1-Propanol

Other names: 1-Hydroxypropane

1-Propyl alcohol Alcohol, propyl Alcool propilico Alcool propylique Ethylcarbinol

N-PROPYL ALCOHOL

NSC 30300

Optal

Osmosol extra

PROPYL ALCOHOL

Propan-1-ol Propanol Propanole Propanole Propanoli

Propylan-propyl alcohol

Propylic alcohol Propylowy alkohol

UN 1274 n-C3H7OH n-Propan-1-ol n-Propanol

n-Propyl alkohol

Inchi: InChi=1S/C3H8O/c1-2-3-4/h4H,2-3H2,1H3
InchiKey: BDERNNFJNOPAEC-UHFFFAOYSA-N

Formula: C3H8O
SMILES: CCCO
Mol. weight [g/mol]: 60.09
CAS: 71-23-8

Physical Properties

Property code	Value	Unit	Source
af	0.6230		KDB
affp	786.50	kJ/mol	NIST Webbook

aigt	644.26	K	KDB
basg	756.10	kJ/mol	NIST Webbook
chl	-2019.40 ± 0.30	kJ/mol	NIST Webbook
chl	-2017.70 ± 1.00	kJ/mol	NIST Webbook
chl	-2021.40 ± 0.75	kJ/mol	NIST Webbook
chl	-2032.59	kJ/mol	NIST Webbook
chl	-2021.31 ± 0.25	kJ/mol	NIST Webbook
cpl	143.41	J/mol×K	THERMODYNAMICS OF MIXTURES CONTAINING AMINES. XIV. CPEM OF BENZYLAMINE WITH HEPTANE AT 293.15 K OR WITH METHANOL, 1-PROPANOL OR 1-PENTANOL AT (293.15-308.15) K
dm	1.70	debye	KDB
dvisc	0.0019544	Paxs	Densities and Viscosities of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
fII	2.10	% in Air	KDB
flu	13.50	% in Air	KDB
fpc	300.37	K	KDB
fpo	298.15	K	KDB
gf	-161.90	kJ/mol	KDB
gyrad	2.7360		KDB
hf	-257.20	kJ/mol	NIST Webbook
hf	-255.20 ± 0.30	kJ/mol	NIST Webbook
hf	-256.60	kJ/mol	KDB
hf	-257.30 ± 0.40	kJ/mol	NIST Webbook
hf	-255.60 ± 1.30	kJ/mol	NIST Webbook
hf	-254.70 ± 4.40	kJ/mol	NIST Webbook
hf	-258.80 ± 1.10	kJ/mol	NIST Webbook
hf	-255.10	kJ/mol	NIST Webbook
hfl	-306.30 ± 1.00	kJ/mol	NIST Webbook
hfl	-302.54 ± 0.25	kJ/mol	NIST Webbook
hfl	-303.00 ± 1.30	kJ/mol	NIST Webbook
hfl	-304.60 ± 0.40	kJ/mol	NIST Webbook
hfl	-302.50 ± 4.20	kJ/mol	NIST Webbook
hfus	5.40	kJ/mol	Heat Capacities and Derived Thermodynamic Functions of 1-Propanol between 10 K and 350 K and of 1-Pentanol between 85 K and 370 K
hvap	38.95	kJ/mol	Joback Method
ie	10.22 ± 0.06	eV	NIST Webbook

ie	10.22 ± 0.07	eV	NIST Webbook
ie	10.00	eV	NIST Webbook
ie	10.15 ± 0.03	eV	NIST Webbook
ie	10.16 ± 0.03	eV	NIST Webbook
ie	10.32 ± 0.02	eV	NIST Webbook
ie	10.25	eV	NIST Webbook
ie	10.22 ± 0.04	eV	NIST Webbook
ie	10.48	eV	NIST Webbook
ie	10.20	eV	NIST Webbook
ie	10.52 ± 0.03	eV	NIST Webbook
ie	10.51	eV	NIST Webbook
ie	10.49	eV	NIST Webbook
ie	10.51	eV	NIST Webbook
log10ws	0.62		Estimated Solubility Method
log10ws	0.62		Aqueous Solubility Prediction Method
logp	0.389		Crippen Method
mcvol	59.000	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	5170.00	kPa	NIST Webbook
рс	5170.00	kPa	NIST Webbook
рс	5082.00	kPa	NIST Webbook
рс	5218.00	kPa	NIST Webbook
рс	5082.00	kPa	NIST Webbook
рс	5168.00 ± 20.00	kPa	NIST Webbook
рс	5168.00 ± 20.00	kPa	NIST Webbook
рс	5397.00	kPa	NIST Webbook
рс	5155.00	kPa	NIST Webbook
рс	5182.00 ± 10.00	kPa	NIST Webbook
рс	5169.00	kPa	KDB
рс	5170.00 ± 20.00	kPa	NIST Webbook
рс	5170.00	kPa	NIST Webbook
rinpol	524.00		NIST Webbook
rinpol	551.40		NIST Webbook
rinpol	544.60		NIST Webbook
rinpol	542.30		NIST Webbook
rinpol	540.50		NIST Webbook
rinpol	541.50		NIST Webbook
rinpol	556.50		NIST Webbook
rinpol	553.50		NIST Webbook
rinpol	551.40		NIST Webbook
rinpol	ECE 00		NIST Webbook
·	565.00		INIO I WEDDOOK

rinpol	546.00	NIST Webbook
rinpol	555.00	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	539.90	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	544.00	NIST Webbook
rinpol	525.00	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	556.50	NIST Webbook
rinpol	523.00	NIST Webbook
rinpol	574.00	NIST Webbook
rinpol	561.00	NIST Webbook
rinpol	555.00	NIST Webbook
rinpol	595.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	541.50	NIST Webbook
rinpol	521.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	555.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	556.00	NIST Webbook
rinpol	537.00	NIST Webbook
rinpol	540.20	NIST Webbook
rinpol	540.20	NIST Webbook
rinpol	546.00	NIST Webbook
rinpol	552.00	NIST Webbook
rinpol	532.00	NIST Webbook
rinpol	552.00	NIST Webbook
rinpol	552.00	NIST Webbook
rinpol	536.00	NIST Webbook
rinpol	533.00	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	537.00	NIST Webbook
rinpol	544.00	NIST Webbook
rinpol	535.00	NIST Webbook
rinpol	507.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	561.00	NIST Webbook
rinpol	549.00	NIST Webbook
IIIIpor	0.10.00	THO! WODDOOK

rinnal	FF2 00	NIST Webbook
rinpol	553.00 536.00	NIST Webbook
	559.00	NIST Webbook
rinpol		
rinpol	559.00	NIST Webbook
rinpol	559.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	557.90	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	554.00	NIST Webbook
rinpol	553.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	539.00	NIST Webbook
rinpol	538.64	NIST Webbook
rinpol	521.00	NIST Webbook
rinpol	535.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	561.00	NIST Webbook
rinpol	555.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	547.00	NIST Webbook
rinpol	544.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	544.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	558.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	544.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	535.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	539.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	543.00	NIST Webbook
rinpol	546.00	NIST Webbook
rinpol	546.00	NIST Webbook
rinpol	539.00	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	534.00	NIST Webbook
rinpol	555.00	NIST Webbook
1111401	200.00	

rinnal	F3F 00	NIST Webbook
rinpol rinpol	535.00 581.00	NIST Webbook
	571.00	NIST Webbook
rinpol		
rinpol	572.00	NIST Webbook
rinpol	540.50	NIST Webbook
rinpol	543.70	NIST Webbook
rinpol	540.50	NIST Webbook
rinpol	544.60	NIST Webbook
rinpol	553.50	NIST Webbook
rinpol	555.00	NIST Webbook
rinpol	525.00	NIST Webbook
rinpol	561.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	559.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	542.30	NIST Webbook
rinpol	544.60	NIST Webbook
rinpol	521.00	NIST Webbook
rinpol	536.90	NIST Webbook
rinpol	543.70	NIST Webbook
rinpol	549.70	NIST Webbook
rinpol	558.20	NIST Webbook
rinpol	559.30	NIST Webbook
rinpol	561.40	NIST Webbook
rinpol	561.20	NIST Webbook
rinpol	553.60	NIST Webbook
rinpol	561.20	NIST Webbook
rinpol	547.00	NIST Webbook
ripol	1040.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	1051.00	NIST Webbook
ripol	1046.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1047.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	1025.00	NIST Webbook
ripol	1049.00	NIST Webbook
ripol	1014.00	NIST Webbook
ripol	1033.00	NIST Webbook
ripol	1026.00	NIST Webbook
Прог	1020.00	THE I WODDOOK

ripol	1045.00	NIST Webbook
ripol	1064.00	NIST Webbook
ripol	1033.00	NIST Webbook
ripol	1072.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1031.00	NIST Webbook
·	1046.00	NIST Webbook
ripol	1046.90	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1027.00	NIST Webbook
ripol		
ripol	1025.00	NIST Webbook
ripol	1042.00	NIST Webbook
ripol	1047.00	NIST Webbook
ripol	1042.00	NIST Webbook
ripol	1042.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1042.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1044.00	NIST Webbook
ripol	1035.00	NIST Webbook
ripol	1032.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1046.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1051.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1086.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	992.00	NIST Webbook
ripol	1045.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1040.00	NIST Webbook
ripol	1042.00	NIST Webbook
ripol	996.00	NIST Webbook
ripol	990.00	NIST Webbook
ripol	996.00	NIST Webbook
ripol	990.00	NIST Webbook

ripol	1030.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1022.00	NIST Webbook
ripol	1042.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1049.00	NIST Webbook
ripol	1046.00	NIST Webbook
ripol	1069.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1032.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1006.00	NIST Webbook
ripol	1045.00	NIST Webbook
·	1000.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol		
ripol	1040.00	NIST Webbook NIST Webbook
ripol	1025.00	
ripol	1029.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	1043.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1035.00	NIST Webbook
ripol	1025.00	NIST Webbook
ripol	1034.00	NIST Webbook
ripol	1045.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	1040.00	NIST Webbook
ripol	1023.00	NIST Webbook
ripol	1028.00	NIST Webbook
ripol	1033.00	NIST Webbook
ripol	1031.00	NIST Webbook
ripol	1034.00	NIST Webbook
ripol	1032.00	NIST Webbook
ripol	1041.00	NIST Webbook
ripol	1029.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1051.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1031.00	NIST Webbook

ripol	1025.00	NIST Webbook
ripol	1025.00	NIST Webbook
ripol	1049.00	NIST Webbook
ripol	1064.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1041.00	NIST Webbook
ripol	1073.00	NIST Webbook
ripol	1045.00	NIST Webbook
ripol	1040.00	NIST Webbook
ripol	1052.00	NIST Webbook
ripol	1041.00	NIST Webbook
ripol	1041.00	NIST Webbook
	1026.00	NIST Webbook
ripol	1038.00	NIST Webbook
ripol	1015.00	NIST Webbook
ripol	1015.00	NIST Webbook
ripol		
ripol	1049.00	NIST Webbook
ripol	1049.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	1061.00	NIST Webbook
ripol	1060.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	1025.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	1005.00	NIST Webbook
ripol	1043.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	1037.00	NIST Webbook
ripol	993.00	NIST Webbook
ripol	1014.00	NIST Webbook
ripol	1021.00	NIST Webbook
ripol	1056.00	NIST Webbook
ripol	1026.00	NIST Webbook
ripol	1036.00	NIST Webbook
ripol	1046.00	NIST Webbook
ripol	1030.00	NIST Webbook
ripol	1031.00	NIST Webbook
ripol	993.00	NIST Webbook
ripol	1035.00	NIST Webbook
ripol	1040.00	NIST Webbook
ripol	997.00	NIST Webbook
ripol	1000.00	NIST Webbook
ripol	988.00	NIST Webbook

ripol	1072.00		NIST Webbook
ripol	1054.90		NIST Webbook
ripol	1051.70		NIST Webbook
ripol	1046.90		NIST Webbook
ripol	1037.60		NIST Webbook
ripol	1024.00		NIST Webbook
ripol	1031.00		NIST Webbook
ripol	1037.00		NIST Webbook
•	1056.00		NIST Webbook
ripol	322.49	J/mol×K	NIST Webbook
sg			
sl	192.80	J/mol×K	NIST Webbook
sl	214.20	J/mol×K	NIST Webbook
SS	112.70	J/mol×K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.37 ± 0.10	K	NIST Webbook
tb	369.60 ± 1.00	K	NIST Webbook
tb	370.30 ± 0.50	K	NIST Webbook
tb	370.60 ± 0.30	K	NIST Webbook
tb	370.41 ± 0.20	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.50 ± 0.50	K	NIST Webbook
tb	370.00 ± 1.00	K	NIST Webbook
tb	368.70 ± 0.50	K	NIST Webbook
tb	370.34 ± 0.20	K	NIST Webbook
tb	369.80 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.10	K	NIST Webbook
tb	369.20 ± 0.10	K	NIST Webbook
tb	369.30 ± 0.50	K	NIST Webbook
tb	369.90 ± 2.00	K	NIST Webbook
tb	369.75 ± 0.50	K	NIST Webbook
tb	371.00 ± 1.00	K	NIST Webbook
tb	371.00 ± 0.50	K	NIST Webbook
tb	370.60 ± 0.50	K	NIST Webbook
tb	370.56 ± 0.30	K	NIST Webbook
tb	363.00 ± 4.00	K	NIST Webbook
tb	370.35 ± 0.05	K	NIST Webbook
tb	370.33 ± 0.05	K	NIST Webbook
tb	370.34 ± 0.05	K	NIST Webbook
tb	371.25 ± 0.20	K	NIST Webbook
tb	370.30 ± 0.20	K	NIST Webbook
tb	370.13 ± 0.20	K	NIST Webbook
tb	370.90 ± 0.20	K	NIST Webbook
	0.00 ± 0.20		11101 110000011

414	270.00 . 0.50	IZ.	NICT Wahhaak
tb	370.60 ± 0.50 370.34 ± 0.10	K K	NIST Webbook NIST Webbook
tb	370.20 ± 0.50	K	NIST Webbook
tb	370.50 ± 0.50	K	NIST Webbook
tb	371.00 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.70 ± 1.00	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.31 ± 0.30	K	NIST Webbook
tb	370.70 ± 1.00	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.70 ± 0.50	K	NIST Webbook
tb	370.50 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.50 ± 0.50	K	NIST Webbook
tb	370.60 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.34 ± 0.07	K	NIST Webbook
tb	370.40 ± 0.10	K	NIST Webbook
tb	370.30 ± 0.05	K	NIST Webbook
tb	370.30 ± 0.30	K	NIST Webbook
tb	370.95 ± 0.10	K	NIST Webbook
tb	370.35 ± 0.03	K	NIST Webbook
tb	369.60 ± 1.00	K	NIST Webbook
tb	370.30 ± 0.20	K	NIST Webbook
tb	371.00 ± 0.30	K	NIST Webbook
tb	369.80 ± 0.40	K	NIST Webbook
tb	369.60 ± 1.00	K	NIST Webbook
tb	355.30 ± 0.50	K	NIST Webbook
tb	370.50 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.70 ± 0.60	K	NIST Webbook
tb	371.20 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.40	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.10 ± 0.50	K	NIST Webbook
tb	355.40 ± 0.30	K	NIST Webbook
tb	369.60 ± 0.50	K	NIST Webbook
tb	370.00 ± 1.00	K	NIST Webbook
tb	367.60 ± 1.00	K	NIST Webbook

tb	370.34 ± 0.20	K	NIST Webbook
tb	370.60 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.00 ± 1.00	K	NIST Webbook
tb	368.60 ± 1.00	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	368.70 ± 1.00	K	NIST Webbook
tb	370.30 ± 0.20	K	NIST Webbook
tb	370.20 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.20	K	NIST Webbook
tb	370.59 ± 0.33	K	NIST Webbook
tb	370.00 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.00 ± 1.00	K	NIST Webbook
tb	370.60 ± 0.30	K	NIST Webbook
tb	366.70 ± 3.00	K	NIST Webbook
tb	370.70 ± 1.00	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.34 ± 0.30	K	NIST Webbook
tb	370.60 ± 0.30	K	NIST Webbook
tb	370.38 ± 0.10	K	NIST Webbook
tb	370.35 ± 0.30	K	NIST Webbook
tb	370.00 ± 1.00	K	NIST Webbook
tb	370.00 ± 1.50	K	NIST Webbook
tb	370.23 ± 0.20	K	NIST Webbook
tb	370.40 ± 0.20	K	NIST Webbook
tb	370.30 ± 0.05	K	NIST Webbook
tb	370.44 ± 0.15	K	NIST Webbook
tb	370.25 ± 0.20	K	NIST Webbook
tb	370.35 ± 0.30	K	NIST Webbook
tb	370.35	K	NIST Webbook
tb	370.35 ± 0.30	K	NIST Webbook
tb	370.23 ± 0.12	K	NIST Webbook
tb	370.35 ± 0.20	K	NIST Webbook
tb	370.30 ± 0.50	K	NIST Webbook
tb	370.30 ± 0.50	K	NIST Webbook
tb	370.29 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook
tb	370.30 ± 0.50	K	NIST Webbook
tb	370.32 ± 0.06	K	NIST Webbook
tb	370.30 ± 0.50	K	NIST Webbook
tb	370.60 ± 0.30	K	NIST Webbook
tb	370.15 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.30	K	NIST Webbook

tb	370.40 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.40	K	NIST Webbook
tb	370.30	K	NIST Webbook
tb	370.50 ± 0.20	K	NIST Webbook
tb	370.60	K	NIST Webbook
tb	370.10 ± 0.25	K	NIST Webbook
tb	370.30 ± 0.30	K	NIST Webbook
tb	370.40 ± 0.20	K	NIST Webbook
tb	370.30 ± 0.20	K	NIST Webbook
tb	370.28 ± 0.08	K	NIST Webbook
tb	370.26 ± 0.20	K	NIST Webbook
tb	370.26 ± 0.20	K	NIST Webbook
tb	370.20 ± 0.40	K	NIST Webbook
tb	370.26 ± 0.20	K	NIST Webbook
tb	370.26 ± 0.20	K	NIST Webbook
tb	370.30 ± 0.20	K	NIST Webbook
tb	370.21	К	Vapor Liquid Equilibrium Behaviors of 5-Methyl-2-(1-methylethyl)phenol in Alcohol
tb	370.21	К	Vapor-Liquid Equilibrium Behaviors of 3-Ethoxy-4-hydroxybenzaldehyde in Alcohol
tb	370.40	К	Evaluation of the 2-Methoxyethanol as Entrainer in Ethanol Water and 1-Propanol Water Mixtures
tb	370.05	K 1	P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the I,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
tb	370.24	К	Vapor-Liquid Equilibria for the Ternary System Acetonitrile + 1-Propanol + Dimethyl Sulfoxide and the Corresponding Binary Systems at 101.3 kPa
tb	370.21	K	Vapor-Liquid Equilibrium Behaviors of Coumarin and Vanillin in Ethanol, 1-Propanol, and 2-Propanol
tb	370.19	K	Vapor-Liquid Equilibrium Behavior of Tolan in Alcohol

tb	370.31	K	Measurement and Correlation of Excess Molar Enthalpies for Ethylene Glycol + Alkanol Systems at the Temperatures (298.15, 308.15, and 323.15) K
tb	370.30	К	Isobaric Phase Equilibria of Diethyl Carbonate with Five Alcohols at 101.3 kPa
tb	370.33	К	Isobaric Vapor-Liquid Equilibrium of the Acetonitrile + 1-Propanol + Ionic Liquids at an Atmospheric Pressure
tb	370.35	К	Measurement and Modelization of VLE for Butyl Acetate with Methanol, Ethanol, 1-Propanol, and 1-Butanol. Experimental Data at 0.15 MPa
tb	369.90	К	Separation of the mixture (isopropyl alcohol + diisopropyl ether + n-propanol): Entrainer selection, interaction exploration and vapour-liquid equilibrium measurements
tb	370.35	К	Isobaric vapor-liquid equilibria for extractive distillation of 1-propanol + water mixture using thiocyanate-based ionic liquids
tb	370.45	К	(Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa
tb	369.75	К	Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa
tb	370.20	К	Heterogeneous azeotropic distillation for the separation of n-propanol + water mixture using n-propyl acetate as entrainer
tb	370.35	К	Isobaric (vapor-liquid) equilibria for binary systems of methanol + 1-(methoxymethoxy)- propane and 1-propanol + 1-(methoxymethoxy)-propane at 101.33 kPa

