1,3-Dioxolane

Other names: 1,3-Dioxacyclopentane

1,3-Dioxolan

1,3-Dioxole, dihydro-

Dioxolan Dioxolane

Ethylene glycol formal

Formal glycol Glycolformal

dihydro-1,3-dioxole

ethylene glycol methylene ether formaldehyde ethylene acetal

Inchi: InChl=1S/C3H6O2/c1-2-5-3-4-1/h1-3H2
InchiKey: WNXJIVFYUVYPPR-UHFFFAOYSA-N

Formula: C3H6O2

SMILES: C1COCO1

Mol. weight [g/mol]: 74.08

CAS: 646-06-0

Physical Properties

Property code	Value	Unit	Source
chl	-1705.00	kJ/mol	NIST Webbook
chl	-1700.80 ± 1.40	kJ/mol	NIST Webbook
chl	-1700.00	kJ/mol	NIST Webbook
dvisc	0.0005310	Paxs	Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of 1,3-Dioxolane and 1,4-Dioxane with Butyl Acetate, Butyric Acid, Butylamine, and 2-Butanone at 298.15 K
gf	-153.60	kJ/mol	Joback Method
hf	-301.70 ± 2.20	kJ/mol	NIST Webbook
hfl	-337.20 ± 1.40	kJ/mol	NIST Webbook
hfus	12.35	kJ/mol	Joback Method
hvap	36.00 ± 0.40	kJ/mol	NIST Webbook
hvap	35.50	kJ/mol	NIST Webbook
ie	10.10	eV	NIST Webbook
ie	10.02	eV	NIST Webbook

ie	9.90	eV	NIST Webbook
log10ws	0.36		Crippen Method
logp	-0.009		Crippen Method
mcvol	54.010	ml/mol	McGowan Method
рс	5818.28	kPa	Joback Method
rinpol	593.00		NIST Webbook
rinpol	592.00		NIST Webbook
rinpol	635.00		NIST Webbook
rinpol	597.00		NIST Webbook
rinpol	635.00		NIST Webbook
rinpol	592.00		NIST Webbook
rinpol	638.00		NIST Webbook
rinpol	594.00		NIST Webbook
rinpol	597.00		NIST Webbook
rinpol	582.00		NIST Webbook
rinpol	608.00		NIST Webbook
rinpol	590.00		NIST Webbook
ripol	935.00		NIST Webbook
sg	310.50 ± 4.10	J/mol×K	NIST Webbook
sl	280.20	J/mol×K	NIST Webbook
tb	347.70	K	NIST Webbook
tb	339.12	К	Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling
tb	348.57	К	Vapor-Liquid Equilibrium Data for Methanol + 1,3-Dioxolane + Water and Constituent Binary Systems at 101.3 kPa.
tb	348.00	K	Study of Solution Properties of Some Alkali Bromides in Aqueous Binary Mixtures of 1,3-Dioxolane in View of Different Models
tb	348.75	K	NIST Webbook
tc	543.20	K	Joback Method
tf	175.90 ± 0.60	K	NIST Webbook
tf	175.85	K	NIST Webbook
tt	175.93 ± 0.02	K	NIST Webbook
VC	0.188	m3/kmol	Joback Method
-			

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	87.73	J/mol×K	341.89	Joback Method	
cpg	104.62	J/mol×K	408.99	Joback Method	
cpg	112.37	J/mol×K	442.54	Joback Method	
cpg	119.68	J/mol×K	476.09	Joback Method	
cpg	126.57	J/mol×K	509.65	Joback Method	
cpg	133.05	J/mol×K	543.20	Joback Method	
срд	96.41	J/mol×K	375.44	Joback Method	
cpl	128.10	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	118.80	J/mol×K	288.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	120.30	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	121.70	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	123.30	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

