Aniline, N-methyl-

Other names: (Methylamino)benzene

ANILINOMETHANE

Benzenamine, N-methyl-Benzeneamine, N-methyl-

Methylaniline

Methylphenylamine Monomethylaniline

N-METHYLBENZENAMINE N-Methylaminobenzene

N-Methylaniline

N-Methylphenylamine N-Monomethylaniline N-Phenylmethylamine

NSC 3502 UN 2294

phenylmethylamine

InChl=1S/C7H9N/c1-8-7-5-3-2-4-6-7/h2-6,8H,1H3

InchiKey: AFBPFSWMIHJQDM-UHFFFAOYSA-N

Formula: C7H9N

SMILES: CNc1ccccc1

Mol. weight [g/mol]: 107.15 **CAS:** 100-61-8

Physical Properties

Property code	Value	Unit	Source
af	0.4750		KDB
affp	916.60	kJ/mol	NIST Webbook
basg	890.10	kJ/mol	NIST Webbook
chl	-4073.00	kJ/mol	NIST Webbook
chl	-4077.00	kJ/mol	NIST Webbook
dm	1.70	debye	KDB
gf	199.30	kJ/mol	KDB
hf	83.90 ± 6.30	kJ/mol	NIST Webbook
hf	85.41	kJ/mol	KDB
hf	85.40	kJ/mol	NIST Webbook
hfl	33.40 ± 7.50	kJ/mol	NIST Webbook
hfl	32.00	kJ/mol	NIST Webbook

hfus	13.03	kJ/mol	Joback Method
hvap	50.50	kJ/mol	NIST Webbook
hvap	53.10	kJ/mol	NIST Webbook
hvap	50.50 ± 4.20	kJ/mol	NIST Webbook
hvap	53.40	kJ/mol	NIST Webbook
ie	7.73	eV	NIST Webbook
ie	7.53	eV	NIST Webbook
ie	7.34 ± 0.02	eV	NIST Webbook
ie	7.30 ± 0.05	eV	NIST Webbook
ie	7.32 ± 0.02	eV	NIST Webbook
ie	7.32	eV	NIST Webbook
ie	7.35 ± 0.02	eV	NIST Webbook
ie	7.38 ± 0.05	eV	NIST Webbook
ie	7.30	eV	NIST Webbook
log10ws	-1.28		Aqueous Solubility Prediction Method
log10ws	-1.28		Estimated Solubility Method
logp	1.728		Crippen Method
mcvol	95.710	ml/mol	McGowan Method
рс	5200.00	kPa	KDB
pc	5197.97 ± 70.92	kPa	NIST Webbook
rinpol	1062.00		NIST Webbook
rinpol	1031.00		NIST Webbook
rinpol	1041.00		NIST Webbook
rinpol	1035.00		NIST Webbook
rinpol	1062.00		NIST Webbook
rinpol	1069.00		NIST Webbook
rinpol	1056.00		NIST Webbook
rinpol	1035.00		NIST Webbook
rinpol	1052.20		NIST Webbook
rinpol	1040.40		NIST Webbook
rinpol	1041.00		NIST Webbook
rinpol	1056.00		NIST Webbook
ripol	1726.60		NIST Webbook
ripol	1726.60		NIST Webbook
ripol	1717.90		NIST Webbook
ripol	1746.00		NIST Webbook
ripol	1711.00		NIST Webbook
ripol	1686.00		NIST Webbook
ripol	1746.00		NIST Webbook
ripol	1719.80		NIST Webbook
ripol	1750.00		NIST Webbook
ripol	1746.00		NIST Webbook

