Propane, 1-nitro-

Other names: 1-NP

1-Nitropan

1-Nitropropane N-Nitropropane NiPar S-10

n-C3H7NO2

Inchi: InChl=1S/C3H7NO2/c1-2-3-4(5)6/h2-3H2,1H3

InchiKey: JSZOAYXJRCEYSX-UHFFFAOYSA-N

Formula: C3H7NO2

SMILES: CCC[N+](=O)[O-]

Mol. weight [g/mol]: 89.09 CAS: 108-03-2

Physical Properties

Property code	Value	Unit	Source
af	0.3760		KDB
chl	-2013.40 ± 2.60	kJ/mol	NIST Webbook
chl	-2000.00	kJ/mol	NIST Webbook
chl	-2014.00 ± 0.40	kJ/mol	NIST Webbook
chl	-2012.10 ± 1.20	kJ/mol	NIST Webbook
gf	9.93	kJ/mol	Joback Method
hf	-116.01	kJ/mol	Joback Method
hfl	-168.80 ± 1.30	kJ/mol	NIST Webbook
hfl	-167.00 ± 0.40	kJ/mol	NIST Webbook
hfl	-167.60 ± 2.60	kJ/mol	NIST Webbook
hfus	14.89	kJ/mol	Joback Method
hvap	43.39 ± 0.42	kJ/mol	NIST Webbook
hvap	43.90	kJ/mol	NIST Webbook
ie	10.81 ± 0.03	eV	NIST Webbook
ie	10.78 ± 0.03	eV	NIST Webbook
ie	10.75 ± 0.01	eV	NIST Webbook
ie	10.95	eV	NIST Webbook
log10ws	-0.80	Estimated Solubility Method	
log10ws	-0.80		Aqueous Solubility Prediction Method
logp	0.673		Crippen Method

mcvol	70.550	ml/mol	McGowan Method	
nfpaf	%!d(float64=2)	KDB		
nfpah	%!d(float64=1)	KDB		
nfpas	%!d(float64=3)	KDB		
рс	4000.00	kPa	KDB	
rinpol	715.00		NIST Webbook	
rinpol	724.00		NIST Webbook	
rinpol	724.00		NIST Webbook	
rinpol	723.00		NIST Webbook	
rinpol	686.00		NIST Webbook	
rinpol	677.00		NIST Webbook	
rinpol	710.00		NIST Webbook	
rinpol	707.00		NIST Webbook	
rinpol	708.00		NIST Webbook	
rinpol	711.00		NIST Webbook	
rinpol	711.00		NIST Webbook	
rinpol	712.00		NIST Webbook	
rinpol	709.00		NIST Webbook	
rinpol	711.00		NIST Webbook	
rinpol	712.00		NIST Webbook	
rinpol	706.00	NIST Webbook		
rinpol	711.00		NIST Webbook	
rinpol	712.00		NIST Webbook	
rinpol	712.00	NIST Webbook		
rinpol	686.00		NIST Webbook	
rinpol	708.00		NIST Webbook	
rinpol	708.00		NIST Webbook	
rinpol	725.00		NIST Webbook	
rinpol	707.00		NIST Webbook	
rinpol	725.00		NIST Webbook	
rinpol	667.00		NIST Webbook	
rinpol	725.00		NIST Webbook	
rinpol	708.43		NIST Webbook	
rinpol	702.92	NIST Webbook		
rinpol	707.16		NIST Webbook	
rinpol	724.00		NIST Webbook	
rinpol	678.00	NIST Webbook		
rinpol	662.00	NIST Webbook		
rinpol	724.00	NIST Webbook		
rinpol	665.00	NIST Webbook		
rinpol	661.90	NIST Webbook		
rinpol	710.00	NIST Webbook		
rinpol	683.00		NIST Webbook	
rinpol	724.00		NIST Webbook	