срІ	124.40	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	125.30	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	120.84	J/mol×K	298.15	NIST Webbook	
cpl	126.80	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	129.50	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	118.00	J/mol×K	298.00	NIST Webbook	
dvisc	0.0004580	Paxs	318.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	

dvisc	0.0005128	Paxs	308.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
dvisc	0.0005878	Paxs	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
hfust	6.57	kJ/mol	175.90	NIST Webbook	
hfust	6.57	kJ/mol	175.90	NIST Webbook	
hfust	2.68	kJ/mol	142.40	NIST Webbook	
hvapt	33.70	kJ/mol	326.00	NIST Webbook	
hvapt	35.80	kJ/mol	301.50	NIST Webbook	
hvapt	34.60	kJ/mol	326.00	NIST Webbook	
hvapt	33.70	kJ/mol	339.00	NIST Webbook	
hvapt	34.10	kJ/mol	317.50	NIST Webbook	
kvisc	0.0000005	m2/s	313.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.000006	m2/s	298.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	

kvisc	0.0000007	m2/s	283.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
pvap	26.83	kPa	313.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	13.54	kPa	298.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	49.01	kPa	328.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	26.73	kPa	313.16	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	23.08	kPa	309.76	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	13.54	kPa	298.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	

pvap	6.20	kPa	282.96	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	31.18	kPa	316.81	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.14	kPa	285.51	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	19.15	kPa	305.57	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	17.05	kPa	303.00	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	15.69	kPa	301.25	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	13.59	kPa	298.12	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	10.78	kPa	293.48	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	7.91	kPa	287.44	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	5.42	kPa	280.46	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	49.01	kPa	328.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling
rfi	1.39740		298.15	Physics and Chemistry of Lithium Halides in 1,3-Dioxolane and Its Binary Mixtures with Acetonitrile probed by Conductometric, Volumetric, Viscometric, Refractometric and Acoustic Study
rfi	1.39779		298.15	Vapor-Liquid Equilibria for Binary and Ternary Mixtures of 1,3-Dioxolane, 2-Propanol, and 2,2,4-Trimethylpentane at 101.3 kPa
rfi	1.39800		298.15	Studies on liquid liquid interactions of some ternary mixtures by density, viscosity, ultrasonic speed and refractive index measurements
rhol	1058.70	kg/m3	298.15	Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance
rhol	1058.62	kg/m3	298.15	Experimental and predicted viscosities of the ternary mixture (hexane + 1,3-dioxolane + 2-butanol) at 298.15 and 313.15 K

rh al	1051.00	ka/m2	202.45	Viceeus oursers	
rhol	1051.80	kg/m3	303.15	Viscous synergy and antagonism and isentropic compressibility of ternary mixtures containing 1,3-dioxolane, water and monoalkanols at 303.15K	
rhol	1058.90	kg/m3	298.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	1052.60	kg/m3	303.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	1058.73	kg/m3	298.15	Ionic solvation of tetrabutylammonium hexafluorophosphate in pure nitromethane, 1, 3-dioxolane and nitrobenzene: A comparative physicochemical study	
rhol	1059.00	kg/m3	298.15	Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions	
rhol	1058.62	kg/m3	298.15	(Vapour + liquid) equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at isobaric conditions	
rhol	1058.62	kg/m3	298.15	Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes	

rhol	1058.76	kg/m3	298.15	Isothermal Vapor-Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane
rhol	1047.20	kg/m3	298.15	Thermodynamic properties of liquid mixtures containing 1,3-dioxolane and anilines: Excess molar volumes, excess molar enthalpies, excess Gibb's free energy and isentropic compressibilities changes of mixing
rhol	1046.30	kg/m3	308.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures
sfust	37.33	J/mol×K	175.90	NIST Webbook
sfust	18.80	J/mol×K	142.40	NIST Webbook
speedsl	1270.90	m/s	313.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K
speedsl	1271.60	m/s	313.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures

speedsl	1339.90	m/s	298.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1406.30	m/s	283.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1340.20	m/s	298.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propano or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K	
srf	0.03	N/m	288.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentan at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentan at 298.15 K	
srf	0.03	N/m	298.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentan at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentan at 298.15 K	

srf	0.03	N/m	for the Mixture of 1,3-Dioxolar	Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane	
			2	+ 2-Propanol or + ,2,4-Trimethylpentane	
				at (288.15, 298.15, and	
				308.15) K and 1,3-Dioxolane +	
			2	2-Propanol + ,2,4-Trimethylpentane	
			_	at 298.15 K	

Correlations

Information

Property code pvap ln(Pvp) = A + B/(T + C)Equation Coeff. A 1.46333e+01 Coeff. B -3.02711e+03