tb	370.31	K	Isobaric vapor liquid equilibrium for the binary systems of 1-propanol + 1-(methoxymethoxy)-butane and 1-butanol + 1-(methoxymethoxy)- butane at 101.3 kPa
tb	370.44	К	Isobaric VLE at 0.6 MPa for binary systems isobutyl acetate + ethanol, + 1-propanol or + 2-propanol
tb	370.40	K	Excess molar volumes of ternary mixtures of 1,3-dichlorobenzene and methyl ethyl ketone with 1-alkanols at 303.15K
tb	370.30	K	KDB
tb	369.90 ± 0.50	K	NIST Webbook
tb	369.80 ± 0.30	K	NIST Webbook
tb	370.20 ± 0.50	K	NIST Webbook
tb	370.40 ± 0.50	K	NIST Webbook
tb	370.50 ± 0.30	K	NIST Webbook
tc	537.00	K	Measurement and correlation of critical properties for binary mixtures and ternary mixtures containing gasoline additives
tc	536.80	K	KDB
tc	537.00	K	Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane
tf	147.00	K	KDB
tf	147.00 ± 3.00	K	NIST Webbook
tf	146.70 ± 0.50	K	NIST Webbook
tf	146.95	K	NIST Webbook
tf	146.70	K	Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents
tf	146.62	K	Aqueous Solubility Prediction Method
tt	148.75	K	KDB
tt	147.00 ± 0.30	K	NIST Webbook
tt	148.75 ± 0.02	K	NIST Webbook
tt	148.75 ± 0.02	K	NIST Webbook
VC	0.218	m3/kmol	NIST Webbook
VC	0.218	m3/kmol	KDB
VC	0.216 ± 0.001	m3/kmol	NIST Webbook
ZC	0.2524720		KDB

zra 0.25 KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	115.56 ± 0.96	J/mol×K	420.75	NIST Webbook
cpg	106.44 ± 0.21	J/mol×K	391.20	NIST Webbook
cpg	114.35 ± 0.23	J/mol×K	431.20	NIST Webbook
cpg	110.42 ± 0.22	J/mol×K	411.20	NIST Webbook
cpg	113.59 ± 0.96	J/mol×K	409.95	NIST Webbook
cpg	111.21 ± 0.96	J/mol×K	396.95	NIST Webbook
cpg	109.42 ± 0.96	J/mol×K	387.15	NIST Webbook
cpg	115.97 ± 0.96	J/mol×K	422.95	NIST Webbook
cpg	108.67 ± 0.96	J/mol×K	383.05	NIST Webbook
cpg	107.28 ± 0.96	J/mol×K	375.45	NIST Webbook
cpg	102.26 ± 0.20	J/mol×K	371.20	NIST Webbook
cpg	118.71 ± 0.96	J/mol×K	437.95	NIST Webbook
cpg	118.62 ± 0.24	J/mol×K	451.20	NIST Webbook
cpg	122.94 ± 0.96	J/mol×K	461.05	NIST Webbook
cpg	125.55 ± 0.96	J/mol×K	475.35	NIST Webbook
cpg	130.97 ± 0.96	J/mol×K	504.95	NIST Webbook
cpg	132.23 ± 0.96	J/mol×K	511.85	NIST Webbook
cpg	135.98 ± 0.96	J/mol×K	532.35	NIST Webbook
cpg	141.05 ± 0.96	J/mol×K	560.05	NIST Webbook
cpg	144.49 ± 0.96	J/mol×K	578.85	NIST Webbook
cpg	148.95 ± 0.96	J/mol×K	603.25	NIST Webbook
cpl	167.80	J/mol×K	333.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure
cpl	141.80	J/mol×K	293.15	NIST Webbook
cpl	146.88	J/mol×K	298.15	NIST Webbook
cpl	138.40	J/mol×K	288.15	NIST Webbook
cpl	144.44	J/mol×K	298.15	NIST Webbook
cpl	143.96	J/mol×K	298.15	NIST Webbook
cpl	144.60	J/mol×K	298.00	NIST Webbook

	4.40.04	1/ 1 1/	000.00	NIOTIALL	
cpl	146.34 164.50	J/mol×K J/mol×K	298.22 328.15	NIST Webbook Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	160.10	J/mol×K	323.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	157.10	J/mol×K	318.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	153.70	J/mol×K	313.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	

cpl	148.20	J/mol×K	303.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	144.90	J/mol×K	298.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	142.30	J/mol×K	293.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	139.00	J/mol×K	288.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	

cpl	151.00	J/mol×K	308.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure
cpl	147.90	J/mol×K	303.40	NIST Webbook
cpl	143.77	J/mol×K	298.15	NIST Webbook
cpl	143.78	J/mol×K	298.15	NIST Webbook
cpl	143.87	J/mol×K	298.15	NIST Webbook
cpl	144.06	J/mol×K	298.15	NIST Webbook
cpl	158.60	J/mol×K	313.20	NIST Webbook
cpl	143.80	J/mol×K	298.15	NIST Webbook
cpl	146.10	J/mol×K	298.00	NIST Webbook
cpl	131.30	J/mol×K	274.60	NIST Webbook
cpl	155.60	J/mol×K	320.00	NIST Webbook
cpl	140.21	J/mol×K	303.00	NIST Webbook
cpl	145.60	J/mol×K	298.10	NIST Webbook
cpl	136.00	J/mol×K	270.00	NIST Webbook
cpl	192.90	J/mol×K	298.10	NIST Webbook
cpl	133.50	J/mol×K	275.40	NIST Webbook
cpl	133.50	J/mol×K	275.00	NIST Webbook
cpl	144.80	J/mol×K	298.00	NIST Webbook
cpl	164.80	J/mol×K	301.20	NIST Webbook
cpl	149.00	J/mol×K	298.15	NIST Webbook
cps	106.30	J/mol×K	150.00	NIST Webbook
dvisc	0.0013516	Paxs	313.15	Densities and Viscosities of (1-Propanol + 1,2-Dichloroethane), (1-Propanol + Benzaldehyde), (Benzaldehyde + 1,2-Dichloroethane), and (1-Propanol + 1,2-Dichloroethane + Benzaldehyde) Mixtures from T = 288.15 K to 313.15 K

dvisc	0.0016145	Paxs	303.15	Thermodynamic Study of Binary Mixture of x1[C6mim][BF4] + x21-propanol: Measurements and Molecular Modeling	
dvisc	0.0013907	Paxs	313.15 Bis(2	Densities and Viscosities of Binary Mixture of the Ionic Liquid Phydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa	
dvisc	0.0010977	Paxs	323.15 Bis(2	Densities and Viscosities of Binary Mixture of the Ionic Liquid Phydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa	
dvisc	0.0025070	Paxs	288.15	Densities and Viscosities of Four Binary Diethyl Carbonate + 1-Alcohol Systems from (288.15 to 313.15) K	
dvisc	0.0022020	Paxs	293.15	Densities and Viscosities of Four Binary Diethyl Carbonate + 1-Alcohol Systems from (288.15 to 313.15) K	
dvisc	0.0019730	Paxs	298.15	Densities and Viscosities of Four Binary Diethyl Carbonate + 1-Alcohol Systems from (288.15 to 313.15) K	

dvisc	0.0017330	Paxs	303.15	Densities and Viscosities of Four Binary Diethyl Carbonate + 1-Alcohol Systems from (288.15 to 313.15) K	
dvisc	0.0013810	Paxs	313.15	Densities and Viscosities of Four Binary Diethyl Carbonate + 1-Alcohol Systems from (288.15 to 313.15) K	
dvisc	0.0019414	Paxs	298.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0017282	Paxs	303.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0015448	Paxs	308.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0013847	Paxs	313.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	

dvisc	0.0021920	Paxs	293.15	Densities and Viscosities of Naphthalen-1-ol, Naphthalen-2-ol, and 1-Aminonaphthalene in the Solvents of Ethanol, Propan-1-ol, and Butan-1-ol
dvisc	0.0017260	Paxs	303.15	Densities and Viscosities of Naphthalen-1-ol, Naphthalen-2-ol, and 1-Aminonaphthalene in the Solvents of Ethanol, Propan-1-ol, and Butan-1-ol
dvisc	0.0013730	Paxs	313.15	Densities and Viscosities of Naphthalen-1-ol, Naphthalen-2-ol, and 1-Aminonaphthalene in the Solvents of Ethanol, Propan-1-ol, and Butan-1-ol
dvisc	0.0011020	Paxs	323.15	Densities and Viscosities of Naphthalen-1-ol, Naphthalen-2-ol, and 1-Aminonaphthalene in the Solvents of Ethanol, Propan-1-ol, and Butan-1-ol
dvisc	0.0008980	Paxs	333.15	Densities and Viscosities of Naphthalen-1-ol, Naphthalen-2-ol, and 1-Aminonaphthalene in the Solvents of Ethanol, Propan-1-ol, and Butan-1-ol
dvisc	0.0019550	Paxs	298.15	Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K

dvisc	0.0017370	Paxs	303.15	Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K
dvisc	0.0015480	Paxs	308.15	Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K
dvisc	0.0013840	Paxs	313.15	Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K
dvisc	0.0012410	Paxs	318.15	Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K
dvisc	0.0011170	Paxs	323.15	Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K
dvisc	0.0022050	Paxs	293.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K

dvisc	0.0017140	Paxs	303.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0011050	Paxs	323.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0022040	Paxs	293.15	Thermodynamic Study of Binary Mixture of x1[C6mim][BF4] + x21-propanol: Measurements and Molecular Modeling
dvisc	0.0013830	Paxs	313.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0015480	Paxs	308.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0017370	Paxs	303.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0019760	Paxs	298.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0022060	Paxs	293.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols

dvisc	0.0010819	Paxs	333.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0011523	Paxs	328.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0012560	Paxs	323.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0013833	Paxs	318.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0015237	Paxs	313.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0016709	Paxs	308.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0018742	Paxs	303.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures

dvisc	0.0021178	Paxs	298.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0024104	Paxs	293.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0027676	Paxs	288.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0034744	Paxs	283.15 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures
dvisc	0.0011004	Paxs	323.15 Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0012340	Paxs	318.15 Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0011883	Paxs	313.15 Thermodynamic Study of Binary Mixture of x1[C6mim][BF4] + x21-propanol: Measurements and Molecular Modeling

dvisc	0.0013672	Paxs	313.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0015344	Paxs	308.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0017325	Paxs	303.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0022720	Paxs	293.15	Densities and Kinematic Viscosities of Ten Binary 1-Alkanol Liquid Systems at Temperatures of (293.15 and 298.15) K	
dvisc	0.0019150	Paxs	298.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	
dvisc	0.0021590	Paxs	293.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	

dvisc	0.0015330	Paxs	308.15	Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K	
dvisc	0.0019500	Paxs	298.15	Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K	
dvisc	0.0017130	Paxs	303.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0019150	Paxs	298.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0021590	Paxs	293.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0013400	Paxs	313.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	

dvisc	0.0016100	Paxs	303.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
dvisc	0.0021900	Paxs	293.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
dvisc	0.0017300	Paxs	303.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	
dvisc	0.0019450	Paxs	298.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	
dvisc	0.0021940	Paxs	293.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	

dvisc	0.0007420	Paxs	343.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method	
dvisc	0.0019660	Paxs	298.15	Densities and Kinematic Viscosities of Ten Binary 1-Alkanol Liquid Systems at Temperatures of (293.15 and 298.15) K	
dvisc	0.0019400	Paxs	298.15 {1-Bi	Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of utyl-3-methylimidazoliur Thiocyanate +	n
dvisc	0.0015400	Paxs	308.15 {1-Bi	1-Alcohols} Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of utyl-3-methylimidazoliur Thiocyanate + 1-Alcohols}	n
dvisc	0.0012400	Paxs	318.15 {1-Bi	Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of utyl-3-methylimidazoliur Thiocyanate + 1-Alcohols}	n
dvisc	0.0010200	Paxs	328.15 {1-Bi	Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of utyl-3-methylimidazoliur Thiocyanate + 1-Alcohols}	n

dvisc	0.0008420	Paxs	338.15 Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Alcohols}
dvisc	0.0007100	Paxs	348.15 Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Alcohols}
dvisc	0.0019550	Paxs	298.15 Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0015380	Paxs	308.15 Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0012240	Paxs	318.15 Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures

dvisc	0.0009860	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0008010	Paxs	338.15	Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0024202	Paxs	288.15	Densities and Viscosities of (1-Propanol + 1,2-Dichloroethane), (1-Propanol + Benzaldehyde), (Benzaldehyde + 1,2-Dichloroethane), and (1-Propanol + 1,2-Dichloroethane + Benzaldehyde) Mixtures from T = 288.15 K to 313.15 K
dvisc	0.0021372	Paxs	293.15	Densities and Viscosities of (1-Propanol + 1,2-Dichloroethane), (1-Propanol + Benzaldehyde), (Benzaldehyde + 1,2-Dichloroethane), and (1-Propanol + 1,2-Dichloroethane + Benzaldehyde) Mixtures from T = 288.15 K to 313.15 K

dvisc	0.0018939	Paxs	Densities and Viscosities of (1-Propanol + 1,2-Dichloroethane), (1-Propanol + Benzaldehyde), (Benzaldehyde + 1,2-Dichloroethane), and (1-Propanol + 1,2-Dichloroethane + 1,2-Dichloroethane + 288.15 K to 313.15 K
dvisc	0.0016841	Paxs	303.15 Densities and Viscosities of (1-Propanol + 1,2-Dichloroethane), (1-Propanol + Benzaldehyde), (Benzaldehyde + 1,2-Dichloroethane), and (1-Propanol + 1,2-Dichloroethane + Benzaldehyde) Mixtures from T = 288.15 K to 313.15 K
dvisc	0.0021412	Paxs	293.15 Densities and Viscosities of Binary Mixture of the Ionic Liquid Bis(2-hydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa
dvisc	0.0005150	Paxs	363.15 Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method

dvisc	0.0006150	Paxs	353.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method
dvisc	0.0015037	Paxs	308.15	Densities and Viscosities of (1-Propanol + 1,2-Dichloroethane), (1-Propanol + Benzaldehyde), (Benzaldehyde + 1,2-Dichloroethane), and (1-Propanol + 1,2-Dichloroethane + Benzaldehyde) Mixtures from T = 288.15 K to 313.15 K
dvisc	0.0009070	Paxs	333.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method
dvisc	0.0011150	Paxs	323.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method

dvisc	0.0013810	Paxs	313.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method	
dvisc	0.0017450	Paxs	303.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method	
dvisc	0.0019810	Paxs	298.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method	
dvisc	0.0022380	Paxs	293.15	Density and Viscosity of Binary Mixtures of Diethyl Carbonate with Alcohols at (293.15 to 363.15) K and Predictive Results by UNIFAC-VISCO Group Contribution Method	

dvisc	0.0013630	Paxs	313.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Propan-1-ol and Butan-1-ol at (303.15 and 313.15) K
dvisc	0.0017190	Paxs	303.15	Densities, Viscosities, and Ultrasonic Velocity Studies of Binary Mixtures of Chloroform with Propan-1-ol and Butan-1-ol at (303.15 and 313.15) K
dvisc	0.0013780	Paxs	313.15	Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K
dvisc	0.0017130	Paxs	303.15	Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K
dvisc	0.0021880	Paxs	293.15	Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K

dvisc	0.0017880	Paxs	303.15 Densities and Viscosities of Binary Mixture of the Ionic Liquid Bis(2-hydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa
dvisc	0.0015650	Paxs	308.15 Viscosities, Densities, and Ultrasonic Velocities of Binary Mixtures of Ethylbenzene with Ethanol, 1-Propanol, and 1-Butanol at (298.15 and 308.15)K
dvisc	0.0020420	Paxs	298.15 Viscosities, Densities, and Ultrasonic Velocities of Binary Mixtures of Ethylbenzene with Ethanol, 1-Propanol, and 1-Butanol at (298.15 and 308.15)K
dvisc	0.0015370	Paxs	308.15 Excess Molar Volumes and Viscosity Deviations of Binary Mixtures of 2,4,6-Trimethyl-1,3,5-trioxane + Ethanol, 1-Propanol, and 1-Butanol at (298.15, 303.15, and 308.15) K
dvisc	0.0017250	Paxs	303.15 Excess Molar Volumes and Viscosity Deviations of Binary Mixtures of 2,4,6-Trimethyl-1,3,5-trioxane + Ethanol, 1-Propanol, and 1-Butanol at (298.15, 303.15, and 308.15) K

dvisc	0.0019430	Paxs	298.15 2,4,	Excess Molar Volumes and Viscosity Deviations of Binary Mixtures of 6-Trimethyl-1,3,5-trioxane + Ethanol, 1-Propanol, and 1-Butanol at (298.15, 303.15, and 308.15) K
dvisc	0.0005985	Paxs	333.15	Thermodynamic Study of Binary Mixture of x1[C6mim][BF4] + x21-propanol: Measurements and Molecular Modeling
dvisc	0.0008796	Paxs	323.15	Thermodynamic Study of Binary Mixture of x1[C6mim][BF4] + x21-propanol: Measurements and Molecular Modeling
dvisc	0.0013820	Paxs	313.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0017130	Paxs	303.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters
hfust	5.37	kJ/mol	148.75	NIST Webbook
hfust	5.19	kJ/mol	147.00	NIST Webbook
hfust	5.37	kJ/mol	148.80	NIST Webbook
hfust	5.37	kJ/mol	148.80	NIST Webbook
hfust	5.40	kJ/mol	148.70	NIST Webbook
hvapt	41.44	kJ/mol	370.30	NIST Webbook
hvapt	41.20	kJ/mol	371.00	NIST Webbook
hvapt	35.20	kJ/mol	423.00	NIST Webbook
hvapt	21.00	kJ/mol	498.00	NIST Webbook
hvapt	11.40	kJ/mol	528.00	NIST Webbook
hvapt	47.00	kJ/mol	336.50	NIST Webbook
•				

hvapt	42.90	kJ/mol	368.50	NIST Webbook
hvapt	48.00	kJ/mol	214.00	NIST Webbook
hvapt	43.50	kJ/mol	366.00	NIST Webbook
hvapt	42.30	kJ/mol	388.00	NIST Webbook
hvapt	40.10	kJ/mol	441.50	NIST Webbook
hvapt	36.50	kJ/mol	492.50	NIST Webbook
hvapt	46.40 ± 0.10	kJ/mol	313.00	NIST Webbook
hvapt	45.70 ± 0.10	kJ/mol	323.00	NIST Webbook
hvapt	44.90 ± 0.10	kJ/mol	333.00	NIST Webbook
hvapt	41.76	kJ/mol	370.40	KDB
hvapt	44.00 ± 0.10	kJ/mol	343.00	NIST Webbook
hvapt	43.20 ± 0.10	kJ/mol	353.00	NIST Webbook
hvapt	42.40 ± 0.10	kJ/mol	363.00	NIST Webbook
hvapt	49.30	kJ/mol	324.00	NIST Webbook
hvapt	46.90	kJ/mol	331.00	NIST Webbook
hvapt	46.70	kJ/mol	318.00	NIST Webbook
hvapt	40.70	kJ/mol	471.00	NIST Webbook
hvapt	44.30	kJ/mol	358.00	NIST Webbook
hvapt	44.10	kJ/mol	364.00	NIST Webbook
hvapt	43.90 ± 0.10	kJ/mol	343.00	NIST Webbook
hvapt	42.30 ± 0.10	kJ/mol	360.00	NIST Webbook
hvapt	41.20 ± 0.10	kJ/mol	370.00	NIST Webbook
hvapt	40.30 ± 0.10	kJ/mol	378.00	NIST Webbook
hvapt	39.70 ± 0.10	kJ/mol	384.00	NIST Webbook
hvapt	45.50	kJ/mol	344.00	NIST Webbook
hvapt	43.20	kJ/mol	354.00	NIST Webbook
hvapt	44.99 ± 0.42	kJ/mol	333.13	NIST Webbook
hvapt	29.40	kJ/mol	453.00	NIST Webbook
hvapt	44.70	kJ/mol	355.00	NIST Webbook
pvap	15.00	kPa	327.25	P, rho, T Measurements
			V	and Isobaric apor-Liquid-Equilibria
				of the
			1,3,3-1111116	ethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol
				Mixture: Cubic
				and Statistical Associating Fluid
				Theory-Based
				Equation of State Analysis

