1-benzylpyrazole

Other names: 1-(phenylmethyl)-1H-pyrazole

1-benzyl-1H-pyrazole

1H-pyrazole, 1-(phenylmethyl)-

N-benzylpyrazole pyrazole, 1-benzyl-

InChl=1S/C10H10N2/c1-2-5-10(6-3-1)9-12-8-4-7-11-12/h1-8H,9H2

InchiKey: AKQAJYLKBCWJBV-UHFFFAOYSA-N

Formula: C10H10N2

SMILES: c1ccc(Cn2cccn2)cc1

Mol. weight [g/mol]: 158.20

Physical Properties

Property code	Value	Unit	Source
log10ws	-2.80		Crippen Method
logp	1.931		Crippen Method
mcvol	128.500	ml/mol	McGowan Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
pvap	1.47e-03	kPa		Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods

pvap	4.30e-03	kPa	310.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	6.15e-03	kPa	314.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	8.82e-03	kPa	318.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.01	kPa	322.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	

pvap	0.02	kPa	326.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.02	kPa	326.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.02	kPa	330.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.03	kPa	334.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	

pvap	0.04	kPa	338.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.06	kPa	342.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.07	kPa	346.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.10	kPa	350.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	

pvap	0.12	kPa	354.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	
pvap	0.16	kPa	358.20	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	382.00	K	0.60	Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods

Sources

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: Evaluation of thermochemical data with complementary experimental and computational methods:

https://www.doi.org/10.1016/j.jct.2018.07.020

McGowan Method:

Legend

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pvap: Vapor pressure

tbp: Boiling point at given pressure

Latest version available from:

https://www.chemeo.com/cid/103-016-9/1-benzylpyrazole.pdf

Generated by Cheméo on 2024-05-06 17:32:08.298071218 +0000 UTC m=+17305977.218648538.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.