Coeff. C -4.54420e+01 Temperature range (K), min. 256.45 Temperature range (K), max. 372.15

Sources

Crippen Method:

Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane: Crippen Method:

Thermodynamic properties of liquid mixtures containing 1,3-dioxolane and Shirtles on kieus liquid interactions of Printes Secretary Bright per by done to Gibb's Rose to Findly Bright per by done to Gibb's Rose to Findly Bright property of the second party of t

Mixtures New Hole Chile Land Hall Salah Mixtures (Vapour + liquid) equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane Excern Mour Johnnes and Viscosity Deniations of the light property of the light of th systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane)

water, and a biological buffer MOPS:

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.fluid.2006.10.024

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.tca.2010.07.027

https://www.doi.org/10.1016/j.tca.2009.07.011

https://www.doi.org/10.1021/acs.jced.7b01091

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Value

https://www.doi.org/10.1016/j.jct.2003.09.001

https://www.doi.org/10.1021/je0504109

https://www.doi.org/10.1021/je400722h

https://www.doi.org/10.1021/je800562h

https://www.doi.org/10.1016/j.jct.2018.05.012

https://www.doi.org/10.1016/j.jct.2014.11.002

Compressibilities for Binary Mixtures Compound at Three Temperatures: Physics and Chemistry of Lithium Halides in 1,3-Dioxolane and Its Binary Mixely of inchance and in the bod by continued by continued by continued by continued by the suite by the suite by the suite by the by eh bipary mixtures of cyclic ethers with characteristic or 1-chlorohexane at 283.15, 298.15, and 313.15K: Study of Solution Properties of Some Policy of the control Solutes in water. XXII. Cyclic ethers at Ethipican discreption of the property of the cyclic ethers at Ethipican discreption of the property of the cyclic ethers at Ethipican discreption of the property of the cyclic ethers at the property of the cyclic ethers at the property of the cyclic ethers at the property of the property of the cyclic ethers at the property of the property of the property of the property of the cyclic ethers at the property of the pro https://www.doi.org/10.1016/j.fluid.2015.10.033 MDG@WesroMethDebxolane + 2-Propanol http://link.springer.com/article/10.1007/BF02311772 or + 2.2.4-Trimethylpentane at (288.15, 296135) https://www.doi.org/10.1016/j.jct.2006.10.003 cyclif se study of 150 kure 150 popular https://www.doi.org/10.1016/j.jct.2006.10.003 cyclif at 1613 and 150 popular https://www.doi.org/10.1016/j.fluid.2011.11.002 https://www.doi.org/10.1016/j.dluid.2011.11.002 https://www.doi.org/10.1016/j.dluid.2011.11.002 https://www.doi.org/10.1016/j.dluid.2011.11.002 https://www

Thermophysical properties of dimethyl https://www.doi.org/10.1016/j.tca.2006.05.010 sulfoxide + cyclic and linear ethers at รูของเซ็ม ซาเมิกและเอก ๒ เราะบริเพละ อา ๒ เราะบริเพละ เราะบริ http://webbook.nist.gov/cgi/cbook.cgi?ID=C646060&Units=SI https://www.doi.org/10.1016/j.tca.2012.08.009 https://www.doi.org/10.1016/j.fluid.2009.01.010 https://www.doi.org/10.1021/je049576k https://www.doi.org/10.1016/j.tca.2008.11.009 https://en.wikipedia.org/wiki/Joback_method Study of Solution Properties of Some Alkali Bromides in Aqueous Binary Maxordsignid soliditisms between of Mitham Plantagor of https://www.doi.org/10.1021/je900709n https://www.doi.org/10.1021/je4006163 https://www.doi.org/10.1016/j.jct.2009.11.005 https://www.doi.org/10.1016/j.fluid.2007.08.013

physicochemical study: Legend

nitromethane, 1, 3-dioxolane and nitrobenzene: A comparative

Standard liquid enthalpy of combustion chl:

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

Enthalpy of vaporization at standard conditions hvap:

hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energykvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/10-768-8/1-3-Dioxolane.pdf

Generated by Cheméo on 2025-12-22 02:43:12.891245169 +0000 UTC m=+6119590.421285826.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.