pvap	19.93	kPa	333.15	Isothermal (vapor + liquid) equilibria for the binary mixtures of (propylene oxide + ethanol) and (propylene oxide + 1-propanol) at several temperatures
pvap	76.56	kPa	363.20 bis(tri	(Vapour + liquid) equilibria, (VLE) excess molar enthalpies and infinite dilution activity coefficients of selected binary systems involving n-hexyl pyridinium fluoromethylsulphonyl)imide ionic liquid: Experimental and predictions using modified UNIFAC (Dortmund)
pvap	100.00	kPa	369.80 1-e	Isobaric vapor-liquid equilibria for the 1-propanol + water + ethyl-3-methylimidazolium dicyanamide system at 100 kPa
pvap	101.30	kPa	370.35	Isobaric vapor-liquid equilibria for extractive distillation of 1-propanol + water mixture using thiocyanate-based ionic liquids
pvap	100.51	kPa	370.10	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa
pvap	125.86	kPa	376.30	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa

pvap	151.03	kPa	381.50	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	176.20	kPa	385.89	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	201.37	kPa	389.89	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	226.54	kPa	393.59	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	251.71	kPa	396.19	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	101.30	kPa	370.33	Isobaric Vapor-Liquid Equilibrium of the Acetonitrile + 1-Propanol + Ionic Liquids at an Atmospheric Pressure	
pvap	2.88	kPa	298.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	

pvap	9.01	kPa	318.15	Isothermal (vapor + liquid) equilibria for the binary mixtures of (propylene oxide + ethanol) and (propylene oxide + 1-propanol) at several temperatures
pvap	5.37	kPa	308.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	7.20	kPa	313.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	9.57	kPa	318.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	12.42	kPa	323.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data

pvap	16.14	kPa	328.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some	
pvap	20.72	kPa	333.15	New Data Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	26.41	kPa	338.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	33.23	kPa	343.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	41.63	kPa	348.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	

pvap	51.67	kPa	353.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	63.69	kPa	358.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	3.63	kPa	303.15	Isothermal (vapor + liquid) equilibria for the binary mixtures of (propylene oxide + ethanol) and (propylene oxide + 1-propanol) at several temperatures	
pvap	5.88	kPa	310.17	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	6.98	kPa	313.15	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	7.69	kPa	314.84	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	10.18	kPa	319.89	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	13.14	kPa	324.71	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	

pvap	15.75	kPa	328.14	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	19.31	kPa	332.18	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	20.27	kPa	333.15	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	22.56	kPa	335.34	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	26.91	kPa	339.01	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	31.12	kPa	342.11	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	35.82	kPa	345.18	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	40.12	kPa	347.71	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	44.26	kPa	349.93	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	50.95	kPa	353.15	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	

pvap	50.95	kPa	353.17	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	59.13	kPa	356.70	Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol	
pvap	9.47	kPa	318.58	Vapor-Liquid Equilibrium for 1-Propanol + 1-Butene, + cis-2-Butene, + 2-Methyl-propene, + trans-2-Butene, + n-Butane, and +	
pvap	12.07	kPa	323.07	2-Methyl-propane Vapor-Liquid Equilibrium for 1-Propanol + 1-Butene, + cis-2-Butene, + 2-Methyl-propene, + trans-2-Butene, + n-Butane, and + 2-Methyl-propane	
pvap	12.27	kPa	323.26	Vapor-Liquid Equilibrium for 1-Propanol + 1-Butene, + cis-2-Butene, + 2-Methyl-propene, + trans-2-Butene, + n-Butane, and + 2-Methyl-propane	
pvap	17.57	kPa	330.16	Vapor-Liquid Equilibrium for 1-Propanol + 1-Butene, + cis-2-Butene, + 2-Methyl-propene, + trans-2-Butene, + n-Butane, and + 2-Methyl-propane	
pvap	77.81	kPa	363.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	

pvap	19.17	kPa	332.05	Vapor-Liquid Equilibrium for 1-Propanol + 1-Butene, + cis-2-Butene, + 2-Methyl-propene, + trans-2-Butene, + n-Butane, and + 2-Methyl-propane
pvap	81.30	kPa	364.51	Isothermal Vapor Liquid Equilibrium for 2-Methylpropene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol Binary Systems at 364.5 K
pvap	1558.00	kPa	468.15	Vapor-Liquid Equilibria for the n-Pentane + 1-Propanol and n-Pentane + 2-Methyl-1-propanol Systems near the Critical Region
pvap	2081.00	kPa	483.15	Vapor-Liquid Equilibria for the n-Pentane + 1-Propanol and n-Pentane + 2-Methyl-1-propanol Systems near the Critical Region
pvap	2733.00	kPa	498.15	Vapor-Liquid Equilibria for the n-Pentane + 1-Propanol and n-Pentane + 2-Methyl-1-propanol Systems near the Critical Region
pvap	3546.00	kPa	513.15	Vapor-Liquid Equilibria for the n-Pentane + 1-Propanol and n-Pentane + 2-Methyl-1-propanol Systems near the Critical Region
pvap	406.60	kPa	413.20	High-temperature vapour liquid equilibrium for the (water + alcohol) systems and modelling with SAFT-VR: 2. Water-1-propanol

al w	gh-temperature vapour liquid equilibrium for the (water + cohol) systems
	and modelling ith SAFT-VR: 2. 'ater-1-propanol
al w	gh-temperature vapour liquid equilibrium for the (water + cohol) systems and modelling ith SAFT-VR: 2. fater-1-propanol
al	gh-temperature vapour liquid equilibrium for the (water + cohol) systems and modelling tth SAFT-VR: 2. ater-1-propanol
+ 1. r	sobaric (vapour liquid) equilibria for the (1-propanol + -butanol) binary nixture at (53.3 and 91.3) kPa
+ 1. r	sobaric (vapour liquid) equilibria for the (1-propanol + -butanol) binary nixture at (53.3 and 91.3) kPa
+ 1. r	sobaric (vapour liquid) equilibria for the (1-propanol + -butanol) binary nixture at (53.3 and 91.3) kPa
+ 1. r	sobaric (vapour liquid) equilibria for the (1-propanol + -butanol) binary nixture at (53.3 and 91.3) kPa
1. n	sobaric (vapour liquid) equilibria for the (1-propanol + -butanol) binary nixture at (53.3 and 91.3) kPa

pvap	51.10	kPa	353.25	Isobaric (vapour + liquid) equilibria for the (1-propanol + 1-butanol) binary mixture at (53.3 and 91.3) kPa	
pvap	46.00	kPa	350.80	Isobaric (vapour + liquid) equilibria for the (1-propanol + 1-butanol) binary mixture at (53.3 and 91.3) kPa	
pvap	37.40	kPa	346.15	Isobaric (vapour + liquid) equilibria for the (1-propanol + 1-butanol) binary mixture at (53.3 and 91.3) kPa	
pvap	30.10	kPa	341.35	Isobaric (vapour + liquid) equilibria for the (1-propanol + 1-butanol) binary mixture at (53.3 and 91.3) kPa	
pvap	25.60	kPa	337.95	Isobaric (vapour + liquid) equilibria for the (1-propanol + 1-butanol) binary mixture at (53.3 and 91.3) kPa	
pvap	12.32	kPa	323.15	Vapor-Liquid Equilibria and HE for Binary Systems of Dimethyl Ether (DME) with C1-C4 Alkan-1-ols at 323.15 K and Liquid-Liquid Equilibria for Ternary System of DME + Methanol + Water at 313.15 K	
pvap	19.07	kPa	331.92	Vapor-Liquid Equilibrium for 1-Propanol + 1-Butene, + cis-2-Butene, + 2-Methyl-propene, + trans-2-Butene, + n-Butane, and + 2-Methyl-propane	

pvap	101.00	kPa	370.20	Heterogeneous azeotropic distillation for the separation of n-propanol + water mixture using n-propyl acetate as entrainer	
pvap	49.80	kPa	352.68	P-x data for binary systems using a novel static total pressure apparatus	
pvap	31.45	kPa	342.83	P-x data for binary systems using a novel static total pressure apparatus	
pvap	6.99	kPa	313.17	P-x data for binary systems using a novel static total pressure apparatus	
pvap	102.70	kPa	370.44	Phase equilibria on binary systems containing diethyl sulfide	
pvap	91.60	kPa	367.51	Phase equilibria on binary systems containing diethyl sulfide	
pvap	80.70	kPa	364.30	Phase equilibria on binary systems containing diethyl sulfide	
pvap	71.40	kPa	361.25	Phase equilibria on binary systems containing diethyl sulfide	
pvap	62.40	kPa	357.95	Phase equilibria on binary systems containing diethyl sulfide	
pvap	52.70	kPa	353.96	Phase equilibria on binary systems containing diethyl sulfide	
pvap	42.90	kPa	349.12	Phase equilibria on binary systems containing diethyl sulfide	

pvap	31.20	kPa	342.07 Phase equilibria on binary systems containing diethyl sulfide
pvap	21.90	kPa	334.53 Phase equilibria on binary systems containing diethyl sulfide
pvap	6.99	kPa	313.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
pvap	5.20	kPa	308.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
pvap	3.83	kPa	303.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide

рvар	2.79	kPa		Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazolium (trifluoromethyl-sulfonyl) imide
pvap	9.31	kPa	318.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law Part 9. Vapor liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15K
pvap	7.03	kPa	313.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law Part 9. Vapor liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15K
pvap	10.00	kPa		P, rho, T Measurements and Isobaric 'apor-Liquid-Equilibria of the ethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis

pvap	5.25	kPa	308.15 Thermodynamics of mixtures with strongly negative deviations from Raoult s law Part 9. Vapor liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15K	
pvap	20.00	kPa	332.95 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis	
pvap	3.88	kPa	303.15 Thermodynamics of mixtures with strongly negative deviations from Raoult s law Part 9. Vapor liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15K	
pvap	2.81	kPa	298.15 Thermodynamics of mixtures with strongly negative deviations from Raoult s law Part 9. Vapor liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15K	
pvap	98.66	kPa	369.55 Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	

pvap	93.32	kPa	368.08	Isobaric	
				Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	79.99	kPa	364.11	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	66.66	kPa	359.56	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	53.33	kPa	354.18	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	40.00	kPa	347.55	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	81.20	kPa	364.53	Vapor Liquid Equilibrium for the Systems trans-2-Butene + Methanol, + 1-Propanol, + 2-Propanol, and + 2-Methyl-2-propanol at 364.5 K	
pvap	101.30	kPa	370.40	Evaluation of the 2-Methoxyethanol as Entrainer in Ethanol Water and 1-Propanol Water Mixtures	
pvap	600.00	kPa	427.20	Experimental Determination of Vapor Liquid Equilibria. Binary Systems of Methyl Acetate, Ethyl Acetate, and Propyl Acetate with 1-Propanol at 0.6 MPa	

pvap	12.18	kPa	323.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	9.29	kPa	318.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	7.01	kPa	313.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	5.23	kPa	308.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	3.87	kPa	303.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	2.84	kPa	298.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	546.10	kPa	423.20	High-temperature vapour liquid equilibrium for the (water + alcohol) systems and modelling with SAFT-VR: 2. Water-1-propanol	

pvap	2.04	kPa	293.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	1.45	kPa	288.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	1.01	kPa	283.15	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	2.03	kPa	293.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law Part 9. Vapor liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15K	
pvap	100.00	kPa	370.00	Isobaric Vapor Liquid Equilibria for the 1-Propanol + Ethylene Glycol Monopropyl Ether and 1-Butanol + Ethylene Glycol Monopropyl Ether Systems	
pvap	80.00	kPa	364.20	Isobaric Vapor Liquid Equilibria for the 1-Propanol + Ethylene Glycol Monopropyl Ether and 1-Butanol + Ethylene Glycol Monopropyl Ether Systems	

pvap	60.00	kPa	357.10 Isobaric Vapor Liquid Equilibria for the 1-Propanol + Ethylene Glycol Monopropyl Ether and 1-Butanol + Ethylene Glycol Monopropyl Ether Systems
pvap	101.33	kPa	370.05 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
рvар	90.00	kPa	367.15 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	85.00	kPa	365.65 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	80.00	kPa	364.15 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis

pvap	75.00	kPa	362.55 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	70.00	kPa	360.85 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	66.66	kPa	359.65 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	65.00	kPa	359.05 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	60.00	kPa	357.05 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis

pvap	55.00	kPa	355.05 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	50.00	kPa	352.75 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	45.00	kPa	350.35 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	40.00	kPa	347.65 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis

pvap	35.00	kPa	344.65 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	33.33	kPa	343.55 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	30.00	kPa	341.25 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	25.00	kPa	337.45 P, rho, T Measurements and Isobaric Vapor-Liquid-Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis
pvap	49.36	kPa	352.44 Vapor-Liquid Equilibrium for Benzene + 2-Methylpentane and Allyl Alcohol + 1-Propanol

pvap	0.70	kPa	278.15	Vapor Pressures and Activity	
				Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K	
pvap	4.00	kPa	303.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
rfi	1.37660		313.15	Thermophysical properties of {(+-)-linalool + propan-1-ol}: A first stage towards the development of a green process	
rfi	1.37929		308.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rfi	1.38308		298.15	Isobaric Vapor-Liquid Equilibria at 101.32 kPa and Densities, Speeds of Sound, and Refractive Indices at 298.15 K for MTBE or DIPE or TAME + 1-Propanol Binary Systems	
rfi	1.38310		298.15	Synthesis and Physical Properties of 1-Ethylpyridinium Ethylsulfate and its Binary Mixtures with Ethanol and 1-Propanol at Several Temperatures	

rfi	1.38370	298.15 Experimental Determination, Correlation, and Prediction of Physical Properties of the Ternary Mixtures Ethanol and 1-Propanol + Water + 1-Ethyl-3-methylpyridinium Ethylsulfate at 298.15 K
rfi	1.38530	293.15 Measurement and Correlation of the Solubilities of m-Phthalic Acid in Monobasic Alcohols
rfi	1.38309	298.15 Density and Viscosity Experimental Data of the Ternary Mixtures 1-Propanol or 2-Propanol + Water + 1-Ethyl-3-methylimidazolium Ethylsulfate. Correlation and Prediction of Physical Properties of the Ternary Systems
rfi	1.38305	298.15 Experimental Liquid-Liquid Equilibria of 1-Alkyl-3-methylimidazolium Hexafluorophosphate with 1-Alcohols
rfi	1.38310	298.15 Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure
rfi	1.38540	295.15 Isobaric Vapor Liquid Equilibrium Data for Binary Mixtures of 1-Phenylethanone with a Few Alcohols at 95.2 kPa

rfi	1.38510	293.15 Isobaric Vapor Liquid Equilibrium Data of 2-Methyl-propan-2-ol (1) + Heptan-1-ol (2), Methanol (1) + Heptan-1-ol (2), Ethanol (1) + Heptan-1-ol (2), and Propan-1-ol (1) + Heptan-1-ol (2) at 96.5 kPa
rfi	1.38510	293.20 Vapor Liquid Equilibrium Data for Binary Systems of 1H-Pyrrole with Butan-1-ol, Propan-1-ol, or Pentan-1-ol
rfi	1.38510	293.20 Vapor Liquid Equilibrium Data for Binary Systems of 1-Methyl-4-(1-methylethenyl)-cyclohexene + {Ethanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, Pentan-1-ol, or Hexan-1-ol} at 40 kPa
rfi	1.38200	293.15 Isothermal Vapor Liquid Equilibrium Data for the Propan-1-ol + Dodecane System at (323.0, 343.4, 353.2, 363.1, and 369.2) K
rfi	1.38340	298.15 Density, Viscosity, and Refractive Index Properties for the Binary Mixtures of n-Butylammonium Acetate Ionic Liquid + Alkanols at Several Temperatures
rfi	1.38330	298.15 Isothermal Vapor Liquid Equilibrium Data of Propan-1-ol + 2,2,4-Trimethylpentane and Butan-1-ol + 2,2,4-Trimethylpentane at 318.15 K

. :	4 20205	000.45	liannial Liannial	
rfi	1.38305	298.15	Liquid Liquid Phase Equilibria of 1-Propanol + Water + n-Alcohol Ternary Systems at 298.15 K and Atmospheric Pressure	
rfi	1.38510	293.15	Vapor Liquid Equilibrium Data for Binary Systems of n-Dodecane + {Propan-1-ol, Butan-1-ol, 2-Methylpropan-1-ol} at 40 kPa	
rfi	1.38300	298.15	Excess Molar Enthalpies of 2-Methyl-2-butanol (1) + 1-Alkanols (C1-C5) (2) at 298.15 K	
rfi	1.38560	298.15	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Propanal, Propanol, and Propanoic Acid	
rfi	1.38552	293.15	Excess Volume of the 1-Propanol + 1-Alkene Systems in Terms of an Equation of State with Association	
rfi	1.38330	298.15	Excess Molar Enthalpies of Benzyl Alcohol + Alkanols (C1-C6) and Their Correlations at 298.15 K and Ambient Pressure	
rfi	1.38360	298.15	Phase Equilibria Involved in Extractive Distillation of Dipropyl Ether + 1-Propyl Alcohol Using N,N-Dimethylformamic as Entrainer	le

rfi	1.38360	298.15 Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Dipropyl Ether, 1-Propyl Alcohol, and Butyl Propionate
rfi	1.38330	298.15 Effect of Pressure on the Static Relative Permittivities of Alkan-1-ols at 298.15 K
rfi	1.38302	298.15 Physical Properties of Binary Mixtures of the Ionic Liquid 1-Methyl-3-octylimidazolium Chloride with Methanol, Ethanol, and 1-Propanol at T = (298.15, 313.15, and 328.15) K and at P) 0.1 MPa
rfi	1.38330	298.15 Excess Molar Enthalpies of 1,2-Propanediol + Alkan-1-ols (C1-C6) and Their Correlations at 298.15 K and Ambient Pressure (81.5 kPa)
rfi	1.38304	298.15 Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Propanol + 2-Methyl-1-butanol and Propanol + 3-Methyl-1-butanol
rfi	1.38300	298.15 Density, Surface Tension, and Refractive Index of Octane + 1-Alkanol Mixtures at T) 298.15 K.

