N-propylurea

InChl=1S/C4H10N2O/c1-2-3-6-4(5)7/h2-3H2,1H3,(H3,5,6,7)

InchiKey: ZQZJKHIIQFPZCS-UHFFFAOYSA-N

Formula: C4H10N2O SMILES: CCCNC(N)=O

Mol. weight [g/mol]: 102.14

Physical Properties

Property code	Value	Unit	Source
gf	9.72	kJ/mol	Joback Method
hf	-151.21	kJ/mol	Joback Method
hfus	18.01	kJ/mol	Joback Method
hvap	48.32	kJ/mol	Joback Method
log10ws	-0.87		Crippen Method
logp	0.065		Crippen Method
mcvol	88.750	ml/mol	McGowan Method
рс	4634.00	kPa	Joback Method
tb	467.49	K	Joback Method
tc	665.92	K	Joback Method
tf	320.69	K	Joback Method
VC	0.330	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	189.41	J/mol×K	467.49	Joback Method
cpg	198.33	J/mol×K	500.56	Joback Method
cpg	206.83	J/mol×K	533.63	Joback Method
cpg	214.91	J/mol×K	566.71	Joback Method
cpg	222.59	J/mol×K	599.78	Joback Method
cpg	229.88	J/mol×K	632.85	Joback Method
cpg	236.79	J/mol×K	665.92	Joback Method

psub	4.70e-04	kPa	342.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	3.00e-04	kPa	337.40	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.90e-04	kPa	333.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	7.20e-04	kPa	345.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	7.40e-04	kPa	346.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	9.40e-04	kPa	348.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	9.90e-04	kPa	349.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.08e-03	kPa	350.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	1.58e-03	kPa	354.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.76e-03	kPa	355.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	2.17e-03	kPa	357.30	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

Sources

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Measurement and Prediction of Thermochemical Properties: Improved Hobane West of the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea:

https://www.doi.org/10.1021/je050230z https://en.wikipedia.org/wiki/Joback_method

Legend

cpg: Ideal gas heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressure

psub: Sublimation pressure

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/101-537-3/N-propylurea.pdf

Generated by Cheméo on 2025-12-05 15:01:34.682794892 +0000 UTC m=+4695092.212835556.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.