1H-Imidazole, 1-methyl-

Other names: 1-Methyl-1H-imidazole

1-Methylimidazole Imidazole, 1-methyl-N-Methylimidazole

Inchi: InChi=1S/C4H6N2/c1-6-3-2-5-4-6/h2-4H,1H3

InchiKey: MCTWTZJPVLRJOU-UHFFFAOYSA-N

Formula: C4H6N2

SMILES: Cn1ccnc1

Mol. weight [g/mol]: 82.10

CAS: 616-47-7

Physical Properties

Property code	Value	Unit	Source	
affp	959.60	kJ/mol	NIST Webbook	
basg	927.70	kJ/mol	NIST Webbook	
ie	8.66	eV	NIST Webbook	
log10ws	-2.53		Crippen Method	
logp	0.420		Crippen Method	
mcvol	67.720	ml/mol	McGowan Method	
rinpol	929.00		NIST Webbook	
rinpol	929.00		NIST Webbook	
rinpol	929.00		NIST Webbook	
ripol	1681.00		NIST Webbook	
ripol	1638.00		NIST Webbook	
ripol	1700.00		NIST Webbook	
tb	471.20	K	NIST Webbook	
tb	471.60	K	Vapor-liquid equilibrium in the production of the ionic liquid, 1-hexyl-3-methylimidazolium bromide ([HMIm][Br]), in acetone	

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

pvap	101.33	kPa	471.60 1-h	Vapor-liquid equilibrium in the production of the ionic liquid, exyl-3-methylimidazo bromide ([HMIm][Br]), in acetone	lium
rhol	1011.90	kg/m3	323.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1033.20	kg/m3	298.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1029.20	kg/m3	303.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1025.00	kg/m3	308.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1020.70	kg/m3	313.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1015.50	kg/m3	318.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1037.00	kg/m3	293.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	

rhol	1039.36	kg/m3	288.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +1-propanol, +2-propanol	
rhol	1030.52	kg/m3	298.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	1021.66	kg/m3	308.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +1-propanol, +2-propanol	
rhol	1012.76	kg/m3	318.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	

rhol	1003.83	kg/m3	328.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +2-propanol	
rhol	1031.14	kg/m3	298.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry	

Sources

NIST Webbook:

http://webbook.nist.gov/cgi/cbook.cgi?ID=C616477&Units=SI

Does Alkyl Chain Length Really Matter? https://www.doi.org/10.1016/j.tca.2013.04.003 Structure-Property Relationships in Theiring Retivisity of finite Landids.: 1-chlorobutane in water and in aqueous Soippens let sous stances involved in synthesis of ionic liquids: Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio Tawarakonsdaratandingotlee affect of

Herisage this internations that the binary https://www.doi.org/10.1016/j.jct.2012.06.015 https://www.doi.org/10.1016/j.jct.2012.06.015 https://www.doi.org/10.1016/j.jct.2011.05.027 in its line in the binary https://link.springer.com/article/10.1007/BF023

http://link.springer.com/article/10.1007/Edid Scavenging utilizing lonic Liquids Brush of Brush of Scavenging utilizing lonic Liquid Indicated Indic

Water and Methanol Using Tandem Flow Mixing Calorimetry and

Vibrating-Tube Densimetry:

https://www.doi.org/10.1016/j.fluid.2010.09.026

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.jct.2018.12.019

https://www.doi.org/10.1016/j.fluid.2009.02.011

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1007/s10765-008-0506-x

https://www.doi.org/10.1016/j.fluid.2005.09.021

https://www.doi.org/10.1016/j.jct.2019.03.031

Ternary Liquid-Liquid Equilibria
Measurement for Benzene +
Cyclipe MethodN-Methylimidazole, or
N-Ethylimidazole, or
Nametrichinicazolimium in the
BERGLYFIAD STITLE Arisoliquidand
Anexy 1-1-11 and and anexy 1-1-11, in acetone:

https://www.doi.org/10.1021/je800376f http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.fluid.2013.11.030

Legend

affp: Proton affinity **basg:** Gas basicity

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pvap: Vapor pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

Latest version available from:

https://www.chemeo.com/cid/13-628-0/1H-Imidazole-1-methyl.pdf

Generated by Cheméo on 2025-12-05 16:02:17.13246816 +0000 UTC m=+4698734.662508824.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.