rfi	1.38550	293.15	Limiting Activity Coefficients by Comparative Tensimetry: 1-Propanol and 1-Butanol in Heptane and in Octane	
rfi	1.37890	308.15	Excess Molar Volumes, Viscosities, and Refractive Indexes for Binary Mixtures of 1-Chlorobutane with Four Alcohols at T = (288.15, 298.15 and 308.15) K	
rfi	1.38290	298.15	Excess Molar Volumes, Viscosities, and Refractive Indexes for Binary Mixtures of 1-Chlorobutane with Four Alcohols at T = (288.15, 298.15	
rfi	1.38690	288.15	and 308.15) K Excess Molar Volumes, Viscosities, and Refractive Indexes for Binary Mixtures of 1-Chlorobutane with Four Alcohols at T = (288.15, 298.15 and 308.15) K	
rfi	1.38070	298.15	Bubble Temperatures of the Binary Mixtures of Dimethylcarbonate with Some Alcohols at 95.8 kPa	
rfi	1.38540	293.15	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K	

rfi	1.38520	293.15	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis	
rfi	1.38530	293.15	Isothermal Vapor-Liquid Equilibrium Measurements for Alcohol + Water/n-Hexane Azeotropic Systems Using Both Dynamic and Automated Static-Synthetic Methods	
rfi	1.38480	293.15	Isothermal Vapor-Liquid Equilibrium Measurements for the Pentan-2-one + Propan-1-ol/Butan-1-olystem within 342-363 K	ol
rfi	1.38520	293.15	P-rho-T Data and Modeling for Propan-1-ol + n-Octane or n-Nonane or n-Decane from 313.15 K to 363.15 K and 1 MPa to 20 MPa	
rfi	1.38340	298.00	Determination of Physicochemical Parameters of Sodium Dodecyl Sulfate in Aqueous Micellar Solutions Containing Short-Chain Alcohols	
rfi	1.38512	293.15	Vapor Liquid Equilibrium for Methyl Isobutyl Ketone (MIBK) + (1-Propanol or 2-Propanol) Binary Mixtures	

rfi	1.38350	298.15 Molar excess enthalpies and molar excess volumes of formamide + 1-propanol or 2-propanol and thermodynamic modeling by Prigogine-Flory-Patterson theory and Treszczanowicz-Benson association model
rfi	1.38306	298.15 Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether
rfi	1.38370	298.15 Activity coefficients of the binary mixtures of a-cresol or p-cresol with C I-C4 aliphatic alcohols near ambient pressure
rfi	1.38360	298.15 Isobaric vapor-liquid equilibria for the binary systems 1-propyl alcohol + dipropyl ether and 1-butyl alcohol + dibutyl ether at 20 and 101.3 kPa
rfi	1.38360	298.15 Vapor liquid equilibria in the ternary system dipropyl ether + 1-propanol + 1-pentanol and the binary systems dipropyl ether + 1-pentanol, 1-propanol + 1-pentanol at 101.3 kPa
rfi	1.38390	298.20 Vapor liquid equilibria for the ternary mixture of carbon dioxide + 1-propanol + propyl acetate at elevated pressures

rfi	1.38500	293.15	Phase equilibria of water + 1-propanol + solvent (n-amyl acetate, cyclohexanol, and cyclohexyl acetate) at T = 298.2K	
rfi	1.38360	298.15	Phase equilibria involved in extractive distillation of dipropyl ether + 1-propyl alcohol using 2-ethoxyethanol as entrainer	
rfi	1.38333	298.15	Vapor liquid equilibrium, densities, and interfacial tensions for the system ethyl 1,1-dimethylethyl ether (ETBE) + propan-1-ol	
rfi	1.38360	298.15	Liquid liquid equilibria of the systems dipropyl ether + n-propanol +water and dipropyl ether + n-propanol + ethylene glycol at different temperatures	
rfi	1.38305	298.15	Isobaric vapour liquid equilibria for binary systems of 2-butanone with ethanol, 1-propanol, and 2-propanol at 20 and 101.3 kPa	
rfi	1.38312	298.15	Isothermal vapor liquid equilibrium at 323.15K and excess molar volumes and refractive indices at 298.15K for the ternary system propyl vinyl ether + 1-propanol + benzene and its binary sub-systems	

rfi	1.38350	298.20	Measurement and prediction of tie-line data for mixtures of (water + 1-propanol + diisopropyl ether): LLE diagrams as a function of temperature
rfi	1.38320	298.15	Excess molar volumes, excess molar enthalpies and refractive index deviations for binary mixtures of propan-1-ol, butan-1-ol and pentan-1-ol with 2,2,4-trimethylpentane at 298.15 K
rfi	1.38290	298.15	Experimental and predicted volumetric and refractive index properties of ternary mixtures of iodoethane with toluene and alcohols at temperature 298.15 K and pressure 101 kPa
rfi	1.38340	298.15	Excess molar volumes and partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and p = 0.1 MPa
rfi	1.38400	298.15	Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at T = (298.15, 303.15, and 308.15) K

rfi	1.38190	303.15	Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at T = (298.15, 303.15, and 308.15) K
rfi	1.38000	308.15	Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at T = (298.15, 303.15, and 308.15) K
rfi	1.38260	298.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K
rfi	1.38080	303.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K
rfi	1.37820	308.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K

rfi	1.38370	bii of C	rapor + liquid) quilibria of the nary mixtures m-cresol with 1 C4 aliphatic cohols at 95.5 kPa
rfi	1.38260	ir bii of pe 3-m at	nermodynamic nteractions in nary mixtures f anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, ntan-1-ol, and ethylbutan-1-ol T = (298.15, 303.15, and 308.15) K
rfi	1.38080	ir bii of pe 3-m at	nteractions in nary mixtures of anisole with ethanol, oropan-1-ol, oropan-2-ol, butan-1-ol, and ethylbutan-1-ol of T = (298.15, 303.15, and 308.15) K
rfi	1.37820	ir bii of pe 3-m at	ermodynamic atteractions in any mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, and ethylbutan-1-ol of T = (298.15, 303.15, and 308.15) K
rfi	1.38307	pro bii (* 1-a (31:	nermophysical operties of the nary mixtures 1,8-cineole + alkanol) at T = (298.15 and 3.15) K and at atmospheric pressure
rfi	1.37674	pro bii (* 1-a (31:	nermophysical operties of the nary mixtures 1,8-cineole + alkanol) at T = (298.15 and 3.15) K and at atmospheric pressure

rfi	1.38906	283.15	Thermophysical properties of {(+-)-linalool + propan-1-ol}: A first stage towards the development of a green process	
rfi	1.38288	298.15	Thermophysical properties of {(+-)-linalool + propan-1-ol}: A first stage towards the development of a green process	
rfi	1.37252	323.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rfi	1.37015	328.15	Thermophysical properties of {(+-)-linalool + propan-1-ol}: A first stage towards the development of a green process	
rfi	1.38220	298.15	Application of the ERAS model to volumetric properties of binary mixtures of banana oil with primary and secondary alcohols (C1- C4) at different temperatures	
rfi	1.38307		Effect of the temperature on the physical properties of pure -propyl-3-methylimidazes (trifluoromethylsulfonyl) and characterization of its binary mixtures with alcohols	

rfi	1.38210	303.15	Experimental study on the calorimetric data of cyclohexanol with alkanols (C1-C4) and correlation with Wilson, NRTL and UNIQUAC models at 300 K	
rfi	1.38780	288.15	Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination	
rfi	1.38576	293.15	Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination	
rfi	1.38369	298.15	Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination	

rfi	1.38162	303.15	Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination	
rfi	1.37918	308.15	Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination	
rfi	1.37695	313.15	Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination	

rfi	1.37469	318.15 Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination
rfi	1.37231	323.15 Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3-propanediol, and + glycerol). New UNIFAC-VISCO parameters determination
rfi	1.38334	298.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.38131	303.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K

rfi	1.37926	308.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.37722	313.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.38330	298.15 Properties of pure n-butylammonium nitrate ionic liquid and its binary mixtures of with alcohols at T = (293.15 to 313.15) K
rfi	1.38432	293.15 Separation of thiophene from heptane with ionic liquids
rfi	1.38286	298.15 Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols
rfi	1.38785	288.15 Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K

rfi	1.38578		293.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rfi	1.38364		298.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rfi	1.38153		303.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rfi	1.37483		318.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rfi	1.37702		313.15	Experimental Determination and Modeling of Densities and Refractive Indices of the Binary Systems Alcohol + Dicyclohexylamine at T = (288.15 to 323.15) K	
rhol	799.56	kg/m3	298.15 1-E	Thermophysical Characterization of the Mixtures of the Ionic Liquid Ethyl-3-Methylimidazoli Acetate with 1-Propanol or 2-Propanol	um

rhol	787.72	kg/m3	313.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	783.56	kg/m3	318.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	779.36	kg/m3	323.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	807.75	kg/m3	288.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	803.77	kg/m3	293.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	799.76	kg/m3	298.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	795.72	kg/m3	303.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	791.64	kg/m3	308.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	787.52	kg/m3	313.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols

rhol	783.36	kg/m3	318.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	779.14	kg/m3	323.15	Volumetric and Viscometric Study of Binary Systems of Ethyl Butyrate with Alcohols
rhol	803.48	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform
rhol	791.83	kg/m3	308.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	795.44	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform
rhol	791.37	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform
rhol	787.26	kg/m3	313.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform

rhol	783.10	kg/m3	318.15 Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform
rhol	778.90	kg/m3	323.15 Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform
rhol	804.97	kg/m3	293.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	801.01	kg/m3	298.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	796.89	kg/m3	303.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K

rhol	792.83	kg/m3	308.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	789.07	kg/m3	313.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	780.74	kg/m3	323.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	771.75	kg/m3	333.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	762.86	kg/m3	343.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K

rhol	799.70	kg/m3	298.15	Thermodynamic Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its Mixtures with Water and Alkanols
rhol	783.16	kg/m3	318.15	Thermodynamic Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its Mixtures with Water and Alkanols
rhol	796.55	kg/m3	303.15	Isothermal VLE and VE at 303.15 K for the Binary and Ternary Mixtures of Di-isopropyl Ether (DIPE) + 1-Propanol + 2,2,4-Trimethylpentane
rhol	799.52	kg/m3	298.15	Densities and Excess Molar Volumes of N-Methylmorpholine + 1-Alkanol Systems at 298.15 K
rhol	799.94	kg/m3	298.15	Liquid Liquid Equilibrium for Ternary Systems of Propyl Vinyl Ether + C3 or C4 Alcohols + Water at 298.15 K and Excess Molar Enthalpies for Ternary and Constituent Binary Systems of Propyl Vinyl Ether + Ethanol + Isooctane at 303.15 K
rhol	803.59	kg/m3	293.15	Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)

rhol 795.53 kg/m3 303.15 Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different	
Temperatures and Ambient Pressure (81.5 kPa)	
rhol 787.38 kg/m3 313.15 Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)	
rhol 778.92 kg/m3 323.15 Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)	
rhol 799.98 kg/m3 298.15 Binary Liquid-Liquid Equilibrium (LLE) for Dibutyl Ether (DBE) + Water from (288.15 to 318.15) K and Ternary LLE for Systems of DBE + C1 !less thanless than C4 Alcohols + Water at 298.15 K	
rhol 799.89 kg/m3 298.15 Binary Liquid-Liquid Equilibrium (LLE) for Methyl tert-Amyl Ether (TAME) + Water from (288.15 to 313.15) K and Ternary LLE for Systems of TAME + C1-C4 Alcohols + Water at 298.15 K	

rhol	799.81	kg/m3	298.15	Densities and Excess Molar Volumes of Cyclopentane (1) + 1-Alkanol (2) Systems at (298.15 and 308.15) K	
rhol	791.69	kg/m3	308.15	Densities and Excess Molar Volumes of Cyclopentane (1) + 1-Alkanol (2) Systems at (298.15 and 308.15) K	
rhol	800.61	kg/m3	298.15	Binary and Ternary Vapor-Liquid Equilibrium at 323.15 K and Excess Molar Volumes at 298.15 K for the Mixtures of Propyl Vinyl Ether + 1-Propanol + Toluene	
rhol	799.70	kg/m3	298.15	Solubility and Liquid-Liquid Equilibrium of Aqueous Systems of Iodoethane with Methanol, Ethanol, or 1-Propanol at Temperature 298.15 K and Pressure 101.2 kPa	
rhol	779.30	kg/m3	323.15	Liquid-Liquid Equilibria, Density, Viscosity, and Surface and Interfacial Tension of the System Water + n-Butyl Acetate + 1-Propanol at 323.15 K and Atmospheric Pressure	

rhol	800.70	kg/m3	298.15 Apparent Molal Volumes and Viscosity B-Coefficients of Acetyl Salicylic Acid (2-Acetoxy Benzoic Acid) Solutions in Higher Alcohols at Different Temperatures
rhol	799.56	kg/m3	298.15 Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Methanol, Ethanol, 1-Propanol, and 2-Propanol at Several Temperatures
rhol	795.87	kg/m3	303.15 Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	799.67	kg/m3	298.15 Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	803.65	kg/m3	293.15 Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	770.32	kg/m3	333.15 Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures

rhol	778.93	kg/m3	323.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures	
rhol	787.30	kg/m3	313.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different	
rhol	795.47	kg/m3	303.15	Temperatures Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures	
rhol	803.52	kg/m3	293.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures	
rhol	770.42	kg/m3	333.15	Densities and Viscosities of Diaminotoluene with Water, Ethanol, Propan-1-ol, and Butan-1-ol from (293.15 to 333.15) K	
rhol	779.01	kg/m3	323.15	Densities and Viscosities of Diaminotoluene with Water, Ethanol, Propan-1-ol, and Butan-1-ol from (293.15 to 333.15) K	

rhol	787.37	kg/m3	313.15	Densities and Viscosities of Diaminotoluene with Water, Ethanol, Propan-1-ol, and Butan-1-ol from (293.15 to 333.15) K
rhol	795.54	kg/m3	303.15	Densities and Viscosities of Diaminotoluene with Water, Ethanol, Propan-1-ol, and Butan-1-ol from (293.15 to 333.15) K
rhol	803.86	kg/m3	293.15	Densities and Viscosities of Diaminotoluene with Water, Ethanol, Propan-1-ol, and Butan-1-ol from (293.15 to 333.15) K
rhol	764.00	kg/m3	333.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	780.00	kg/m3	323.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model

rhol	788.00	kg/m3	313.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	796.00	kg/m3	303.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	800.10	kg/m3	298.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model

rhol	804.00	kg/m3	293.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	779.32	kg/m3	323.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure
rhol	787.64	kg/m3	313.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure
rhol	791.74	kg/m3	308.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure

rhol	795.81	kg/m3	303.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure	
rhol	799.85	kg/m3	298.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure	
rhol	803.84	kg/m3	293.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure	
rhol	770.38	kg/m3	333.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	
rhol	778.98	kg/m3	323.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	

rhol	787.35	kg/m3	313.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure
rhol	795.53	kg/m3	303.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure
rhol	803.57	kg/m3	293.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure
rhol	799.67	kg/m3	298.15 1-l	Thermophysical Properties of the Pure Ionic Liquid Butyl-1-methylpyrrolidinium Dicyanamide and Its Binary Mixtures with Alcohols
rhol	799.70	kg/m3	298.15	Excess Volumes of Ternary Mixtures 2,2,4-Trimethylpentane + Diisopropyl Ether or Methyl tert-Butyl Ether + Methanol, Ethanol, or 1-Propanol at 298.15 K
rhol	799.56	kg/m3	298.15	ACSExcess Molar Enthalpies of Mixtures of (+-)-Linalool with Several Alkanols
rhol	804.27	kg/m3	298.15	Phase Equilibria for Reactive Distillation of Propyl Propanoate. Pure Component Property Data, Vapor-Liquid Equilibria, and Liquid-Liquid Equilibria

rhol	797.60	kg/m3	298.15	Volumetric Properties for (Ionic Liquid + Methanol or Ethanol or 1-Propanol + Nitromethane) at 298.15 K and Atmospheric Pressure
rhol	775.97	kg/m3	328.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K
rhol	788.69	kg/m3	313.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K
rhol	800.97	kg/m3	298.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K
rhol	783.55	kg/m3	318.15	Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure

rhol	809.01	kg/m3	288.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K	
rhol	770.80	kg/m3	333.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	774.90	kg/m3	328.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	779.00	kg/m3	323.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	783.30	kg/m3	318.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	

rhol	787.30	kg/m3	313.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	791.50	kg/m3	308.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	795.50	kg/m3	303.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	799.60	kg/m3	298.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	795.50	kg/m3	303.00 {1-H Bis	Fluid-Phase Behavior of lexyl-3-methylimidazoliurs(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2-C8 n-Alcohol} Mixtures: Liquid-Liquid Equilibrium and Excess Volumes	m

rhol	795.50	kg/m3	303.00 Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2-C8 n-Alcohol} Mixtures: Liquid-Liquid Equilibrium and Excess Volumes
rhol	799.50	kg/m3	298.00 Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2-C8 n-Alcohol} Mixtures: Liquid-Liquid Equilibrium and Excess Volumes
rhol	799.50	kg/m3	298.00 Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2-C8 n-Alcohol} Mixtures: Liquid-Liquid Equilibrium and Excess Volumes
rhol	803.50	kg/m3	293.00 Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2-C8 n-Alcohol} Mixtures: Liquid-Liquid Equilibrium and Excess Volumes
rhol	803.50	kg/m3	293.00 Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2-C8 n-Alcohol} Mixtures: Liquid-Liquid Equilibrium and Excess Volumes

rhol	799.75	kg/m3	298.15	Measurement and Correlation of Vapor-Liquid Equilibria at T) 333.15 K and Excess Molar Volumes at T) 298.15 K for Ethanol + Dimethyl Carbonate (DMC), DMC + 1-Propanol, and DMC + 1-Butanol	
rhol	799.50	kg/m3	298.15	Dynamic Viscosities of Diethyl Carbonate with Linear and Secondary Alcohols at Several Temperatures	
rhol	803.63	kg/m3	293.15	Excess Molar Enthalpies for Binary Mixtures of Ethanol + Acetone, + Octane, + Cyclohexane and 1-Propanol + Acetone, + Octane, + Heptane at 323.15	
rhol	779.20	kg/m3	323.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure	
rhol	787.50	kg/m3	313.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure	

rhol	795.70	kg/m3	303.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure
rhol	803.60	kg/m3	293.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure
rhol	778.90	kg/m3	323.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	783.10	kg/m3	318.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	787.20	kg/m3	313.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model

rhol	791.30	kg/m3	308.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	795.40	kg/m3	303.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	799.40	kg/m3	298.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	803.50	kg/m3	293.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	783.12	kg/m3	318.15	Vapor-Liquid Equilibrium, Volumetric, and Compressibility Properties of 1-Propanol + Poly(ethylene glycol) Dimethyl Ether 250 and 500 Binary Mixtures

rhol	791.40	kg/m3	308.15	Vapor-Liquid Equilibrium, Volumetric, and Compressibility Properties of 1-Propanol + Poly(ethylene glycol) Dimethyl Ether 250 and 500 Binary Mixtures
rhol	799.60	kg/m3	298.15	Vapor-Liquid Equilibrium, Volumetric, and Compressibility Properties of 1-Propanol + Poly(ethylene glycol) Dimethyl Ether 250 and 500 Binary Mixtures
rhol	761.53	kg/m3	343.15 Bis(tri	Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and fluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	766.03	kg/m3	338.15 Bis(tri	Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and fluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	770.44	kg/m3	333.15 Bis(tri	Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and fluoromethylsulfonyl)imide Anion with 1-Propanol

rhol	774.79	kg/m3	328.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	779.05	kg/m3	323.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	783.27	kg/m3	318.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	787.43	kg/m3	313.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	791.54	kg/m3	308.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol

rhol	795.61	kg/m3	303.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	799.65	kg/m3	298.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	799.47	kg/m3	298.15 Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform
rhol	803.65	kg/m3	293.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	807.63	kg/m3	288.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol

rhol	811.60	kg/m3	283.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	815.52	kg/m3	278.15 Density, Viscosity, and Speed of Sound of Pure and Binary Mixtures of Ionic Liquids Based on Sulfonium and Imidazolium Cations and Bis(trifluoromethylsulfonyl)imide Anion with 1-Propanol
rhol	783.64	kg/m3	318.15 Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	791.71	kg/m3	308.15 Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling

rhol	799.78	kg/m3	298.15 Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	807.86	kg/m3	288.15 Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	799.50	kg/m3	298.15 Isobaric Vapor-Liquid Phase Equilibrium Measurements, Correlation, and Prediction for Separation of the Mixtures of Cyclohexanone and Alcohols
rhol	803.60	kg/m3	293.15 Three Binary Azeotropic Systems for 1-(Methoxymethoxy)-propane, 1-(Ethoxymethoxy)-propane, and Methoxy(methoxymethoxy)methane with Three Alcohols at 101.33 kPa: Experimental Data, Correlation, and Purification

rhol	783.12	kg/m3	318.15	Measurement and Correlation of Activity, Density, and Speed of Sound for Binary Mixtures of 1-Propanol + Poly(Propylene Glycol) 400, 725, and 1025	
rhol	791.40	kg/m3	308.15	Measurement and Correlation of Activity, Density, and Speed of Sound for Binary Mixtures of 1-Propanol + Poly(Propylene Glycol) 400, 725, and 1025	
rhol	799.60	kg/m3	298.15	Measurement and Correlation of Activity, Density, and Speed of Sound for Binary Mixtures of 1-Propanol + Poly(Propylene Glycol) 400, 725, and 1025	
rhol	807.83	kg/m3	288.15	Measurement and Correlation of Activity, Density, and Speed of Sound for Binary Mixtures of 1-Propanol + Poly(Propylene Glycol) 400, 725, and 1025	
rhol	802.00	kg/m3	298.15	Isobaric Vapor-Liquid Equilibrium for the Binary Systems of Sec-butyl Acetate and Ethanol, 1-Propanol, or 2-Propanol at 101.3 kPa	
rhol	800.94	kg/m3	298.15	Volumetric Properties, Viscosity, and Refractive Indices of Different Naringenin Solutions at Several Temperatures	

rhol	803.67	kg/m3	293.15	Volumetric	
HIOI	003.07	ку/шз	293.13	Properties, Viscosity, and Refractive Indices of Different Naringenin Solutions at Several Temperatures	
rhol	795.54	kg/m3	303.15	Isobaric Vapor Liquid Equilibrium for the Binary Systems Dimethyl Disulfide + C1 C4 n-Alkanol at 40.000 and 101.325 kPa	
rhol	792.76	kg/m3	308.15	Physical Properties of the Pure Deep Eutectic Solvent, [ChCl]:[Lev] (1:2) DES, and Its Binary Mixtures with Alcohols	
rhol	799.69	kg/m3	298.15	Physical Properties of the Pure Deep Eutectic Solvent, [ChCl]:[Lev] (1:2) DES, and Its Binary Mixtures with Alcohols	
rhol	742.77	kg/m3	363.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	747.65	kg/m3	358.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	