ripol	1747.00		NIST Webbook
ripol	1719.80		NIST Webbook
tb	468.65 ± 0.50	K	NIST Webbook
tb	465.15 ± 5.00	K	NIST Webbook
tb	469.40	K	KDB
tb	468.90 ± 1.00	K	NIST Webbook
tb	464.90 ± 1.00	K	NIST Webbook
tb	469.25 ± 0.20	K	NIST Webbook
tb	467.05 ± 0.50	K	NIST Webbook
tb	469.25 ± 0.30	K	NIST Webbook
tb	467.90 ± 0.60	K	NIST Webbook
tb	469.40 ± 0.30	K	NIST Webbook
tb	469.40	K	NIST Webbook
tb	469.40 ± 0.30	K	NIST Webbook
tb	467.15 ± 0.40	K	NIST Webbook
tb	469.40 ± 0.25	K	NIST Webbook
tc	701.00	K	KDB
tf	216.00	K	KDB
tf	216.00	K	NIST Webbook
VC	0.354	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	177.91	J/mol×K	436.41	Joback Method
cpg	189.97	J/mol×K	472.29	Joback Method
cpg	201.30	J/mol×K	508.17	Joback Method
cpg	211.93	J/mol×K	544.05	Joback Method
cpg	221.89	J/mol×K	579.93	Joback Method
cpg	231.21	J/mol×K	615.81	Joback Method
cpg	239.92	J/mol×K	651.69	Joback Method
cpl	230.10	J/mol×K	290.00	NIST Webbook
cpl	210.92	J/mol×K	303.15 [Bn	Thermodynamic properties and molecular interactions of nim][NTf2]/[Bmim][Fand N-Methylaniline binary systems from T = (298.15 to 323.15) K at 0.1 MPa

cpl	214.73	J/mol×K	308.15	Thermodynamic properties and molecular interactions of [Bmim][NTf2]/[Bmim][Pf6] and N-Methylaniline binary systems from T = (298.15 to 323.15) K at 0.1 MPa
cpl	218.53	J/mol×K	313.15 Bis(trifluoromethy	Density, Speed of Sound, and Dynamic Viscosity of I-Butyl-3-methylimidazolium ylsulfonyl)imide/1-Butyl-3-methylimidazolium Hexafluorophosphate and N-Methylaniline Binary Systems from T = 298.15 to 323.15 K at 0.1 MPa
cpl	222.37	J/mol×K	318.15	Thermodynamic properties and molecular interactions of [Bmim][NTf2]/[Bmim][Pf6] and N-Methylaniline binary systems from T = (298.15 to 323.15) K at 0.1 MPa
cpl	225.88	J/mol×K	323.15	Thermodynamic properties and molecular interactions of [Bmim][NTf2]/[Bmim][Pf6] and N-Methylaniline binary systems from T = (298.15 to 323.15) K at 0.1 MPa
cpl	207.12	J/mol×K	298.15 Bis(trifluoromethy	Density, Speed of Sound, and Dynamic Viscosity of I-Butyl-3-methylimidazolium ylsulfonyl)imide/1-Butyl-3-methylimidazolium Hexafluorophosphate and N-Methylaniline Binary Systems from T = 298.15 to 323.15 K at 0.1 MPa

cpl	210.92		Bis(trifluoromethyl	Density, Speed of Sound, and Dynamic Viscosity of -Butyl-3-methylimidazolium sulfonyl)imide/1-Butyl-3-methylimidazolium Hexafluorophosphate and N-Methylaniline Binary Systems from T = 298.15 to 323.15 K at 0.1 MPa
cpl	214.73	J/mol×K	308.15 1- Bis(trifluoromethyl	Density, Speed of Sound, and Dynamic Viscosity of -Butyl-3-methylimidazolium sulfonyl)imide/1-Butyl-3-methylimidazolium Hexafluorophosphate and N-Methylaniline Binary Systems from T = 298.15 to 323.15 K at 0.1 MPa
cpl	207.12	J/mol×K	298.15	Thermodynamic properties and molecular interactions of [Bmim][NTf2]/[Bmim][Pf6] and N-Methylaniline binary systems from T = (298.15 to 323.15) K at 0.1 MPa
cpl	222.37	J/mol×K		Density, Speed of Sound, and Dynamic Viscosity of -Butyl-3-methylimidazolium Isulfonyl)imide/1-Butyl-3-methylimidazolium Hexafluorophosphate and N-Methylaniline Binary Systems from T = 298.15 to 323.15 K at 0.1 MPa
cpl	225.88		Bis(trifluoromethyl	Density, Speed of Sound, and Dynamic Viscosity of -Butyl-3-methylimidazolium Isulfonyl)imide/1-Butyl-3-methylimidazolium Hexafluorophosphate and N-Methylaniline Binary Systems from T = 298.15 to 323.15 K at 0.1 MPa
cpl	207.10	J/mol×K	298.00	NIST Webbook