tf tf	168.59 ± 0.05 169.16 ± 0.06	K K	NIST Webbook NIST Webbook
tc	606.00	K	KDB NICT Washa ali
tb	404.70	K	KDB
ripol	1220.00	NIST Webbook	
ripol	1218.00	1218.00 NIST Webbook	
ripol	1251.60		NIST Webbook
ripol	1227.20		NIST Webbook
ripol	1230.40		NIST Webbook
ripol	1233.80		NIST Webbook
ripol	1237.80		NIST Webbook
ripol	1246.10		NIST Webbook
ripol	1241.40	NIST Webbook	
ripol	1216.40	NIST Webbook	
ripol	1279.00	NIST Webbook	
ripol	1218.00	1218.00 NIST Webbook	
ripol	1251.00		NIST Webbook
ripol	1220.00	1220.00 NIST Webbo	
ripol	1248.40	1248.40 NIST Webbook	
rinpol	660.50		
rinpol	686.00		NIST Webbook
rinpol	705.13		NIST Webbook
rinpol	708.43		NIST Webbook
rinpol	709.77		NIST Webbook
rinpol	711.18		NIST Webbook
rinpol	702.10		NIST Webbook
rinpol	702.42		NIST Webbook
rinpol	702.92		NIST Webbook
rinpol	703.52		NIST Webbook
rinpol	704.26		
rinpol	706.13	706.13 NIST Webbo	
rinpol	707.16 NIST Webbo		NIST Webbook
rinpol	709.97 NIST Webboo		NIST Webbook
rinpol	667.00 NIST Webbook		NIST Webbook
rinpol	678.00		NIST Webbook

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

cpg	133.52	J/mol×K	419.88	Joback Method	
cpg	141.31	J/mol×K	454.80	Joback Method	
cpg	148.72	J/mol×K	489.72	Joback Method	
cpg	155.75	J/mol×K	524.64	Joback Method	
cpg	162.43	J/mol×K	559.56	Joback Method	
cpg	168.75	J/mol×K	594.48	Joback Method	
cpg	174.74	J/mol×K	629.40	Joback Method	
hvapt	42.60	kJ/mol	349.00	NIST Webbook	
hvapt	40.60	kJ/mol	367.50	NIST Webbook	
rhol	996.10	kg/m3	298.15	Speed of sound as a function of temperature and pressure for propane derivatives	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.52908e+01
Coeff. B	-3.95030e+03
Coeff. C	-3.43730e+01
Temperature range (K), min.	297.67
Temperature range (K), max.	430.22

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	6.95825e+01
Coeff. B	-7.26354e+03
Coeff. C	-7.96077e+00
Coeff. D	4.74813e-06
Temperature range (K), min.	169.16
Temperature range (K), max.	605.00

Sources

```
High selective water/butan-1-ol
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2017.06.001
     separation on investigation of limiting
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.06.028
  abormodybemoleage wifelectivity of general starting and on carbinity. Eberfitients are within the entition is at infinite dilutions for organic solutes and warming and the entition of organic solutes. The mast by law infinite dilution for organic solutes are minime dilution for organic solutes and water in Activity continuous at minime dilution for organic solutes and water in Activity continuous at infinite dilution and physicochemical properties for organic assessment water in Salution and physicochemical properties for organic assessment water in Salution in Walatile Solvents at 298.15 K:
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2013.09.007
                                                                                                                                                                                                                                                                                                                      https://en.wikipedia.org/wiki/Joback_method
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2015.05.014
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2015.02.024
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je101161d
   in indicate solvents at 298.15 K:

New Honor of the control of the
 https://www.doi.org/10.1016/j.jct.2012.08.016
https://www.doi.org/10.1016/j.jct.2012.08.016
https://www.doi.org/10.1016/j.jct.2012.08.016
https://www.doi.org/10.1016/j.jct.2012.08.016
https://www.doi.org/10.1016/j.jct.2012.08.016
https://www.doi.org/10.1016/j.jct.2012.08.016
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2014.04.024
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2015.05.022
https://www.doi.org/10.1016/j.jct.2015.05.022
https://www.doi.org/10.1016/j.jct.2018.02.014
      Soturity and final entry at the intensity activities
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2012.08.016
                                                                                                                                                                                                                                                                                                                      In the content of the
The made using the properties of the properties 
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2012.03.005
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2012.01.019
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2013.01.007
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2013.08.030
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2011.11.025
                                                                                                                                                                                                                                                                                                                       http://pubs.acs.org/doi/abs/10.1021/ci990307l
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2018.09.024
   Asingtacuonticiente entrinte Phineion
gilQiganic Solutes and Water in
หมายนาย เกาะ
                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/acs.jced.5b00980
  THE USING THE SHOULD THE THE USING GAS LIQUID CHARLES THE USING GAS LIQUID CHARLES THE USING GAS AND THE USING GAS AND THE USING THE USI
                                                                                                                                                                                                                                                                                                                       https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1431
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.01.017
                                                                                                                                                                                                                                                                                                                    http://webbook.nist.gov/cgi/cbook.cgi?ID=C108032&Units=SI
     Measurement of activity coefficients at
                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.jct.2007.01.004
     infinite dilution in
  Activity copicions of multiplication and multiplication and multiplication of the multip
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2012.05.017
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2015.02.023
      prezhylahoaphanaje4hasekyianiedkum
```