rhol	752.44	kg/m3	353.15	Densities and	
	7 02.11	Ng/1110	333.10	Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	757.09	kg/m3	348.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	761.67	kg/m3	343.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	766.15	kg/m3	338.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	770.54	kg/m3	333.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	

rhol	774.86	kg/m3	328.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa
rhol	779.11	kg/m3	323.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa
rhol	783.30	kg/m3	318.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa
rhol	787.44	kg/m3	313.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa
rhol	791.53	kg/m3	308.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa

rhol	795.58	kg/m3	303.15	Densities and Viscosities for Binary Liquid	
				Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	799.59	kg/m3	298.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	803.58	kg/m3	293.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	807.54	kg/m3	288.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	811.48	kg/m3	283.15	Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa	
rhol	756.91	kg/m3	348.15 1-E	Thermophysical Characterization of the Mixtures of the Ionic Liquid thyl-3-Methylimidazo Acetate with 1-Propanol or 2-Propanol	lium

rhol	765.98	kg/m3	338.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	774.72	kg/m3	328.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	783.20	kg/m3	318.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	791.46	kg/m3	308.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	807.55	kg/m3	288.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	799.70	kg/m3	298.15 Thermodynamics of 1,3-dimethylurea in eight alcohols
rhol	778.93	kg/m3	323.15 Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium lonic Liquids with Ethanol and 1-Propanol
rhol	783.14	kg/m3	318.15 Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium lonic Liquids with Ethanol and 1-Propanol

rhol	787.29	kg/m3	313.15	Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol
rhol	791.39	kg/m3	308.15	Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol
rhol	795.46	kg/m3	303.15	Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol
rhol	799.49	kg/m3	298.15	Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol
rhol	803.49	kg/m3	293.15	Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3- tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol
rhol	765.96	kg/m3	338.15 Bis(trifl	Density, Viscosity, and Sound Speed of uoromethylsulfonyl)imide-Based Ionic Liquids + 1-Propanol Mixtures
rhol	783.18	kg/m3	318.15 Bis(trifl	Density, Viscosity, and Sound Speed of uoromethylsulfonyl)imide-Based Ionic Liquids + 1-Propanol Mixtures

rhol	799.55	kg/m3	298.15 Density, Viscosity, and Sound Speed of Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids + 1-Propanol Mixtures
rhol	815.46	kg/m3	278.15 Density, Viscosity, and Sound Speed of Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids + 1-Propanol Mixtures
rhol	801.08	kg/m3	298.15 Modified Method for Measuring the Solubility of Pharmaceutical Compounds in Organic Solvents by Visual Camera
rhol	783.15	kg/m3	318.15 The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	787.31	kg/m3	313.15 The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	791.42	kg/m3	308.15 The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K

rhol	795.48	kg/m3	303.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	799.51	kg/m3	298.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	803.52	kg/m3	293.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	807.51	kg/m3	288.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K

rhol	778.70	kg/m3	323.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	787.00	kg/m3	313.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	795.10	kg/m3	303.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	
rhol	803.30	kg/m3	293.15	Excess volumes, Viscosities, and Excess Gibbs Energy of Activation for Viscous Flow, for binary and ternary mixtures 1- propanol + N-N dimethylformamid + chloroform at different temperatures	

rhol	779.14	kg/m3	323.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	
rhol	783.36	kg/m3	318.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	
rhol	787.52	kg/m3	313.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	

rhol	791.64	kg/m3	308.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	
rhol	795.72	kg/m3	303.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	
rhol	799.75	kg/m3	298.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	

rhol	803.77	kg/m3	293.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	
rhol	807.75	kg/m3	288.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of selected binary systems with butyl lactate at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO interaction parameters.	
rhol	787.95	kg/m3	313.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	
rhol	795.05	kg/m3	303.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	
rhol	797.81	kg/m3	298.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	

	rhol	800.03	kg/m3	293.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	
	rhol	799.28	kg/m3	298.15	Topological investigations of the molecular species and molecular interactions that characterize pyrrolidin-2-one + lower alkanol mixtures	
	rhol	795.61	kg/m3	303.15	Volumetric and transport properties of ternary mixtures containing 1-propanol + ethyl ethanoate + cyclohexane or benzene at 303.15 K: Experimental data, correlation and prediction by ERAS model	
	rhol	799.30	kg/m3	298.15	Thermodynamic properties of binary mixtures of 2.2.2-Trifluoroethano with Water or Alkanols at T=298.15 K	l
	rhol	795.48	kg/m3	303.15	Excess molar enthalpies and heat capacities of dimethyl sulfoxide + seven normal alkanols at 303.15K and atmospheric pressure	
_	rhol	799.10	kg/m3	298.15	Excess enthalpies of binary mixtures of some propylamines + some propanols at 298.15K	
	rhol	799.51	kg/m3	298.15	Excess molar enthalpies of methyl isobutyl ketone (MIBK) with alkan-1-ols (C1-C6) and their correlations at 298.15 K	

rhol	779.09	kg/m3	323.15	Vapor-liquid equilibrium and excess properties of the binary mixtures formed by ethyl isobutyrate and n-alkanols	
rhol	795.53	kg/m3	303.15	Vapor-liquid equilibrium and excess properties of the binary mixtures formed by ethyl isobutyrate and n-alkanols	
rhol	799.97	kg/m3	298.15	Excess volumes and partial molar volumes of binary liquid mixtures of furfural or 2-methylfuran with alcohols at 298.15 K	
rhol	778.96	kg/m3	323.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	783.17	kg/m3	318.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	787.42	kg/m3	313.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	791.52	kg/m3	308.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	

rhol	795.58	kg/m3	303.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different
rhol	799.69	kg/m3	298.15	temperatures and 0.1 MPa Volumetric properties of monoethanolamine and alcohol
				binary mixtures at different temperatures and 0.1 MPa
rhol	803.77	kg/m3	293.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa
rhol	774.70	kg/m3	328.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol, +2-propanol
rhol	783.18	kg/m3	318.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol

rhol	791.44	kg/m3	308.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol, +2-propanol	
rhol	799.53	kg/m3	298.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	807.50	kg/m3	288.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol, +2-propanol	
rhol	800.00	kg/m3	298.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures	

rhol	780.00	kg/m3	323.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures
rhol	788.00	kg/m3	313.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures
rhol	796.00	kg/m3	303.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures
rhol	803.00	kg/m3	293.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures
rhol	787.88	kg/m3	313.15	Intermolecular interactions in binary mixtures of 2-diethylethanolamine with 1-propanol and 1-butanol at different temperatures
rhol	795.82	kg/m3	303.15	Intermolecular interactions in binary mixtures of 2-diethylethanolamine with 1-propanol and 1-butanol at different temperatures

rhol	803.76	kg/m3	293.15	Intermolecular interactions in binary mixtures of 2-diethylethanolamine with 1-propanol and 1-butanol at different temperatures
rhol	791.55	kg/m3	308.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	795.62	kg/m3	303.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	799.65	kg/m3	298.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	803.66	kg/m3	293.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	807.64	kg/m3	288.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	811.60	kg/m3	283.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents

rhol	815.55	kg/m3	278.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous
rhol	778.79	kg/m3	323.15	solvents Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach
rhol	783.11	kg/m3	318.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach
rhol	787.31	kg/m3	313.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach
rhol	791.43	kg/m3	308.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach
rhol	795.50	kg/m3	303.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach
rhol	799.52	kg/m3	298.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach
rhol	803.52	kg/m3	293.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach

rhol	774.63	kg/m3	328.15	Thermophysical and volumetric study of mixtures {p-cymene + propan-1-ol} at several temperatures and atmospheric pressure. Modeling with COSMO-RS	
rhol	783.10	kg/m3	318.15	Thermophysical and volumetric study of mixtures {p-cymene + propan-1-ol} at several temperatures and atmospheric pressure. Modeling with COSMO-RS	
rhol	791.36	kg/m3	308.15	Thermophysical and volumetric study of mixtures {p-cymene + propan-1-ol} at several temperatures and atmospheric pressure. Modeling with COSMO-RS	
rhol	799.46	kg/m3	298.15	Thermophysical and volumetric study of mixtures {p-cymene + propan-1-ol} at several temperatures and atmospheric pressure. Modeling with COSMO-RS	
rhol	787.73	kg/m3	313.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	

rhol	791.82	kg/m3	308.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	795.92	kg/m3	303.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	766.20	kg/m3	338.15 1-bu trif	Thermophysical properties of binary mixtures of utyl-1-methylpyrrolidinium fluoromethanesulfonate ionic liquid with alcohols at several temperatures	
rhol	774.90	kg/m3		Thermophysical properties of binary mixtures of ityl-1-methylpyrrolidinium fluoromethanesulfonate ionic liquid with alcohols at several temperatures	
rhol	783.30	kg/m3		Thermophysical properties of binary mixtures of of atyl-1-methylpyrrolidinium iluoromethanesulfonate ionic liquid with alcohols at several temperatures	
rhol	791.60	kg/m3	308.15 1-bu trif	Thermophysical properties of binary mixtures of of lityl-1-methylpyrrolidinium iluoromethanesulfonate ionic liquid with alcohols at several temperatures	

rhol	799.70	kg/m3	298.15 Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	807.70	kg/m3	288.15 Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	815.60	kg/m3	278.15 Thermophysical properties of binary mixtures of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	783.20	kg/m3	318.15 Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols
rhol	787.36	kg/m3	313.15 Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols

rhol	791.47	kg/m3	308.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	795.55	kg/m3	303.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	799.58	kg/m3	298.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	803.59	kg/m3	293.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	807.55	kg/m3	288.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	

rhol	803.70	kg/m3	293.15 1	Measurement and correlation of (vapour-liquid) equilibrium for binary mixtures composed of -(ethoxymethoxy)-propane with ethanol and 1-propanol at 101.33 kPa
rhol	789.00	kg/m3	313.00	Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols
rhol	792.00	kg/m3	308.00	Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols
rhol	796.00	kg/m3	303.00	Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols
rhol	800.00	kg/m3	298.00	Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols
rhol	799.92	kg/m3	298.20	A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies
rhol	799.50	kg/m3	298.15	Fully automatized apparatus for determining speed of sound for liquids in the temperature and pressure interval (283.15-343.15) K and (0.1-95) MPa

and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15-313.15) K rhol 791.51 kg/m3 308.15 Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with
butanoate ionic liquid with alcohols at T = (293.15-313.15) K rhol 791.51 kg/m3 308.15 Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with
rhol 791.51 kg/m3 308.15 Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with
and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with
n-butylammonium butanoate ionic liquid with
alcohols at T =
(293.15-313.15) K
rhol 795.58 kg/m3 303.15 Thermodynamic and
spectroscopic properties of binary mixtures of
n-butylammonium butanoate ionic liquid with alcohols at T =
(293.15-313.15) K
rhol 799.62 kg/m3 298.15 Thermodynamic and spectroscopic
properties of binary mixtures of of
n-butylammonium butanoate ionic liquid with alcohols at T =
(293.15-313.15) K
rhol 803.62 kg/m3 293.15 Thermodynamic
and spectroscopic properties of binary mixtures
of n-butylammonium butanoate ionic
liquid with alcohols at T =
(293.15-313.15) K

rhol	799.61	kg/m3	298.15	Experimental study on the calorimetric data of 2-butoxyethanol with aliphatic alcohols (C1-C4) and correlation with the Wilson, NRTL and UNIQUAC models at T = 298 K	
rhol	803.85	kg/m3	293.15	(Liquid + liquid) equilibria of four alcohol-water systems containing 1,8-cineole at T = 298.15 K	
rhol	799.70	kg/m3	298.15	Solubility and solution thermodynamics of thymol in six pure organic solvents	
rhol	799.56	kg/m3	298.15 1-bu	Measurements and equation-of-state modelling of thermodynamic properties of binary mixtures of tyl-1-methylpyrrolidin tetracyanoborate ionic liquid with molecular compounds	ium
rhol	799.56	kg/m3	298.15	Excess molar enthalpies of R-fenchone + propan-1-ol or +propan-2-ol. Modeling with COSMO-RS and UNIFAC	
rhol	787.42	kg/m3	313.15 1,1,3	Properties of pure 3,3-tetramethylguanic imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K	line

rhol	791.56	kg/m3	308.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	795.65	kg/m3	303.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	799.71	kg/m3	298.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	803.75	kg/m3	293.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	803.85	kg/m3	293.15 (Liquid + liquid) equilibria for (water + 1-propanol or acetone + .betacitronellol) at different temperatures
rhol	799.56	kg/m3	298.15 A combined experimental and computational investigation of excess molar enthalpies of (nitrobenzene + alkanol) mixtures
rhol	787.88	kg/m3	313.15 Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach

rhol	792.00	kg/m3	308.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	796.08	kg/m3	303.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	800.13	kg/m3	298.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	804.14	kg/m3	293.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	799.52	kg/m3	298.15	Extraction desulfurization process of fuels with ionic liquids
rhol	799.52	kg/m3	298.15	Effect of the alkyl side chain of the 1-alkylpiperidinium-based ionic liquids on desulfurization of fuels

rhol	779.09	kg/m3	323.15 Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols
rhol	799.52	kg/m3	298.15 Separation of sulfur compounds from alkanes with 1-alkylcyanopyridinium-based ionic liquids
rhol	799.66	kg/m3	298.15 Thermodynamics of (ketone + amine) mixtures. Part XI. Excess molar enthalpies at T = 298.15 K for the (1-propanol + N,N,N-triethylamine + 2-butanone) system
rhol	798.00	kg/m3	303.15 Study of molecular interactions in the mixtures of some primary alcohols with equimolar mixture of 1-propanol and alkylbenzoates at T = 303.15 K
rhol	791.78	kg/m3	308.15 Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols
rhol	795.94	kg/m3	303.15 Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols
rhol	799.87	kg/m3	298.15 Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols

rhol	791.65	kg/m3	308.15	FT-IR studies on excess thermodynamic properties of binary liquid mixtures o-chlorotoluene with 1-propanol, 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol at different temperatures	
rhol	795.65	kg/m3	303.15	FT-IR studies on excess thermodynamic properties of binary liquid mixtures o-chlorotoluene with 1-propanol, 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol at different temperatures	
rhol	799.65	kg/m3	298.15	FT-IR studies on excess thermodynamic properties of binary liquid mixtures o-chlorotoluene with 1-propanol, 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol at different temperatures	
rhol	779.33	kg/m3		Osmotic and apparent molar properties of binary mixtures alcohol + utyl-3-methylimidazolium iluoromethanesulfonate ionic liquid	
rhol	791.84	kg/m3		Osmotic and apparent molar properties of binary mixtures alcohol + utyl-3-methylimidazolium fluoromethanesulfonate ionic liquid	

rhol	803.92	kg/m3	293.15 1-bu trifl	Osmotic and apparent molar properties of binary mixtures alcohol + tyl-3-methylimidazolium uoromethanesulfonate ionic liquid	
rhol	783.16	kg/m3	318.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol at temperatures (293.15 to 318.15) K	
rhol	787.32	kg/m3	313.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol at temperatures (293.15 to 318.15) K	
rhol	791.43	kg/m3	308.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol, or nonan-1-ol at temperatures (293.15 to 318.15) K	
rhol	795.49	kg/m3	303.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol at temperatures (293.15 to 318.15) K	

rhol	799.53	kg/m3	298.15 Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol, or nonan-1-ol at temperatures (293.15 to 318.15) K
rhol	803.53	kg/m3	293.15 Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol, or nonan-1-ol at temperatures (293.15 to 318.15) K
rhol	799.45	kg/m3	298.15 Apparent molar volumes and compressibilities of tetrabutyl-ammonium bromide in organic solvents
rhol	788.60	kg/m3	313.15 Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures
rhol	796.40	kg/m3	303.15 Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures

rhol	799.40	kg/m3	298.15 Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures
rhol	799.67	kg/m3	298.15 Volumetric, acoustic, and viscometric studies of molecular interactions in binary mixtures of dipropylene glycol dimethyl ether with 1-alkanols at 298.15 K
rhol	778.97	kg/m3	323.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	787.34	kg/m3	313.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	795.58	kg/m3	303.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K

rhol	799.71	kg/m3	298.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	803.56	kg/m3	293.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	787.36	kg/m3	313.15 Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K
rhol	799.59	kg/m3	298.15 Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K
rhol	811.54	kg/m3	283.15 Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K
rhol	761.51	kg/m3	343.15 Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K

rhol	770.42	kg/m3	333.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	779.02	kg/m3	323.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	787.39	kg/m3	313.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	795.57	kg/m3	303.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	803.61	kg/m3	293.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K

rhol	783.22	kg/m3	318.15 Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K
rhol	791.44	kg/m3	308.15 Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K
rhol	799.54	kg/m3	298.15 Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K
rhol	807.54	kg/m3	288.15 Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K
rhol	815.98	kg/m3	278.15 Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K
rhol	799.60	kg/m3	298.15 Bubble point temperatures of the binary mixtures of nitrobenzene with C1 C4 aliphatic alcohols at 94.95 kPa

rhol	799.74	kg/m3	298.15	(Vapor + liquid)
				equilibria for the binary mixtures (1-propanol + dibromomethane,
				or + bromochloromethane, or + 1,2-dichloroethane
			4	or +1-bromo-2-chloroethane) at T = 313.15 K.
rhol	791.30	kg/m3	308.15	Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures
rhol	799.40	kg/m3	298.15	Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures
rhol	807.30	kg/m3	288.15	Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures
rhol	800.06	kg/m3	298.15	Solid-liquid equilibria for selected binary systems containing diphenyl carbonate
rhol	791.82	kg/m3	308.15	A systematic study on volumetric and transport properties of binary systems 1-propanol + n-hexadecane, 1-butanol + n-hexadecane and 1-propanol + ethyl oleate at different temperatures: Experimental and modeling

rhol	795.89	kg/m3	303.15	A systematic study on volumetric and transport properties of binary systems 1-propanol + n-hexadecane, 1-butanol + n-hexadecane and 1-propanol + ethyl oleate at different temperatures: Experimental and modeling
rhol	799.93	kg/m3	298.15	A systematic study on volumetric and transport properties of binary systems 1-propanol + n-hexadecane, 1-butanol + n-hexadecane and 1-propanol + ethyl oleate at different temperatures: Experimental and modeling
rhol	799.52	kg/m3	298.15	Separation of pyridine from heptane with tricyanomethanide-based ionic liquids
rhol	779.14	kg/m3	323.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure
rhol	783.36	kg/m3	318.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure

rhol	787.52	kg/m3	313.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	791.63	kg/m3	308.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	795.70	kg/m3	303.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	799.71	kg/m3	298.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	

rhol	799.62	kg/m3	298.15	Liquid liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: Measurements and correlation at different temperatures	
rhol	800.13	kg/m3	298.15	Thermodynamic and spectral investigations of binary liquid mixturesof 2-butoxy ethanol with alcohols at temperature range of 293.15-313.15 K	
rhol	800.61	kg/m3	298.15	Isothermal vapor liquid equilibrium at 333.15K and excess molar volumes at 298.15K for the ternary system di-isopropyl ether + n-propyl alcohol + toluene and its binary subsystems	
rhol	799.96	kg/m3	298.15	Liquid liquid equilibria for the binary system of di-isopropyl ether (DIPE) +water in between 288.15 and 323.15K and the ternary systems of DIPE +water + C1 C4 alcohols at 298.15K	
rhol	791.76	kg/m3	308.15	Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanol	_
rhol	799.67	kg/m3	298.15	Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanol	
rhol	807.90	kg/m3	288.15	Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanol	

rhol	787.47	ka/m3	313.15	Influence of chain	
IIIOI	101.41	kg/m3	313.13	length and degree of branching of alcohol + chlorobenzene mixtures on determination and modelling of VE by CEOS and CEOS/GE mixing rules	
rhol	791.58	kg/m3	308.15	Influence of chain length and degree of branching of alcohol + chlorobenzene mixtures on determination and modelling of VE by CEOS and CEOS/GE mixing rules	
rhol	795.65	kg/m3	303.15	Influence of chain length and degree of branching of alcohol + chlorobenzene mixtures on determination and modelling of VE by CEOS and CEOS/GE mixing rules	
rhol	799.69	kg/m3	298.15	Influence of chain length and degree of branching of alcohol + chlorobenzene mixtures on determination and modelling of VE by CEOS and CEOS/GE mixing rules	
rhol	803.70	kg/m3	293.15	Influence of chain length and degree of branching of alcohol + chlorobenzene mixtures on determination and modelling of VE by CEOS and CEOS/GE mixing rules	

