydrocarbon Diesel (DSH-76) and Binary Mixtures of N-Hexadecane and 2,2,4,6,6-Pentamethylheptane	

rhol	708.60	kg/m3	Viscos of So Modulu Tens Flash Direct Hydr Diesel and Mixi N-Hes	ensity, ity, Speed und, Bulk us, Surface ion, and i Point of Sugar to ocarbon (DSH-76) Binary tures of kadecane and tamethylheptane
rhol	700.90	kg/m3	353.15 De Viscos of Soi Modulu Tens Flash Direct Hydr Diesel and Mixi N-Hes	ensity, ity, Speed und, Bulk us, Surface ion, and Point of Sugar to ocarbon (DSH-76) Binary tures of kadecane and tamethylheptane
rhol	693.20	kg/m3	Viscos of So Modulu Tens Flash Direct Hydr Diesel and Mixi N-Hes	ensity, ity, Speed und, Bulk us, Surface ion, and Point of Sugar to ocarbon (DSH-76) Binary tures of kadecane and tamethylheptane
rhol	685.50	kg/m3	373.15 De Viscos of Soi Modulu Tens Flash Direct Hydr Diesel and Mixi N-Hes	ensity, ity, Speed und, Bulk us, Surface ion, and Point of Sugar to ocarbon (DSH-76) Binary tures of kadecane and tamethylheptane

rhol	745.21	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	737.93	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	730.61	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	685.40	kg/m3	373.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures
			of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
speedsl	1052.50	m/s	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
speedsl	1089.30	m/s	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
speedsl	1126.70	m/s	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane

speedsl	1164.80	m/s	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
speedsl	1203.60	m/s	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.33897e+01
Coeff. B	-3.15580e+03
Coeff. C	-9.13150e+01
Temperature range (K), min.	332.18
Temperature range (K), max.	481.97

Sources

Crippen Method:

Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flack Purch Handweck Styleps Handward District On Diesel (DSH-76) and Birrary Mixtures of N-Hexadecane and 2434,66-Bentamethylheptane:

Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Maso Pain Met Bridary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) or n-Butylbenzene (2) Bulk-Modulus Fleptane (1) Mixtures of n-Butylbenzene (2) Flash Maint of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane:

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/je400839x

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.chemeo.com/doc/models/crippen_log10ws

http://webbook.nist.gov/cgi/cbook.cgi?ID=C13475826&Units=SI

https://www.doi.org/10.1021/acs.jced.8b00387

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je5000132

Joback Method: https://en.wikipedia.org/wiki/Joback_method

KDB: https://www.cheric.org/files/research/kdb/mol/mol172.mol

Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at 292151237345) K and 0.1 MPa and comparisons with Alcohol-to-Jet Fuel: https://www.doi.org/10.1021/je501141e

cpg: Ideal gas heat capacity

cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/10-746-2/Heptane-2-2-4-6-6-pentamethyl.pdf

Generated by Cheméo on 2025-12-05 06:50:11.626157711 +0000 UTC m=+4665609.156198370.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.