1H-Imidazole, 1-methyl-

Other names: 1-Methyl-1H-imidazole

1-Methylimidazole Imidazole, 1-methyl-N-Methylimidazole

Inchi: InChl=1S/C4H6N2/c1-6-3-2-5-4-6/h2-4H,1H3

InchiKey: MCTWTZJPVLRJOU-UHFFFAOYSA-N

Formula: C4H6N2
SMILES: Cn1ccnc1
Mol. weight [g/mol]: 82.10
CAS: 616-47-7

Physical Properties

Property code	Value	Unit	Source
affp	959.60	kJ/mol	NIST Webbook
basg	927.70	kJ/mol	NIST Webbook
ie	8.66	eV	NIST Webbook
log10ws	-2.53		Crippen Method
logp	0.420		Crippen Method
mcvol	67.720	ml/mol	McGowan Method
rinpol	929.00		NIST Webbook
rinpol	929.00		NIST Webbook
rinpol	929.00		NIST Webbook
ripol	1681.00		NIST Webbook
ripol	1700.00		NIST Webbook
ripol	1638.00		NIST Webbook
tb	471.60	К	Vapor-liquid equilibrium in the production of the ionic liquid, 1-hexyl-3-methylimidazolium bromide ([HMIm][Br]), in acetone
tb	471.20	K	NIST Webbook

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

pvap	101.33	kPa	471.60 1-h	Vapor-liquid equilibrium in the production of the ionic liquid, exyl-3-methylimidazolium bromide ([HMIm][Br]), in acetone
rhol	1039.36	kg/m3	288.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol
rhol	1029.20	kg/m3	303.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids
rhol	1025.00	kg/m3	308.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids
rhol	1020.70	kg/m3	313.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids
rhol	1015.50	kg/m3	318.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids
rhol	1011.90	kg/m3	323.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids

rhol	1033.20	kg/m3	298.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	
rhol	1030.52	kg/m3	298.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	1021.66	kg/m3	308.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	1012.76	kg/m3	318.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	

rhol	1003.83	kg/m3	328.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	1031.14	kg/m3	298.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry	
rhol	1037.00	kg/m3	293.15	Towards understanding the effect of electrostatic interactions on the density of ionic liquids	

Sources

Crippen Method:

Thermal Conductivities of Imidazolium-Based Ionic Liquid + CO2 Image Behavior, Densities, and Isothermal Compressibility of Carbon Downeds undergraphic Carbon Downeds under Carbon Downeds und **Thermal Conductivities of** interactions in binary mixtures of Neterini interactions in binary mixtures of Neterini interactions in

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1007/s10765-008-0506-x

https://www.doi.org/10.1016/j.fluid.2009.02.011

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2019.03.031

http://webbook.nist.gov/cgi/cbook.cgi?ID=C616477&Units=SI

https://www.chemeo.com/doc/models/crippen_log10ws

Phase equilibrium in systems with ionic liquids: An example for the diwitisg early it occoss for enterphasic Acid systems in white an analysis early service with the enterphasic acid systems. By open explained in the enterphasic by open explained in the enterphasic by open explained in the enterphasic by open example in the enterphasic by open example in the enterphasic by interphasic production of the ionic liquid. The enterphasic by interphasic by interphasic production of the ionic liquid. The enterphasic by interphasic plants are the enterphasic by interphasic plants in the enterphasic by interphasic plants in the enterphasic plants in the enterphasic section in the enterphasic section in the enterphasic section in the enterphasic plants in the enterphasic section in the enterphasic sectio

https://www.doi.org/10.1016/j.jct.2011.05.027
https://www.doi.org/10.1016/j.fluid.2010.09.026
https://www.doi.org/10.1016/j.tca.2013.04.003
https://www.doi.org/10.1016/j.fluid.2013.11.030
https://www.doi.org/10.1021/je800376f
https://www.doi.org/10.1016/j.fluid.2005.09.021
https://www.doi.org/10.1021/je1004966

https://www.doi.org/10.1021/je4007713

affp: Proton affinity **basg:** Gas basicity

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pvap: Vapor pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

Latest version available from:

https://www.chemeo.com/cid/13-628-0/1H-Imidazole-1-methyl.pdf

Generated by Cheméo on 2024-04-29 08:05:54.007396407 +0000 UTC m=+16667202.927973723.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.