rhol	807.69	kg/m3	288.15	Influence of chain length and degree of branching of alcohol + chlorobenzene mixtures on determination and modelling of VE by CEOS and CEOS/GE mixing rules	
rhol	799.65	kg/m3	298.15	Excess molar enthalpy of 1-alkanol + 1-octene mixtures at 298.15K Experimental results and theoretical description by means of the ERAS and TB models	
rhol	770.39	kg/m3	333.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	774.73	kg/m3	328.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	779.01	kg/m3	323.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	

rhol	787.37	kg/m3	313.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	791.49	kg/m3	308.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	795.58	kg/m3	303.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	799.62	kg/m3	298.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	803.63	kg/m3	293.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	

rhol	807.62	kg/m3	288.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	811.57	kg/m3	283.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	795.80	kg/m3	303.15	Viscous synergy and antagonism and isentropic compressibility of ternary mixtures containing 1,3-dioxolane, water and monoalkanols at 303.15K	
rhol	799.51	kg/m3	298.15	Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa	
rhol	799.60	kg/m3	298.15	Experimental Determination of Densities and Isobaric Vapor Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa	
rhol	799.28	kg/m3	298.15	Topological Investigations of Excess Molar Volumes and Excess Isentropic Compressibilities of Ternary Mixtures Containing Pyrrolidin-2-one at 308.15 K	

rhol	783.86	kg/m3	318.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	787.83	kg/m3	313.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	791.80	kg/m3	308.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, and 2-Methyl-1-Propanol at Temperatures from 293.15 to 318.15 K
rhol	795.77	kg/m3	303.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, and 2-Methyl-1-Propanol at Temperatures from 293.15 to 318.15 K
rhol	799.74	kg/m3	298.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, and 2-Methyl-1-Propanol at Temperatures from 293.15 to 318.15 K

rhol	803.71	kg/m3	293.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	800.62	kg/m3	298.15	Speeds of Sound and Isentropic Compressibilities in Binary Mixtures of 2-Propanol with Several 1-Alkanols at 298.15K
rhol	804.00	kg/m3	293.00	KDB
rhol	783.22	kg/m3	318.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine
rhol	784.45	kg/m3	318.15	Physical Properties of the Pure Deep Eutectic Solvent, [ChCl]:[Lev] (1:2) DES, and Its Binary Mixtures with Alcohols
rhol	799.96	kg/m3	298.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents
sfust	36.11	J/mol×K	148.75	NIST Webbook
sfust	35.30	J/mol×K	147.00	NIST Webbook

speedsl	1257.90	m/s	283.15 Excess Enthalpy, Excess Volume, and Speed of Sound Deviation for the Mixtures ss-Pinene + Ethanol and ss-Pinene + 1-propanol at (283.15, 298.15 and, 313.15) K
speedsl	1137.83	m/s	318.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1171.41	m/s	308.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1205.37	m/s	298.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1239.86	m/s	288.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures

speedsl	1275.27	m/s	278.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1104.40	m/s	328.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1155.10	m/s	313.15 Excess Enthalpy, Excess Volume, and Speed of Sound Deviation for the Mixtures ss-Pinene + Ethanol and ss-Pinene + 1-propanol at (283.15, 298.15 and, 313.15) K
speedsl	1206.00	m/s	298.15 Excess Enthalpy, Excess Volume, and Speed of Sound Deviation for the Mixtures ss-Pinene + Ethanol and ss-Pinene + 1-propanol at (283.15, 298.15 and, 313.15) K
speedsl	1070.97	m/s	338.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures

speedsl	1121.80	m/s	323.15 Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolim dicyanamide mixed with primary and secondary alcohols
speedsl	1172.30	m/s	308.15 Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolim dicyanamide mixed with primary and secondary alcohols
speedsl	1223.40	m/s	293.15 Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolim dicyanamide mixed with primary and secondary alcohols
speedsl	1205.80	m/s	298.15 Ultrasonic speeds and isentropic compressibilities of {difurylmethane +
speedsl	1172.04	m/s	308.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K

speedsl	1189.86	m/s	303.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K
speedsl	1206.47	m/s	298.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K
speedsl	1223.17	m/s	293.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K
speedsl	1240.01	m/s	288.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K
speedsl	1207.00	m/s	298.15 Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K
srf	0.02	N/m	313.15 Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols from 298.15 to 323.15 K

srf	0.02	N/m	293.15	Density and Surface Tension of Binary Mixtures of Acetonitrile + 1-Alkanol at 293.15 K
srf	0.02	N/m	323.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	318.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	313.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	308.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	303.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	298.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	293.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	323.15	Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols from 298.15 to 323.15 K
srf	0.02	N/m	318.15	Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols from 298.15 to 323.15 K

srf	0.02	N/m	298.00	Surface Tension and Density of Pure Ionic Liquids and Some Binary Mixtures with 1-Propanol and 1-Butanol
srf	0.02	N/m	308.15	Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols from 298.15 to 323.15 K
srf	0.02	N/m	303.15	Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols from 298.15 to 323.15 K
srf	0.02	N/m	298.15	Surface Tension of Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols from 298.15 to 323.15 K
srf	0.02	N/m	333.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures
srf	0.02	N/m	323.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures
srf	0.02	N/m	313.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures
srf	0.02	N/m	303.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures
srf	0.02	N/m	293.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures

e of	0.00	N1/m	040.45	Th a was ! - ::	
srf	0.02	N/m	318.15	The molar surface Gibbs energy and its application to the binary mixtures of	
				N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	313.15	The molar surface Gibbs energy and its application to the binary mixtures of	
				N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	308.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium	
				dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	303.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	298.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	293.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	

a t	0.00	NI/on	000.45	The weeks	
srf	0.02	N/m	288.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	328.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.02	N/m	318.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.02	N/m	308.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.02	N/m	298.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.02	N/m	288.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.02	N/m	318.15	Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water	

srf	0.02	N/m	308.15	Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water	
srf	0.02	N/m	298.15	Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water	
srf	0.02	N/m	288.15	Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water	
srf	0.02	N/m	293.20	KDB	
srf	0.02	N/m	308.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.02	N/m	303.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.02	N/m	298.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.02	N/m	293.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.02	N/m	288.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	

srf	0.02	N/m	283.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.02	N/m	278.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.02	N/m	313.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	360.86	K	69.79	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	362.60	K	74.92	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	364.11	K	79.60	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures

tbp	365.70	K	84.80	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	367.14	K	89.78	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	368.52	K	94.77	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	369.82	К	99.70	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	371.30	K	105.14	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	372.42	K	110.10	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	374.88	K	120.75	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	

tbp	373.15	K	113.19	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	376.91	К	130.10	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	384.57	К	171.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	389.14	К	199.90	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	393.15	К	228.50	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	393.35	К	229.90	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	397.13	К	260.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	

tbp	400.57	K	290.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	402.71	K	310.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	404.74	К	330.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	406.69	К	350.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	409.43	К	380.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	411.18	К	400.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	412.84	К	420.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	

tbp	415.23	K	450.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	417.52	К	480.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	418.96	К	500.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	420.37	К	520.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	421.06	К	530.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	422.41	К	550.00	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	423.16	К	561.50	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.58913e+01
Coeff. B	-3.49716e+03
Coeff. C	-6.00740e+01
Temperature range (K), min.	284.20
Temperature range (K), max.	536.78

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.17170e+01
Coeff. B	-8.00269e+03
Coeff. C	-7.70223e+00
Coeff. D	3.95045e-07
Temperature range (K), min.	146.95
Temperature range (K), max.	536.71

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
298.15	81.50	0.0019430
Reference		https://www.doi.org/10.1016/j.jct.2016.12.036

Pressure, kPa	Temperature, K	Viscosity, Pa*s
100.00	293.15	0.0022040
100.00	313.15	0.0013830

100.00	333.15	0.0009130
100.00	353.15	0.0006300
20000.00	293.15	0.0025450
20000.00	313.15	0.0016030
20000.00	333.15	0.0010860
20000.00	353.15	0.0007340
40000.00	293.15	0.0028550
40000.00	313.15	0.0018710
40000.00	333.15	0.0012630
40000.00	353.15	0.0008450
60000.00	293.15	0.0031910
60000.00	313.15	0.0021460
60000.00	333.15	0.0014390
60000.00	353.15	0.0009620
80000.00	293.15	0.0036130
80000.00	313.15	0.0024010
80000.00	333.15	0.0016140
80000.00	353.15	0.0010920
100000.00	293.15	0.0041490
100000.00	313.15	0.0026180
100000.00	333.15	0.0017860
100000.00	353.15	0.0012420

Reference https://www.doi.org/10.1021/je9002477

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
100.00	298.15	1.3836
Reference		https://www.doi.org/10.1016/j.jct.2016.01.012

Temperature, K	Pressure, kPa	Refractive index (Na D-line)
294.15	100.00	1.3846

Reference

https://www.doi.org/10.1021/acs.jced.5b01024

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	293.15	803.5
100.00	303.15	795.2
100.00	313.15	787.6
100.00	323.15	779.3
100.00	333.15	770.5
100.00	343.15	761.0
100.00	353.15	752.2
5000.00	293.15	807.3
5000.00	303.15	799.2
5000.00	313.15	791.9
5000.00	323.15	783.7
5000.00	333.15	775.4
5000.00	343.15	766.0
5000.00	353.15	757.6
10000.00	293.15	810.9
10000.00	303.15	802.9
10000.00	313.15	795.9
10000.00	323.15	788.0
10000.00	333.15	780.0
10000.00	343.15	770.7
10000.00	353.15	762.7
15000.00	293.15	814.3
15000.00	303.15	806.7
15000.00	313.15	799.7
15000.00	323.15	792.0
15000.00	333.15	784.3
15000.00	343.15	775.3
15000.00	353.15	767.6
20000.00	293.15	817.7
20000.00	303.15	810.1
20000.00	313.15	803.3
20000.00	323.15	795.8
20000.00	333.15	788.4
20000.00	343.15	779.6
20000.00	353.15	772.1
25000.00	293.15	821.0
25000.00	303.15	813.6
25000.00	313.15	806.8
25000.00	323.15	799.7

25000.00	333.15	792.0
25000.00	343.15	783.7
25000.00	353.15	776.3
30000.00	293.15	824.0
30000.00	303.15	816.7
30000.00	313.15	810.2
30000.00	323.15	803.2
30000.00	333.15	795.7
30000.00	343.15	787.6
30000.00	353.15	780.4
35000.00	293.15	827.0
35000.00	303.15	819.8
35000.00	313.15	813.5
35000.00	323.15	806.6
35000.00	333.15	799.2
35000.00	343.15	791.2
35000.00	353.15	784.1
40000.00	293.15	829.9
40000.00	303.15	822.9
40000.00	313.15	816.6
40000.00	323.15	809.9
40000.00	333.15	802.6
40000.00	343.15	794.7
40000.00	353.15	787.7
45000.00	293.15	832.7
45000.00	303.15	825.8
45000.00	313.15	819.7
45000.00	323.15	813.0
45000.00	333.15	805.9
45000.00	343.15	798.3
45000.00	353.15	791.8
50000.00	293.15	835.4
50000.00	303.15	828.8
50000.00	313.15	822.7
50000.00	323.15	816.1
50000.00	333.15	809.1
50000.00	343.15	801.6
50000.00	353.15	795.1
55000.00	293.15	838.1
55000.00	303.15	831.6
55000.00	313.15	825.5
55000.00	323.15	819.0
55000.00	333.15	812.3
55000.00	343.15	804.6

55000.00	353.15	798.5
60000.00	293.15	840.7
60000.00	303.15	834.2
60000.00	313.15	828.3
60000.00	323.15	821.8
60000.00	333.15	815.2
60000.00	343.15	807.7
60000.00	353.15	801.7
65000.00	293.15	843.2
65000.00	303.15	837.0
 65000.00	313.15	831.0
65000.00	323.15	824.6
65000.00	333.15	818.1
65000.00	343.15	810.6
 65000.00	353.15	805.0

https://www.doi.org/10.1016/j.fluid.2006.05.032

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	110.00	799.54
298.15	5270.00	803.6
298.15	9870.00	807.01
298.15	14700.00	810.46
298.15	20530.00	814.46
298.15	25030.00	817.44
298.15	30100.00	820.7
298.15	35010.00	823.76
298.15	39560.00	826.52
323.15	590.00	779.78
323.15	5940.00	784.71
323.15	10600.00	788.81
323.15	16000.00	793.2
323.15	20640.00	796.73
323.15	24880.00	799.83
323.15	30800.00	803.99
323.15	35220.00	807.01
323.15	39790.00	810.02
348.15	140.00	757.11
348.15	5170.00	762.68
348.15	10260.00	767.5
348.15	15790.00	772.52
348.15	20560.00	776.41
348.15	24810.00	780.32

348.15	29300.00	784.09
348.15	35560.00	789.01
348.15	39950.00	792.23
373.15	360.00	733.24
373.15	5480.00	739.29
373.15	10290.00	745.11
373.15	15700.00	750.9
373.15	19960.00	755.19
373.15	25170.00	760.17
373.15	30510.00	765.02
373.15	35920.00	769.7
373.15	39780.00	772.91
398.15	620.00	705.55
398.15	5670.00	713.23
398.15	10620.00	720.1
398.15	15580.00	726.46
398.15	20350.00	732.35
398.15	25090.00	737.77
398.15	31150.00	744.07
398.15	35410.00	748.41
398.15	39390.00	752.32
423.15	1570.00	674.63
423.15	5870.00	682.79
423.15	10160.00	690.93
423.15	15320.00	699.32
423.15	20500.00	707.2
423.15	26280.00	715.01
423.15	31600.00	721.36
423.15	35780.00	726.03
423.15	39700.00	730.17

https://www.doi.org/10.1016/j.fluid.2008.03.009

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	100.00	803.8
293.15	10000.00	811.3
293.15	20000.00	818.1
293.15	30000.00	824.4
293.15	40000.00	830.0
293.15	50000.00	835.6
293.15	60000.00	841.0
293.15	70000.00	845.9
293.15	8000.00	850.7

293.15	90000.00	855.2
293.15	100000.00	859.6
293.15	110000.00	863.7
293.15	120000.00	867.8
293.15	130000.00	871.6
293.15	140000.00	875.3
313.15	100.00	787.1
313.15	10000.00	795.5
313.15	20000.00	803.0
313.15	30000.00	810.0
313.15	40000.00	816.4
313.15	50000.00	822.3
313.15	60000.00	827.9
313.15	70000.00	833.2
313.15	80000.00	838.3
313.15	90000.00	843.0
313.15	100000.00	847.9
313.15	110000.00	852.3
313.15	120000.00	856.6
313.15	130000.00	860.7
313.15	140000.00	864.6
333.15	100.00	769.9
333.15	10000.00	780.0
333.15	20000.00	788.3
333.15	30000.00	795.7
333.15	40000.00	802.5
333.15	50000.00	809.0
333.15	60000.00	815.0
333.15	70000.00	820.6
333.15	80000.00	826.2
333.15	90000.00	831.2
333.15	100000.00	836.3
333.15	110000.00	840.9
333.15	120000.00	845.3
333.15	130000.00	849.6
333.15	140000.00	853.6
353.15	100.00	752.0
353.15	10000.00	762.5
353.15	20000.00	771.8
353.15	30000.00	780.2
353.15	40000.00	787.9
353.15	50000.00	795.0
353.15	60000.00	801.4
353.15	70000.00	807.7

353.15	80000.00	813.4
353.15	90000.00	818.7
353.15	100000.00	823.8
353.15	110000.00	828.8
353.15	120000.00	833.5
353.15	130000.00	837.9
353.15	140000.00	842.1

https://www.doi.org/10.1016/j.fluid.2013.11.031

Temperature, K	Pressure, kPa	Mass density, kg/m3
278.15	100.00	815.7
278.15	1000.00	816.4
278.15	5000.00	819.4
278.15	10000.00	822.8
278.15	15000.00	826.2
278.15	20000.00	829.4
278.15	25000.00	832.6
278.15	30000.00	835.7
278.15	35000.00	838.6
278.15	40000.00	841.5
278.15	45000.00	844.3
278.15	50000.00	847.1
278.15	55000.00	849.7
278.15	60000.00	852.1
288.15	100.00	807.8
288.15	1000.00	808.5
288.15	5000.00	811.6
288.15	10000.00	815.3
288.15	15000.00	818.9
288.15	20000.00	822.3
288.15	25000.00	825.5
288.15	30000.00	828.7
288.15	35000.00	831.8
288.15	40000.00	834.7
288.15	45000.00	837.6
288.15	50000.00	840.4
288.15	55000.00	843.1
288.15	60000.00	845.6
298.15	100.00	799.8
298.15	1000.00	800.5
298.15	5000.00	803.8
298.15	10000.00	807.6

298.15	15000.00	811.4
298.15	20000.00	814.9
298.15	25000.00	818.3
298.15	30000.00	821.6
298.15	35000.00	824.8
298.15	40000.00	827.9
298.15	45000.00	830.9
298.15	50000.00	833.8
298.15	55000.00	836.6
298.15	60000.00	839.2
308.15	100.00	791.6
308.15	1000.00	792.4
308.15	5000.00	795.8
308.15	10000.00	800.1
308.15	15000.00	803.8
308.15	20000.00	807.5
308.15	25000.00	811.1
308.15	30000.00	814.5
308.15	35000.00	817.8
308.15	40000.00	821.0
308.15	45000.00	824.1
308.15	50000.00	827.1
308.15	55000.00	830.0
308.15	60000.00	832.7
318.15	100.00	783.4
318.15	1000.00	784.2
318.15	5000.00	787.9
318.15	10000.00	792.2
318.15	15000.00	796.3
318.15	20000.00	800.2
318.15	25000.00	803.9
318.15	30000.00	807.5
318.15	35000.00	810.9
318.15	40000.00	814.2
318.15	45000.00	817.5
318.15	50000.00	820.5
318.15	55000.00	823.6
318.15	60000.00	825.8
328.15	100.00	775.0
328.15	1000.00	775.9
328.15	5000.00	779.7
328.15	10000.00	784.2
328.15	15000.00	788.5
328.15	20000.00	792.6

222.15	05000	700 5
328.15	25000.00	796.5
328.15	30000.00	800.2
328.15 328.15	35000.00 40000.00	803.8
		807.2
328.15	45000.00	810.6
328.15	50000.00	813.8
328.15 328.15	55000.00 60000.00	816.9 819.8
338.15	100.00	766.3
338.15	1000.00	767.2
338.15	5000.00	771.3
338.15	10000.00	776.1
338.15	15000.00	780.6
338.15	20000.00	784.9
338.15	25000.00	789.0
338.15	30000.00	792.9
338.15	35000.00	796.6
338.15	40000.00	800.2
338.15	45000.00	803.7
338.15	50000.00	807.0
338.15	55000.00	810.3
338.15	60000.00	813.4
348.15	100.00	757.2
348.15	1000.00	758.3
348.15	5000.00	762.6
348.15	10000.00	767.7
348.15	15000.00	772.5
348.15	20000.00	777.0
348.15	25000.00	781.3
348.15	30000.00	785.4
348.15	35000.00	789.3
348.15	40000.00	793.0
348.15	45000.00	796.6
348.15	50000.00	800.1
348.15	55000.00	803.5
348.15	60000.00	806.5
358.15	100.00	747.7
358.15	1000.00	748.8
358.15	5000.00	753.5
358.15	10000.00	758.8
358.15	15000.00	764.0
358.15	20000.00	768.7
358.15	25000.00	773.3
358.15	30000.00	777.5

358.15	35000.00	781.6
358.15	40000.00	785.5
358.15	45000.00	789.3
358.15	50000.00	792.9
358.15	55000.00	796.4
358.15	60000.00	799.6

https://www.doi.org/10.1016/j.jct.2011.10.023

Temperature, K	Pressure, kPa	Mass density, kg/m3
303.20	1000.00	796.7
303.20	2000.00	797.5
303.20	3000.00	798.3
303.20	4000.00	799.2
303.20	5000.00	799.9
303.20	6000.00	800.7
303.20	7000.00	801.5
303.20	8000.00	802.3
303.20	9000.00	803.1
303.20	10000.00	803.9
323.20	1000.00	779.0
323.20	2000.00	779.9
323.20	3000.00	780.8
323.20	4000.00	781.7
323.20	5000.00	782.6
323.20	6000.00	783.5
323.20	7000.00	784.4
323.20	8000.00	785.3
323.20	9000.00	786.2
323.20	10000.00	787.0

