Phenol, 2-(1,1-dimethylethyl)-

Other names: 2-(1,1-Dimethylethyl)-phenol

2-(1,1-dimethylethyl)phenol

2-t-Butylphenol2-tert-Butylphenol

2-tert-butyl-1-hydroxybenzene

Phenol, 2-tert-butyl-Phenol, o-tert-butylo-tert-Butylphenol

InChi=1S/C10H14O/c1-10(2,3)8-6-4-5-7-9(8)11/h4-7,11H,1-3H3

InchiKey: WJQOZHYUIDYNHM-UHFFFAOYSA-N

Formula: C10H14O

SMILES: CC(C)(C)c1ccccc1O

Mol. weight [g/mol]: 150.22 CAS: 88-18-6

Physical Properties

Property code	Value	Unit	Source
chl	-5660.10	kJ/mol	NIST Webbook
gf	-6.05	kJ/mol	Joback Method
hf	-199.10	kJ/mol	NIST Webbook
hfl	-280.00	kJ/mol	NIST Webbook
hfus	14.07	kJ/mol	Joback Method
hvap	80.90	kJ/mol	NIST Webbook
hvap	63.20 ± 0.20	kJ/mol	NIST Webbook
hvap	77.03	kJ/mol	NIST Webbook
ie	8.40	eV	NIST Webbook
ie	8.10 ± 0.02	eV	NIST Webbook
log10ws	-2.33		Crippen Method
logp	2.690		Crippen Method
mcvol	133.870	ml/mol	McGowan Method
рс	3547.31	kPa	Joback Method
rinpol	1250.00		NIST Webbook
rinpol	1249.00		NIST Webbook
rinpol	1274.90		NIST Webbook
rinpol	1273.50		NIST Webbook
rinpol	1250.00		NIST Webbook
rinpol	1249.00		NIST Webbook

rinpol	1247.00		NIST Webbook
rinpol	1273.20		NIST Webbook
ripol	2161.00		NIST Webbook
ripol	2161.00		NIST Webbook
tb	497.06 ± 0.01	K	NIST Webbook
tb	497.20	K	NIST Webbook
tc	765.16	K	Joback Method
tf	267.53 ± 0.05	K	NIST Webbook
VC	0.443	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	314.96	J/mol×K	532.27	Joback Method
cpg	329.85	J/mol×K	571.08	Joback Method
cpg	343.53	J/mol×K	609.90	Joback Method
cpg	356.13	J/mol×K	648.71	Joback Method
cpg	367.75	J/mol×K	687.53	Joback Method
cpg	378.53	J/mol×K	726.34	Joback Method
cpg	388.58	J/mol×K	765.16	Joback Method
dvisc	0.0000583	Pa×s	532.27	Joback Method
dvisc	0.0014227	Paxs	374.56	Joback Method
dvisc	0.0006157	Paxs	406.10	Joback Method
dvisc	0.0003007	Paxs	437.64	Joback Method
dvisc	0.0038345	Pa×s	343.02	Joback Method
dvisc	0.0000940	Paxs	500.73	Joback Method
dvisc	0.0001617	Pa×s	469.19	Joback Method
hvapt	62.60 ± 0.20	kJ/mol	309.00	NIST Webbook
hvapt	74.10	kJ/mol	438.00	NIST Webbook
hvapt	54.90	kJ/mol	425.50	NIST Webbook
hvapt	52.90	kJ/mol	437.00	NIST Webbook
hvapt	55.60	kJ/mol	418.50	NIST Webbook
hvapt	53.90	kJ/mol	418.50	NIST Webbook
hvapt	51.00	kJ/mol	418.50	NIST Webbook
hvapt	47.00	kJ/mol	418.50	NIST Webbook

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source	
tbp	418.50	K	9.90	Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component	
tbp	438.60	K	19.82	Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component	
tbp	451.70	К	29.75	Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component	
tbp	469.40	K	49.63	Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component	
tbp	479.20	K	64.61	Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component	

Correlations

Information Value

Property code	pvap	
Equation	In(Pvp) = A + B/(T + C)	
Coeff. A	1.54375e+01	
Coeff. B	-4.52080e+03	
Coeff. C	-7.93800e+01	
Temperature range (K), min.	377.78	
Temperature range (K), max.	525.83	

Sources

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Application of a DSC based vapor pressure method for examining the extention method for examining the extention with parrow boiling range oil cuts awar mixture component:

https://www.doi.org/10.1016/j.tca.2016.05.011 https://en.wikipedia.org/wiki/Joback_method

http://link.springer.com/article/10.1007/BF02311772

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C88186&Units=SI

The Yaws Handbook of Vapor

Pressure:

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Legend

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/10-758-9/Phenol-2-1-1-dimethylethyl.pdf

Generated by Cheméo on 2025-12-06 05:01:40.534381894 +0000 UTC m=+4745498.064422556.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.