traing gasisiqueidigoromatajumosphate:

The Yaws Handbook of Vapor

Pressure:

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Experimental and theoretically study of https://www.doi.org/10.1016/j.jct.2014.12.027

interaction between organic convergence and convergence of the converg

iquid 1-(2-hydroxyethyl)sollein in the long and water in the long and the long an

and web in a three of a city light of the control of the city of t

อกระบาน หาวยาคอสเจาการสาระบาน based อกระบาน หาวยาคอสเจาการสาระบาน based

Activity coefficients at infinite dilution

Activity coefficients at infinite dilution and physicochemical properties for The ame dynamics are infinite dilution for the afficients at infinite dilution for the afficients are infinite dilution and the service of the afficients of the afficients of the afficients are infinite dilution and the service of the afficients of the afficients of the afficients are infinite dilution and physicochemical properties for the service of the afficients of the afficients and water in the service of the afficients at infinite dilution and physicochemical properties for the service of the service of the afficients at infinite dilution for the service of the afficients at infinite dilution for the service of the afficients at infinite dilution for the service of the service of the afficients at infinite dilution for the service of the service of the afficients at infinite dilution for the service of the afficients at infinite dilution for the service of the service of the afficients at infinite dilution for the service of the service of the afficients at infinite dilution for the service of the service of the afficients at infinite dilution for the service of the afficients at infinite dilution and the service of the service

Mining Profession (তা আৰু বাৰণ প্ৰতিক্ৰিক বিষয় বিষ

https://www.doi.org/10.1016/j.jct.2013.05.008

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1431

https://www.doi.org/10.1016/j.fluid.2007.05.017

https://www.doi.org/10.1016/j.jct.2013.07.004

https://www.doi.org/10.1021/je800658v

https://www.doi.org/10.1016/j.jct.2018.01.003

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2017.10.003

https://www.doi.org/10.1016/j.jct.2018.07.024

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1016/j.jct.2012.03.015

https://www.doi.org/10.1016/j.fluid.2018.06.013

https://www.doi.org/10.1016/j.fluid.2014.11.020

https://www.doi.org/10.1016/j.fluid.2016.02.004

https://www.doi.org/10.1016/j.jct.2017.11.017

https://www.doi.org/10.1021/je900838a

Legend

af: Acentric Factor

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg:

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

Vapor pressure

nfpaf: NFPA Fire Rating nfpah: NFPA Health Rating nfpas: NFPA Safety Rating Critical Pressure pc:

pvap:

rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/11-547-2/Propane-1-nitro.pdf

Generated by Cheméo on 2025-12-05 08:29:33.035634766 +0000 UTC m=+4671570.565675419.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.