Reference

https://www.doi.org/10.1016/j.jct.2012.10.002

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	100.00	803.85
Reference		https://www.doi.org/10.1016/j.jct.2016.12.011

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	100.00	799.66

Temperature, K	Pressure, kPa	Mass density, kg/m3
288.15	100.00	807.62
288.15	5000.00	811.32
288.15	10000.00	814.7
288.15	15000.00	817.95
288.15	20000.00	821.27
288.15	25000.00	824.24
288.15	30000.00	827.24
288.15	35000.00	830.04
288.15	40000.00	832.73
293.15	100.00	803.57
293.15	5000.00	807.24
293.15	10000.00	810.8
293.15	15000.00	814.22
293.15	20000.00	817.46
293.15	25000.00	820.74
293.15	30000.00	823.7
293.15	35000.00	826.5
293.15	40000.00	829.09
298.15	100.00	799.61
298.15	5000.00	803.49
298.15	10000.00	807.15
298.15	15000.00	810.5
298.15	20000.00	813.78
298.15	25000.00	816.92
298.15	30000.00	820.04
298.15	35000.00	822.87
298.15	40000.00	825.81
303.15	100.00	795.62
303.15	5000.00	799.57
303.15	10000.00	803.13
303.15	15000.00	806.69
303.15	20000.00	810.14
303.15	25000.00	813.48
303.15	30000.00	816.64
303.15	35000.00	819.75
303.15	40000.00	822.6
308.15	100.00	791.31
308.15	5000.00	795.4
308.15	10000.00	799.21

308.15	15000.00	802.79
308.15	20000.00	806.37
308.15	25000.00	809.72
308.15	30000.00	813.03
308.15	35000.00	816.12
308.15	40000.00	819.06

https://www.doi.org/10.1016/j.jct.2019.02.011

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	81.50	799.54
Reference	h	ttps://www.doi.org/10.1021/acs.jced.5b00162

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	100.00	803.17
293.15	5000.00	807.25
293.15	10000.00	811.02
293.15	15000.00	814.54
293.15	20000.00	817.87
293.15	25000.00	821.05
293.15	30000.00	824.15
293.15	35000.00	827.21
303.15	100.00	795.52
303.15	5000.00	799.83
303.15	10000.00	803.8
303.15	15000.00	807.49
303.15	20000.00	810.95
303.15	25000.00	814.23
303.15	30000.00	817.38
303.15	35000.00	820.48
313.15	100.00	787.3
313.15	5000.00	791.61
313.15	10000.00	795.67
313.15	15000.00	799.52
313.15	20000.00	803.19
313.15	25000.00	806.72
313.15	30000.00	810.15
313.15	35000.00	813.5
	1.11	// /: //0./00// : /0/00075

Reference

https://www.doi.org/10.1021/acs.jced.8b00975

Temperature, K	Pressure, kPa	Mass density, kg/m3
303.15	100.00	795.6
303.15	5000.00	799.5
303.15	10000.00	803.4
303.15	15000.00	807.0
303.15	20000.00	810.5
303.15	25000.00	813.9
303.15	30000.00	817.2
313.15	100.00	787.6
313.15	5000.00	791.6
313.15	10000.00	795.7
313.15	15000.00	799.5
313.15	20000.00	803.2
313.15	25000.00	806.7
313.15	30000.00	810.1
323.15	100.00	779.1
323.15	5000.00	783.4
323.15	10000.00	787.7
323.15	15000.00	791.7
323.15	20000.00	795.6
323.15	25000.00	799.3
323.15	30000.00	802.9
333.15	100.00	770.6
333.15	5000.00	775.1
333.15	10000.00	779.6
333.15	15000.00	783.9
333.15	20000.00	787.9
333.15	25000.00	791.8
333.15	30000.00	795.5

Reference https://www.doi.org/10.1021/je049685z

Temperature, K	Pressure, kPa	Mass density, kg/m3
283.15	100.00	810.9
283.15	5000.00	814.7
283.15	10000.00	818.1
283.15	15000.00	821.7
283.15	20000.00	824.9
298.15	100.00	799.0
298.15	5000.00	803.0
298.15	10000.00	806.9
298.15	15000.00	810.6
298.15	20000.00	814.1

313.15	100.00	786.8
313.15	5000.00	791.2
313.15	10000.00	795.3
313.15	15000.00	799.3
313.15	20000.00	803.1
328.15	100.00	774.5
328.15	5000.00	779.1
328.15	10000.00	783.7
328.15	15000.00	787.8
328.15	20000.00	791.9

https://www.doi.org/10.1021/je100581m

Speed of sound, m/s

Temperature, K - Liquid	Pressure, kPa - Liquid	Speed of sound, m/s - Liquid
253.15	102.00	1368.034
253.15	5133.00	1393.016
253.15	10109.00	1416.633
253.15	15198.00	1439.865
253.15	20092.00	1461.442
253.15	25341.00	1483.73
253.15	30423.00	1504.606
273.15	101.00	1293.525
273.15	5181.00	1320.802
273.15	10163.00	1346.251
273.15	15287.00	1371.412
273.15	20261.00	1394.803
273.15	25076.00	1416.612
273.15	30164.00	1438.924
293.15	105.00	1222.539
293.15	5042.00	1251.176
293.15	10141.00	1279.332
293.15	15272.00	1306.262
293.15	20136.00	1330.72
293.15	25068.00	1354.567
293.15	30231.00	1378.484
313.15	108.00	1154.108
313.15	5139.00	1185.752
313.15	10136.00	1215.403
313.15	15128.00	1243.591

313.15	20151.00	1270.557
313.15	25136.00	1296.129
313.01	30237.00	1321.177
333.15	101.00	1086.768
333.15	5018.00	1120.458
333.15	10050.00	1152.816
333.15	15186.00	1183.885
333.15	20183.00	1212.543
333.15	25121.00	1239.487
333.15	30028.00	1265.042
353.15	104.00	1018.903
353.15	5034.00	1055.962
353.15	10009.00	1090.768
353.15	15132.00	1124.22
353.15	20099.00	1154.783
353.15	25054.00	1183.626
353.15	30493.00	1213.605

Reference

https://www.doi.org/10.1016/j.jct.2015.10.006

Temperature, K	Pressure, kPa	Speed of sound, m/s
249.99	100.00	1382.6
218.20	102.00	1512.0
299.97	138.00	1199.6
249.99	177.00	1383.0
350.05	270.00	1030.8
400.05	307.00	847.6
218.26	875.00	1515.2
400.05	947.00	854.9
350.07	997.00	1036.3
450.12	1081.00	636.4
249.99	1128.00	1387.7
299.96	1174.00	1206.0
350.07	2073.00	1044.4
218.21	2111.00	1520.8
400.05	2155.00	867.0
450.12	2181.00	653.9
250.01	2296.00	1393.4
299.96	2560.00	1214.3
500.31	4798.00	438.4
400.03	4879.00	893.3
218.26	5018.00	1533.1
299.98	5042.00	1228.8

450.11	5172.00	697.0
350.07	5244.00	1067.5
249.97	5362.00	1408.3
249.94	9322.00	1427.1
218.32	9465.00	1551.0
299.98	9515.00	1254.1
500.32	9558.00	542.3
350.06	9697.00	1098.3
400.07	9768.00	936.6
450.11	9782.00	754.2
218.35	19810.00	1591.6
299.96	19849.00	1308.7
500.32	19968.00	690.2
400.07	19974.00	1015.3
350.08	20259.00	1164.3
450.10	20385.00	860.0
249.90	20903.00	1478.7
400.06	27823.00	1068.3
218.34	29071.00	1626.6
450.11	30113.00	938.6
399.98	30784.00	1087.2
500.31	30851.00	799.1
299.96	39521.00	1400.6
249.93	39564.00	1553.9
500.28	39800.00	870.0
450.13	40189.00	1008.7
399.96	40232.00	1142.9
350.04	40537.00	1273.0
218.31	49499.00	1698.1
299.96	49960.00	1444.6
450.13	50091.00	1069.5
399.98	50284.00	1196.8
500.30	50346.00	946.6
350.03	52186.00	1327.6
249.94	59448.00	1625.8
399.97	59616.00	1242.9
500.31	60509.00	1009.7
350.04	60588.00	1364.3
218.32	61345.00	1736.4
500.31	77533.00	1102.4
Reference	https://	://www.doi.org/10.1021/acs.icad.8h00038

Reference

https://www.doi.org/10.1021/acs.jced.8b00938

100.00	293.19	1222.98
100.00	298.12	1205.93
100.00	303.12	1188.72
100.00	308.20	1171.37
100.00	313.17	
100.00	318.20	1154.51
		1137.48
15200.00	293.12	1308.47
15200.00	298.11	1292.86
15200.00	303.14	1277.31
15200.00	308.20	1263.59
15200.00	313.16	1248.7
30400.00	293.22	1379.93
30400.00	298.15	1365.6
30400.00	303.24	1350.89
30400.00	308.13	1336.85
30400.00	313.16	1322.58
30400.00	318.16	1308.73
45590.00	293.21	1444.18
45590.00	298.14	1430.65
45590.00	303.13	1417.04
45590.00	308.13	1403.65
45590.00	313.16	1390.41
45590.00	318.14	1377.4
60790.00	293.21	1502.84
60790.00	298.14	1490.03
60790.00	303.20	1477.02
60790.00	308.13	1464.46
60790.00	313.17	1451.85
60790.00	318.12	1439.64
75990.00	293.20	1557.22
75990.00	298.14	1544.87
75990.00	303.15	1532.53
75990.00	308.12	1520.4
75990.00	313.16	1508.49
75990.00	318.12	1496.85
91190.00	293.20	1607.57
91190.00	298.14	1595.85
91190.00	303.17	1584.03
91190.00	308.20	1572.36
91190.00	313.15	1561.08
91190.00	318.12	1549.89
101320.00	293.18	1639.47
101320.00	298.14	1628.0
101320.00	303.17	1616.49

101320.00	308.19	1605.09
101320.00	313.15	1594.14
101320.00	318.11	1583.33
111450.00	293.17	1669.92
111450.00	298.14	1658.78
111450.00	303.19	1647.55
111450.00	308.16	1636.69
111450.00	313.22	1625.76
111450.00	318.17	1615.27
121580.00	293.16	1699.12
121580.00	298.14	1688.24
121580.00	303.18	1677.36
121580.00	308.11	1666.98
121580.00	313.17	1656.22
121580.00	318.17	1645.95
- ·		1 // 1 1 // 100 / 100 / 100 / 100

Reference https://www.doi.org/10.1021/je030136n

Molar volume, m3/mol

Temperature, K - Liquid	Pressure, kPa - Liquid	Molar volume, m3/mol - Liquid
298.15	100.00	0.0001
298.15	10000.00	0.0001
313.15	100.00	0.0001
313.15	10000.00	0.0001
328.15	100.00	0.0001
328.15	10000.00	0.0001

Reference *https://www.doi.org/10.1021/je800334m*

Molar heat capacity at constant volume, J/K/mol

Temperature, K - Liquid	Pressure, kPa - Liquid	Molar heat capacity at constant volume, J/K/mol - Liquid
314.15	4353.00	130.947
315.15	5217.00	131.0071
316.15	6081.00	131.7283
317.15	6946.00	132.6297

318.15	7808.00	133.2307
319.15	8666.00	133.2908
320.15	9526.00	133.6513
321.15	10392.00	134.6128
322.15	11260.00	134.9133
323.15	12130.00	135.8147
324.15	13000.00	135.8748
325.15	13871.00	136.3556
326.15	14740.00	137.4974
327.15	15599.00	136.9566
328.15	16461.00	139.1801
329.15	17326.00	138.519
330.15	18193.00	138.6993
331.15	19066.00	139.9012
332.15	19945.00	139.6007
333.15	20825.00	140.1416
334.15	21705.00	140.8026
335.15	22585.00	141.4637
336.15	23467.00	141.644
337.15	24350.00	141.2834
338.15	25234.00	142.5454
339.15	26119.00	142.7858
340.15	27006.00	143.7473
341.15	27893.00	143.0862
342.15	28774.00	145.0093
343.15	3874.00	148.615
343.15	29657.00	143.9276
344.15	4675.00	146.9924
345.15	5478.00	149.3361
346.15	6283.00	148.1943
347.15	7088.00	149.5164
348.15	7896.00	148.8554
349.15	8704.00	149.9972
350.15	9514.00	150.7784
351.15	10326.00	149.9972
352.15	11138.00	151.3193
353.15	11953.00	151.7399
354.15	12769.00	152.4611
355.15	13587.00	151.6798
356.15	14406.00	152.5813
357.15	15227.00	152.9418
358.15	16050.00	153.4827
359.15	16870.00	153.4226
360.15	17670.00	155.3456

361.15	18489.00	154.1437
362.15	19314.00	155.5259
363.15	20144.00	154.9851
364.15	20977.00	154.9851
365.15	21811.00	155.4057
366.15	22647.00	156.6677
367.15	23484.00	156.0067
368.15	24324.00	156.0668
369.15	25165.00	156.9682
370.15	26008.00	156.3071
371.15	26853.00	157.0884
372.15	2876.00	161.3551
372.15	27699.00	156.5475
373.15	3622.00	161.9561
373.15	28548.00	157.5691
374.15	4369.00	162.1965
374.15	29398.00	157.8095
375.15	5118.00	162.4969
376.15	5868.00	163.158
377.15	6620.00	163.158
378.15	7374.00	162.8575
379.15	8129.00	163.2181
380.15	8887.00	163.6387
381.15	9646.00	163.7589
382.15	10407.00	162.8575
383.15	11170.00	164.6003
384.15	11935.00	162.7373
385.15	12702.00	164.4801
386.15	13470.00	163.819
387.15	14240.00	164.2397
388.15	15013.00	164.1796
389.15	15786.00	164.2998
390.15	16562.00	164.2397
391.15	17338.00	164.8406
392.15	18116.00	163.4585
393.15	18896.00	164.3599
394.15	19677.00	164.2998
395.15	20459.00	164.3599
396.15	21244.00	164.5402
397.15	22030.00	164.6604
398.15	22817.00	164.7204
399.15	23606.00	164.8406
400.15	24395.00	163.9993
401.15	25186.00	164.3599

402.15	25978.00	164.2397
403.15	26772.00	163.7589
404.15	27566.00	163.819
405.15	28362.00	163.0979
406.15	29159.00	163.5786
414.15	10151.00	171.2708
415.15	10841.00	173.7948
416.15	11533.00	172.5929
417.15	12227.00	172.7732
418.15	12922.00	173.0737
419.15	13618.00	171.6314
420.15	14316.00	172.5328
421.15	15015.00	172.2924
422.15	15715.00	172.052
423.15	16417.00	172.3525
424.15	17119.00	172.4126
427.15	19232.00	172.1121
428.15	19938.00	171.4511
429.15	20645.00	171.4511
430.15	21353.00	172.052
- ·	<u> </u>	1 :: // 1 1 // 201/1 201/1

Reference

https://www.doi.org/10.1021/je034101z

Sources

(0.1 and 10.0)MPa:

Tonno Lines and Waterin https://www.doi.org/10.1021/je2000233

Tologopoly Trapan អ្នក នៃប្រើប្រាស់ Tologopoly and Tologopoly +1-propanol, and +2-propanol) at T = (298.15, 313.15 and 328.15)K and p =

Liquid Densities and Speed of Sound for lonic Liquid (2-HEAA and 2-HDEAA) Activis of optificing as a long rate population of sure single and speed of Sound activity of optificing as a long rate population of sure single and sure single an

Determination and correlation of solubility of N-methyl-3,4,5-Minasusynezuserinforpelation of the Solubility of N-methyl-3,4,5-Minasusynezuserinforpelation of solubility of Misspristime is solubility of Misspristime is solubility of the Solubility of Sol Determination and correlation of solubility of N-methyl-3,4,5 Measusments for 1998 Best and the support of the su Binary Mixtures of n-Octane + Ethanol, Experimental measurementanand Mage Handle and Anger And Anger And Anger And Anger An Mean path to a state of the control Solubility of 5-Fluorouracil in Pure and Bolubility and Bensity of 2,6-Dimethylnaphthalene in C1-C7 sagton of Alkanols limiting activity coefficients data using ទីស្ត្រីស្ត្ Treszczanowicz-Benson association model:

https://www.doi.org/10.1016/j.fluid.2017.04.008 https://www.doi.org/10.1021/acs.jced.8b01062 https://www.doi.org/10.1021/je300533r https://www.doi.org/10.1021/acs.jced.7b00615 https://www.doi.org/10.1016/j.fluid.2015.07.012 https://www.doi.org/10.1021/je100998r https://www.doi.org/10.1016/j.fluid.2010.08.006 https://www.doi.org/10.1021/je400625f https://www.doi.org/10.1021/je050175u https://www.doi.org/10.1021/je100022w https://www.doi.org/10.1021/acs.jced.9b00220 https://www.doi.org/10.1016/j.fluid.2010.06.004 https://www.doi.org/10.1021/je2011314 https://www.doi.org/10.1021/acs.jced.8b00578 https://www.doi.org/10.1016/j.fluid.2017.09.005 https://www.doi.org/10.1016/j.jct.2016.06.010 https://www.doi.org/10.1021/je800334m https://www.doi.org/10.1021/acs.jced.9b00100 https://www.doi.org/10.1021/acs.jced.7b00549 https://www.doi.org/10.1016/j.jct.2012.10.002 https://www.doi.org/10.1021/je300980k https://www.doi.org/10.1021/je400813d https://www.doi.org/10.1021/acs.jced.8b00181 https://www.doi.org/10.1016/j.jct.2013.05.011 https://www.doi.org/10.1016/j.fluid.2019.112263 https://www.doi.org/10.1021/acs.jced.7b00316 https://www.doi.org/10.1016/j.fluid.2013.10.029 https://www.doi.org/10.1021/acs.jced.8b01014 https://www.doi.org/10.1021/acs.jced.8b00425 https://www.doi.org/10.1021/je049967z https://www.doi.org/10.1021/je034101z and Their Aqueous Mixtures: Separation of binary mixtures based on https://www.doi.org/10.1016/j.fluid.2017.12.029 https://www.doi.org/10.1016/j.jct.2005.11.008 https://www.doi.org/10.1016/j.fluid.2017.04.005 https://www.doi.org/10.1016/j.fluid.2017.05.012 https://www.doi.org/10.1016/j.fluid.2012.02.011 https://www.doi.org/10.1016/j.tca.2013.02.010 https://www.doi.org/10.1016/j.fluid.2012.06.012

Experimental densities and derived thermodynamic properties of liquid Experimental Measurement and Modeling of Vapor-Liquid Equilibrium Excess rentary elustes, wases molar employees and breastive index deviations and breastive index deviations and breast indeterment for Banary of breast indeterment of indeterment of Breast inde

Densities, speeds of sound, and refractive indices for binary mixtures of Modaty Accesses the that the property of the control o minthers of the ingular partial at T EVELORITE PARTIES AND THE PROPERTY OF TH Solubility of Tetramethylpyrazine in which will be supported by the support of th The months of the control of the con Haddris Jaw Hamis avapor inquid the minody hamis and selling of four interspectations of the minody hamis and selling of the s ternary phase diagrams of 1-(3-nitrophenyl)ethanone + 1-(4-nitrophenyl)ethanone in different

solvents:

