Betaine

Other names: (carboxymethyl)trimethylammonium hydroxide inner salt

(trimethylammonio)acetate

1-Carboxy-N,N,N-trimethylmethanaminium hydroxide, inner salt

2-(Trimethylammonio)ethanoic acid, hydroxide, inner salt

Abromine Cystadane

Glycine betaine

Glycine, trimethylbetaine

Glycocoll betaine Glycylbetaine Loramine AMB-13

Lycine

Methanaminium, 1-carboxy-N,N,N-trimethyl-, hydroxide, inner salt

Methanaminium, 1-carboxy-N,N,N-trimethyl-, inner salt

Oxyneurine Rubrine C

Trimethylaminoacetate
Trimethylaminoacetic acid

Trimethylglycine Trimethylglycocoll «alpha»-Earleine

Inchi: InChl=1S/C5H11NO2/c1-6(2,3)4-5(7)8/h4H2,1-3H3

InchiKey: KWIUHFFTVRNATP-UHFFFAOYSA-N

Formula: C5H11NO2

SMILES: C[N+](C)(C)CC(=O)[O-]

Mol. weight [g/mol]: 117.15 CAS: 107-43-7

Physical Properties

Property code	Value	Unit	Source
log10ws	-1.24		Crippen Method
logp	-1.557		Crippen Method
mcvol	98.730	ml/mol	McGowan Method

Sources

The hydration of the protein stabilizing agents: Trimethylamine-N-oxide, glycimethylamine-N-oxide, glycimethylamine-N-oxide, glycimethyliga aladyes properties aladyes properties aladyes properties aladyes properties aladyes properties aladyes properties.

Compatible solutes: Thermodynamic properties relevant for effective Government of the properties relevant for effective Government of the properties relevant for effective Government of the properties and betaine on the

ितांकाञ्चला अधि कि बोग्स with zwitterionic

glycine peptides: Physical properties of seven deep

Physical properties of seven deep eutectic solvents based on L-proline or Synthesis and Physical and Thermodynamic Properties of Lactic Actic Actic Actic Actic Actic Actic Actio Ac

Solubility and Solution

Thermodynamics of Betaine in

Mixtures: Characterization of the volumetric properties of betaine in aqueous solutions: Compositional, pressure, and temperature dependence:

https://www.doi.org/10.1016/j.jct.2013.01.023

https://www.doi.org/10.1021/acs.jced.7b00184

http://webbook.nist.gov/cgi/cbook.cgi?ID=C107437&Units=SI

https://www.doi.org/10.1016/j.fluid.2015.07.004

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.jct.2018.12.017

https://www.doi.org/10.1021/acs.jced.7b01037

https://www.doi.org/10.1016/j.fluid.2017.05.001

https://www.doi.org/10.1016/j.tca.2013.08.002

https://www.doi.org/10.1021/acs.jced.7b00102

https://www.doi.org/10.1021/je2011659

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.tca.2014.03.042

Legend

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

Latest version available from:

https://www.chemeo.com/cid/12-895-5/Betaine.pdf

Generated by Cheméo on 2024-04-09 02:11:44.357467488 +0000 UTC m=+14917953.278044803.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.