cpl	218.53	J/mol×K	313.15 Thermodynamic properties and molecular interactions of [Bmim][NTf2]/[Bmim][Pf6] and N-Methylaniline binary systems from T = (298.15 to 323.15) K at 0.1 MPa	
hvapt	53.60	kJ/mol	389.00 NIST Webbook	
hvapt	45.35	kJ/mol	466.60 NIST Webbook	
pvap	0.07	kPa	298.15 Thermodynamic Properties of Binary Mixtures of Tetrahydropyran with Anilines at 308.15 K	
rhol	978.20	kg/m3	303.15 Excess Heat Capacities of Binary and Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Tetrafluoroborate and Anilines	
rhol	981.72	kg/m3	303.15 Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	989.00	kg/m3	293.00 KDB	
rhol	970.89	kg/m3	313.15 Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	

rhol	965.81	kg/m3	318.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	961.13	kg/m3	323.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	982.24	kg/m3	298.15	Thermodynamics of mixtures containing amines. XI. Liquid + liquid equilibria and molar excess enthalpies at 298.15 K for N-methylaniline + hydrocarbon systems. Characterization in terms of DISQUAC and ERAS models	
rhol	978.20	kg/m3	303.15	Comparative studies of intermolecular interaction of aromatic amines with ethyl lactate at different temperatures	
rhol	973.53	kg/m3	308.15	Comparative studies of intermolecular interaction of aromatic amines with ethyl lactate at different temperatures	

rhol	969.92	kg/m3	313.15	Comparative studies of intermolecular interaction of aromatic amines with ethyl lactate at different temperatures Comparative studies of intermolecular interaction of aromatic amines	
				with ethyl lactate at different temperatures	
rhol	982.40	kg/m3	298.15	Thermodynamic properties of liquid mixtures containing 1,3-dioxolane and anilines: Excess molar volumes, excess molar enthalpies, excess Gibb's free energy and isentropic compressibilities changes of mixing	
rhol	982.24	kg/m3	298.15	Thermodynamics of Ketone + Amine Mixtures. Part VIII. Molar Excess Enthalpies at 298.15 K for n-Alkanone + Aniline or + N-Methylaniline Systems	
rhol	986.44	kg/m3	293.15	Thermodynamics of Mixtures Containing Amines. XII. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for N-Methylaniline + Hydrocarbon Systems	

rhol	982.49	kg/m3	298.15 Thermodynamics of Mixtures Containing Amines. XII. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for N-Methylaniline + Hydrocarbon Systems
rhol	978.54	kg/m3	303.15 Thermodynamics of Mixtures Containing Amines. XII. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for N-Methylaniline + Hydrocarbon Systems
rhol	986.20	kg/m3	293.15 Excess Heat Capacities of Binary and Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Tetrafluoroborate and Anilines
rhol	982.20	kg/m3	298.15 Excess Heat Capacities of Binary and Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Tetrafluoroborate and Anilines
rhol	976.04	kg/m3	308.15 Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method
rhol	974.20	kg/m3	308.15 Excess Heat Capacities of Binary and Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Tetrafluoroborate and Anilines

speedsl	1548.00	m/s	303.15	Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and	
				substituted anilines at 303.15, 313.15 and 323.15 K	
speedsl	1512.00	m/s	313.15	Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K	
speedsl	1477.00	m/s	323.15	Thermodynamic and Acoustic Properties of Binary Mixtures of Ethers. 2. Diisopropyl Ether with Arylamines at (303.15, 313.15, and 323.15) K and Application of ERAS Model to Aniline Mixtures with Diisopropyl Ether and Oxolane	
speedsl	1582.50	m/s	293.15	Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for 2-Butanone + Aniline, + N-Methylaniline, or + Pyridine Systems	
speedsl	1563.90	m/s	298.15	Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for 2-Butanone + Aniline, + N-Methylaniline, or + Pyridine Systems	

speedsl	1546.00	m/s	303.15	Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for 2-Butanone + Aniline, + N-Methylaniline, or + Pyridine Systems	
speedsl	1548.00	m/s	303.15	Thermodynamic and Acoustic Properties of Binary Mixtures of Ethers. 2. Diisopropyl Ether with Arylamines at (303.15, 313.15, and 323.15) K and Application of ERAS Model to Aniline Mixtures with Diisopropyl Ether and Oxolane	
speedsl	1512.00	m/s	313.15	Thermodynamic and Acoustic Properties of Binary Mixtures of Ethers. 2. Diisopropyl Ether with Arylamines at (303.15, 313.15, and 323.15) K and Application of ERAS Model to Aniline Mixtures with Diisopropyl Ether and Oxolane	
speedsl	1477.00	m/s	323.15	Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.59126e+01
Coeff. B	-4.83070e+03
Coeff. C	-4.02870e+01
Temperature range (K), min.	349.45
Temperature range (K), max.	495.97

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.91078e+01
Coeff. B	-9.00734e+03
Coeff. C	-9.14371e+00
Coeff. D	4.35509e-06
Temperature range (K), min.	216.15
Temperature range (K), max.	701.55

Sources

Thermodynamic and acoustic properties of binary mixtures of Thermodynamic and acoustic properties of binary mixtures of Thermodynamicians Ketosabahanies Mixtures Probability Molas Excess 23.15 K: Ehannes and 25 No. 25 at 298.15 K for N-methylaniline + holifile Monay Stein Wilchaff Acterization Containing Angly Stein Wilchaff Acterization Containing Angly Stein Wilchaff Acterization Containing Many Stein Wilchaff Acterization Containing But Act 1953: 45, 298.15, Bridge Stein Williams Arylamines at (303.15, 313.15, and 323.15) K and Application of the Was Model on Method:

Mixtures with Diisopreppyl Ether and Oxolane:

Estimated Solubility Method:

Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed Theonadyparaion (200 artices) of 16 inand Mixtures of 16 technology (200 artices) of 16 inand Mixtures of 16 technology (200 artices) of 16 inand Express Heat Court in 16 inand and Express Heat Court in 16 inand and Express Heat Court in 16 inand and Inand III in 16 inand II inand II in 16 inand II in 16 inand II in 16 inand II in 16 inand II ina

Excess of the state of the stat

Comparative studies of intermolecular interaction of aromatic amines with Denysitac Speed of Seum deanys Parnaesic https://www.doi.org/10.1021/acs.jced.8b01095 Viscosity of Stadypo-thermy physical properties of https://www.doi.org/10.1016/j.fluid.2018.01.025

BISACTION TO THE CONTROL OF THE PARTY OF THE

spectroscopic and DFT method:

https://www.doi.org/10.1016/j.tca.2010.04.025

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1016/j.jct.2012.07.006

https://www.cheric.org/files/research/kdb/mol/mol1300.mol

https://www.doi.org/10.1021/je400134d

https://www.doi.org/10.1021/je1008262

http://webbook.nist.gov/cgi/cbook.cgi?ID=C100618&Units=SI

http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1300

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1021/je100472t

https://www.doi.org/10.1021/je1005196

https://www.doi.org/10.1016/j.tca.2010.07.027

https://www.doi.org/10.1021/je401098b

https://www.doi.org/10.1016/j.fluid.2013.09.026

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2016.09.010

Thermodynamic properties and molecular interactions of Tisha หัสพุทธาหัสพุทธาหัสพฤทธาหัสพฤทธาหาสมาชาการ Tage 11 (1875) 15 (18

https://www.doi.org/10.1016/j.jct.2019.06.003

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

http://pubs.acs.org/doi/abs/10.1021/ci990307l

http://link.springer.com/article/10.1007/BF02311772

Legend

McGowan Method:

af: Acentric Factoraffp: Proton affinitybasg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dm: Dipole Moment

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/11-576-0/Aniline-N-methyl.pdf

Generated by Cheméo on 2025-12-05 09:11:18.277987416 +0000 UTC m=+4674075.808028115.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.