Experimental densities and derived thermodynamic properties of liquid Mespara-gray applications of the properties of liquid Mespara-gray applications of the properties of the https://www.doi.org/10.1016/j.fluid.2008.03.009 https://www.doi.org/10.1016/j.jct.2016.03.024 https://www.doi.org/10.1021/acs.jced.5b00803 https://www.doi.org/10.1016/j.fluid.2018.04.025 https://www.doi.org/10.1016/j.fluid.2018.03.009 https://www.doi.org/10.1021/acs.jced.9b00232 https://www.doi.org/10.1021/acs.jced.9b00065 https://www.doi.org/10.1016/j.fluid.2007.04.023 https://www.doi.org/10.1021/acs.jced.6b00264 https://www.doi.org/10.1021/acs.jced.5b01015 https://www.doi.org/10.1016/j.fluid.2012.06.031 https://www.doi.org/10.1021/je060496l https://www.doi.org/10.1016/j.jct.2008.09.004 https://www.doi.org/10.1016/j.tca.2005.06.011 https://www.doi.org/10.1016/j.fluid.2018.07.024 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.jct.2012.08.030 https://www.doi.org/10.1016/j.jct.2006.08.001 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/acs.jced.8b00888 https://www.doi.org/10.1016/j.fluid.2008.09.005 https://www.doi.org/10.1021/acs.jced.8b01080 https://www.doi.org/10.1016/j.fluid.2005.01.013 https://www.doi.org/10.1016/j.jct.2016.04.018 https://www.doi.org/10.1021/je101165m https://www.doi.org/10.1016/j.jct.2019.03.028

aqueous alcohol solutions at 298.15K: Solubility of Carbamazepine (Form III) https://www.doi.org/10.1021/je8002157 in Different Solvents from (275 to 343) Measurement and Correlation for https://www.doi.org/10.1021/je101072d Solubility of Praisities agaities of Bishas/epoxypitog/esterodei.org/10.1021/je800930v Mixtures of Cyclopropanecarboxylic National Praisities of Cyclopropanecarboxylic National Praisities of Cyclopropanecarboxylic National Praisities of Archives Server in Hers://www.doi.org/10.1021/je400253e https://www.doi.org/10.1021/je400253e https olubility of https://www.doi.org/10.1007/s10765-014-1740-z http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/acs.jced.5b00360 Mixtures Containing Isopropyl Acetate Angraneanogeneity in solutions of the highest containing Isopropyl Acetate Angraneanogeneity in solutions of the highest contained by the https://www.doi.org/10.1016/j.jct.2018.06.006 https://www.doi.org/10.1021/je9008188 https://www.doi.org/10.1021/acs.jced.9b00243 Several Pure Solvents: Measurement,
Cherenadynamic Sconnetties of Mixtures
Gaptaining lonic Liquids: Activity
Gaptaining lonic Liquids: Activity lonic Liqui https://www.doi.org/10.1021/je2011659 Control of the state of the sta https://www.doi.org/10.1016/j.fluid.2015.07.017 https://www.doi.org/10.1016/j.jct.2015.06.023 https://www.doi.org/10.1016/j.tca.2019.178383 https://www.doi.org/10.1016/j.fluid.2006.02.023 authungithe experiumetida anten diffe santa personalitation in the land of th https://www.doi.org/10.1021/acs.jced.8b00948 https://www.doi.org/10.1016/j.fluid.2006.07.016 https://www.doi.org/10.1016/j.fluid.2012.06.011 Experimental determination and https://www.doi.org/10.1016/j.jct.2012.06.031 modeling of excess molar volumes, riseostrus and of excess molar volumes, riseostrus and enective ordices of the latern system of the solubility of panol, published of the solubility of panol, by the solubility of panol, by the solubility of panol, by the solubility of the crystallization.

https://www.doi.org/10.1016/j.jct.2015.04.009 https://www.doi.org/10.1016/j.jct.2015.10.006 https://www.doi.org/10.1016/j.jct.2015.10.006 https://www.doi.org/10.1016/j.jct.2015.10.006 Determination of the crystallization thermodynamics and kinetics of Vaposteisheid Franklichtig Sorwheer specification and n-Pentane Promodily repercises of System Wixtures of dier locker Registed System Wixtures of the locker Registed System Wixtures o Determination of the crystallization https://www.doi.org/10.1016/j.fluid.2011.09.028 (Vanapintilaluideannilile in Different Bullening Statement Programment Program https://www.doi.org/10.1021/je800846j https://www.doi.org/10.1021/je700029q https://www.doi.org/10.1016/j.fluid.2014.09.027 https://www.doi.org/10.1016/j.tca.2015.11.024 https://www.doi.org/10.1016/j.fluid.2006.05.032 https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.jct.2016.10.020

https://www.doi.org/10.1016/j.tca.2007.10.006

Enthalpies of dilution of formamide in

Buggan51tel3at3(363.k5 and 313.15) K:

Liquid Liquid Equilibria of Quaternary
Systems Composed of 1,3-Propanediol,
Individual Figure 1,3-Propanediol,
Individual Liquid Liquid Equilibria of Quaternary Systems Composed of 1,3-Propanediol, MEANIFEMENT and Correlation of Solubility and Dissolution of Solubility in the Solubility is solved in the Solubility in the Solubility in the Solubility is solved in the Solubility in the Solubility in the Solubility is solved in the Solubility in the Solubility in the Solubility is solved in the Solubility in the Solubil ong na sa (23) - 14 to 1993 and 1993 a https://www.doi.org/10.1016/j.jct.2013.03.022
https://www.doi.org/10.1016/j.jct.2013.03.022
https://www.doi.org/10.1016/j.jct.2013.03.022
https://www.doi.org/10.1021/je800158z
https://www.doi.org/10.1016/j.fluid.2018.07.028
https://www.doi.org/10.1016/j.fluid.2018.07.028 5-Methyl-2-(1-methylethyl)phenol in Theomodynamics of Fluconazole Solubility in Various Solvents at

Diffestent aging elegipation in

1-ethyl-3-methylimidazolium as solvent

Solubility life severament and Control Prior

https://www.doi.org/10.1021/je4010257

https://www.doi.org/10.1021/je4010257

https://www.doi.org/10.1021/je4010257

https://www.doi.org/10.1021/je4010257

https://www.doi.org/10.1021/je4010257

https://www.doi.org/10.1021/je4010257 eficosternogia Scribin in Six Organic Selvents Simple Service of Selvents Service of Selvents Service of Selvents Service of Selvents of Selvent War and Section of Solution of Imatinib Mesylate in Nine
Mensiser and sine The Solution of Solution कार्व 1891 (संग्रेम) (molar volumes) properties of aqueous 1-propanol mixtures at temperatures from 298K to 582K and

pressures up to 40MPa:

https://www.doi.org/10.1021/acs.jced.6b00472 https://www.doi.org/10.1021/acs.jced.7b00206 https://www.doi.org/10.1016/j.fluid.2015.07.053 https://www.doi.org/10.1021/acs.jced.6b00121 https://www.doi.org/10.1016/j.jct.2013.03.022 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1016/j.jct.2019.02.002 https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1016/j.fluid.2005.07.023 https://www.doi.org/10.1021/je4010257 https://www.doi.org/10.1016/j.fluid.2006.01.008 https://www.doi.org/10.1021/je1013476 https://www.doi.org/10.1021/acs.jced.7b00978 https://www.doi.org/10.1016/j.jct.2013.11.036

```
Thermodynamics and activity
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.08.030
      coefficients at infinite dilution for
  Measures on the wind of the properties of the properties of the properties for the properties for the properties for the properties for the properties of lapatinib prositions and the properties of lapatinib prositions for densitive of the properties of lapatinib prositions for densities and lapatinib properties of lapatinib prositions for densities and lapatinib properties of lapatinib prositions for densities and lapatinib properties and lapatinib prope
      Wiggs incesto and account in the cointigal https://www.doi.org/10.1016/j.jct.2014.01.025
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2019.01.005
                                                                                                                                                                                                                                                                                https://www.doi.org/10.1007/s10765-007-0204-0
                                                                                                                                                                                                                                                                                  Acid Scavenging utilizing lonic Liquids is a subject to the subject of the subjec
                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/acs.jced.9b00661
  https://www.doi.org/10.1021/je101351w
Solubilities of
Paperty Andinasting breed of xyimin bacetrow.doi.org/10.1021/je0502142
Selumin difference breed of xyimin bacetrow.doi.org/10.1021/je0502142
https://www.doi.org/10.1021/acs.jced.5b00823
https://www.doi.org/10.1021/acs.jced.5b00823
https://www.doi.org/10.1021/acs.jced.8b00937
https://www.doi.org/10.1021/acs.jced.8b00937
https://www.doi.org/10.1021/acs.jced.9b00659
https://www.doi.org/10.1021/je200457q
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je101351w
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.5b00823
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.8b00937
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.9b00659
  The solute in Solutes in Solutes in Solute in Solution of Polar Solutes in Solution of Polar Solutes in Solution of Polar Solutes in Solution of Polar Solution of Solution of Solution of the binary systems (N-butyl-4-methylpyridinium dosymechynamics at infinite dilution for Solution of Solutio
                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.9b00710
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.8b01126
https://www.doi.org/10.1021/acs.jced.6b00556
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2012.02.015
                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.6b01058
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.9b00009
    allulus) Maj Biffigrent Binary Solvent
Mixtures at Temperatures from 283.15
to 323.15 K:
```

Experimental measurements and modelling of volumetric properties, Februichive uidceskuilderivier contine t The huffeying rost betters igned phase ionic liquids for determination Salutiony ในจะการเมาตาลาดีเกากรเมาตาลาดีเกาการเมาต (278.15 to 333.15) K:

https://www.doi.org/10.1016/j.tca.2013.03.025 https://www.doi.org/10.1016/j.jfluid.2016.05.03

https://www.doi.org/10.1016/j.jfluid.2016.05.03

https://www.doi.org/10.1016/j.jct.2018.08.001

https://www.doi.org/10.1016/j.jct.2018.08.001

https://www.doi.org/10.1016/j.jct.2018.08.001

https://www.doi.org/10.1016/j.jct.2018.08.001

https://www.doi.org/10.1016/j.jct.2018.08.001

https://www.doi.org/10.1016/j.jct.2016.09.011

https://www.doi.org/10.1021/je0601513

https://www.doi.org/10.1021/je0601513

https://www.doi.org/10.1021/je500620m

https://www.doi.org/10.1016/j.jct.2012.03.028

https://www.doi.org/10.1016/j.jct.2012.03.028

https://www.doi.org/10.1016/j.jct.2012.03.028

https://www.doi.org/10.1016/j.jct.2012.03.028 https://www.doi.org/10.1016/j.fluid.2016.05.033 https://www.doi.org/10.1016/j.fluid.2012.12.031 The huffeying row a effection of separation in a queous solutions of pure solutions of sol https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1021/je700560s
https://www.doi.org/10.1021/je700560s
https://www.doi.org/10.1021/je700560s
https://www.doi.org/10.1016/j.jct.2011.11.025
https://www.doi.org/10.1016/j.jct.2011.11.025
https://www.doi.org/10.1016/j.jct.2015.11.025
https://www.doi.org/10.1016/j.jct.2015.11.025
https://www.doi.org/10.1016/j.jct.2015.11.025
https://www.doi.org/10.1016/j.jct.2015.11.025
https://www.doi.org/10.1021/je5009685
https://www.doi.org/10.1021/je5009685 https://www.doi.org/10.1016/j.fluid.2013.05.038 Selutiony ใช้อยทาดาสมาชาติกลาสมาชาติการและ https://www.doi.org/10.1021/acs.jced.8b00763 https://www.doi.org/10.1016/j.jct.2015.08.028 https://www.doi.org/10.1021/je700460w https://www.doi.org/10.1016/j.fluid.2011.03.017 https://www.doi.org/10.1021/acs.jced.5b00814 https://www.doi.org/10.1021/je800569v Solubility and Thermodynamic

Modeling of Dimethyl Terephthalate in Papes Bressura Measurementation of the Optical Properties dictions on Water, Refragament Papenal Pantation of the Optical Properties dictions on Water, Refragament Papenal Pantation on Management Papenal Pantation of the Optical Properties dictions on Water Papenal https://www.doi.org/10.1021/acs.jced.9b00658 https://www.doi.org/10.1007/s10765-010-0861-2 https://www.doi.org/10.1016/j.fluid.2015.03.036 https://www.doi.org/10.1016/j.jct.2016.01.022 https://www.doi.org/10.1016/j.jct.2009.06.023

```
Activity coefficients of the binary
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2006.03.018
       mixtures of a-cresol or p-cresol with C Schailting in alto solo or p-cresol with C
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2014.12.034
    https://www.doi.org/10.1016/j.fluid.2014.12.034
https://www.doi.org/10.1016/j.fluid.2014.12.034
https://www.doi.org/10.1016/j.jct.2013.09.007
https://www.doi.org/10.1016/j.jct.2013.09.007
https://www.doi.org/10.1016/j.jct.2013.09.007
https://www.doi.org/10.1016/j.jct.2013.09.007
https://www.doi.org/10.1016/j.jct.2013.09.007
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1021/acs.jced.7b00768
https://www.doi.org/10.1021/je800824h

https://www.doi.org/10.1021/je800824h

https://www.doi.org/10.1021/je800824h
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
      Methanol, Ethanol, 1-Propanol, 2014 in https://www.doi.org/10.1021/je100301p in https://www.doi.org/10.1021/je100301p in https://www.doi.org/10.1016/j.fluid.2008.02.005 containing alkoxypropanol and Solidaking id Equilibrium of https://www.doi.org/10.1021/acs.jced.8b01193
      ลิงให้สายหับ Equilibrium of Azacyclotridecan-2-one in 15 Pure Benetik ธรุกาศ ประชาการ สุดชายที่ สิงหายที่ สิงหายที่ สามารถ เล่า สามารถ เล่า สามารถ เล่า สุดชายที่ สุด
                                                                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2018.08.029
                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2013.08.021
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je9001637
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je800436u
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je0498762
       Hamihydrata between 286e sando369 K
Activity coefficients at infinite dilution
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2012.03.015
         and physicochemical properties for
                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2012.02.017
         Styfane sommedynamineranthologia
      Thinking some some stand water united by the control of the contro
The standard of the standard o
      andiplectrical reachus tiwishes solutions of Historian and Indiana and Indiana
                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2010.10.020
Thermodynamic Analysis of Soratenib Measurement of verrentianics equilibria (Moto and ances e Bthalpies (Moto and ances e Bthalpies (Moto and ances e Bthalpies (Moto and ances e Bthalpies) (Moto an
                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.6b00630
                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2007.06.001
```

Acoustic, volumetric and osmotic properties of binary mixtures properties of binary mixtures continuous is a bright properties of the Pure in big which the properties of the Pure in big which the properties of the Pure in big which the properties of the Pure in https://www.doi.org/10.1021/acs.jced.7b
selection bis cyclic
solution by the properties of the superior of the Solvents at Temperatures from (278 to mixtures of studynatunal volumes of binary mixtures of studynatunal negular distractions with an initial response of a control of the studynature of a control of the studyname mixtures of at infinite dilution for organic solutes Containing Ionic Liquids.4.LLE of Containing Ionic Liquids.4.LLE of BAILING MIRE AND INFORMATION OF BAILING MIRE AND INFORMATION OF BAILING AND INFORMATION OF BAIL pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine:

https://www.doi.org/10.1016/j.jct.2012.02.007 https://www.doi.org/10.1021/je300384g https://www.doi.org/10.1021/acs.jced.7b00445 https://www.doi.org/10.1021/je900888e https://www.doi.org/10.1021/acs.jced.7b00695 https://www.doi.org/10.1021/acs.jced.9b00097 https://www.doi.org/10.1021/acs.jced.9b00560 https://www.doi.org/10.1016/j.jct.2016.08.021 https://www.doi.org/10.1016/j.jct.2006.09.017 https://www.doi.org/10.1016/j.jct.2013.09.005 https://www.doi.org/10.1016/j.jct.2011.03.012 https://www.doi.org/10.1016/j.jct.2016.07.013 https://www.doi.org/10.1021/je0602723 https://www.doi.org/10.1016/j.fluid.2010.11.026 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.jct.2015.06.024 https://www.doi.org/10.1021/je901058s http://pubs.acs.org/doi/abs/10.1021/ci990307l Measurements of activity coefficients at infinite dilution for organic solutes solublity Measurements of activity coefficients at infinite dilution for organic solutes solublity Measurement of the properties of https://www.doi.org/10.1016/j.jct.2013.02.004 https://www.doi.org/10.1016/j.tca.2008.09.006 https://www.doi.org/10.1021/je050052+ https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.jct.2005.05.004 https://www.doi.org/10.1016/j.jct.2015.11.004 https://www.doi.org/10.1016/j.fluid.2007.04.030

Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.fluid.2016.02.004 of organic solvents and water in of organic solvents and water in Properties with interesting and its analysis of the properties of the https://www.doi.org/10.1016/j.fluid.2018.06.003 https://www.doi.org/10.1016/j.jct.2016.11.019 https://www.doi.org/10.1016/j.jct.2016.01.003 https://www.doi.org/10.1016/j.fluid.2009.01.011 https://www.doi.org/10.1021/je800981d https://www.doi.org/10.1016/j.jct.2016.02.020 https://www.doi.org/10.1016/j.jct.2018.08.028 https://www.doi.org/10.1016/j.fluid.2010.02.026 pidaidqidaidboomippiinibeliquid Temperson the investment of th https://www.doi.org/10.1016/j.fluid.2016.08.019 https://www.doi.org/10.1016/j.fluid.2014.06.030 https://www.doi.org/10.1016/j.fluid.2018.01.015 https://www.doi.org/10.1021/acs.jced.8b00165 Monassinepteand Financhylp putfine 2-carboxamide https://www.doi.org/10.1021/acs.jced.8b00938 https://www.doi.org/10.1021/acs.jced.8b00938 https://www.doi.org/10.1016/j.fluid.2008.05.008 https://www.doi.org/10.1016/j.fluid.2008.05.008 https://www.doi.org/10.1016/j.fluid.2008.05.008
liplating of Fserine, 1-threonine and lisoleucine in aqueous aliphatic Meanwignentiant correlation of vapor pressure of benzene and thiophene wimitentially correlation of vapor pressure of benzene and thiophene wimitentially compounds in two contential guide design from two content https://www.doi.org/10.1016/j.fluid.2008.05.008 astrado america de como de com 2-butanol + sodium sulfite + water

aqueous two phase systems:

Vapor-Liquid Equilibrium for Benzene + https://www.doi.org/10.1021/je0499519 2-Methylpentane and Allyl Alcohol + panajtasond Viscosities of https://www.doi.org/10.1021/je400968v Diaminotoluene with Water, Ethanol, Propanity-and the Burney Parison Propenty on a treemant to make the propenty of https://www.doi.org/10.1016/j.jct.2016.11.032 https://www.doi.org/10.1021/je800689a https://www.doi.org/10.1016/j.fluid.2006.07.003 https://www.doi.org/10.1016/j.fluid.2012.05.003 https://www.doi.org/10.1016/j.jct.2012.06.005 Titration Calorimeters: An evaluation of heyatramatics in the periodical participation of the https://www.doi.org/10.1016/j.fluid.2018.05.028 https://www.doi.org/10.1021/acs.jced.8b01250 https://www.doi.org/10.1016/j.jct.2010.12.019 https://www.doi.org/10.1016/j.jct.2016.08.007
the arrow of an in the lite that gas liquid
the arrow of an interest of the lite https://www.doi.org/10.1016/j.jct.2016.08.007 T-propanol/2-propanol from their Regeoins-schildord-sheppeninabatal/and imperantination wear organic scanse in the serious section with the serious section of the serious section in the serious serious section in the serious https://www.cheric.org/files/research/kdb/mol/mol819.mol Acetonitrile) Binary Solvents from Thermodynamics of risperidone and solubility in pure organic solvents: Topological investigations of the molecular species and molecular https://www.doi.org/10.1016/j.fluid.2014.04.028 https://www.doi.org/10.1016/j.tca.2009.03.014 interactions that characterize

pyrrolidin-2-one + lower alkanol

mixtures:

Thermodynamic solubility modelling, https://www.doi.org/10.1016/j.jct.2019.02.016 solvent effect and preferential solvation https://www.doi.org/10.1016/j.tca.2016.01.009 Measucement and leaves at leave the selutibits of (n-propanol, ethanol, 1993) the selection of the selection o https://www.doi.org/10.1021/acs.jced.8b00192 HOURDS IN OUR HINDERS AND HEIDEN https://www.doi.org/10.1021/acs.jced.8b01181 https://www.doi.org/10.1016/j.jct.2013.04.009 Markelina of Densities and Refractive (Markelina of Densities of Densities and Refractive (Markelina of Densities of Densities and Refractive (Markelina of Densities of Densities of Densities and Refractive (Markelina of Densities of Densi https://www.doi.org/10.1016/j.tca.2011.08.002 https://www.doi.org/10.1021/je800331n https://www.doi.org/10.1021/je401101u https://www.doi.org/10.1021/je0201491
https://www.doi.org/10.1016/j.jct.2018.03.007
https://www.doi.org/10.1016/j.jct.2018.03.007
https://www.doi.org/10.1016/j.jct.2014.01.030
https://www.doi.org/10.1016/j.jct.2013.06.002
https://www.doi.org/10.1016/j.jct.2016.10.043
https://www.doi.org/10.1021/je050134y
https://www.doi.org/10.1021/je050134y https://www.doi.org/10.1021/je020149I https://www.doi.org/10.1021/acs.jced.7b00948 https://www.doi.org/10.1021/acs.jced.9b00258 the process of the pr https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1016/j.fluid.2014.06.005 the lonic Liquid The lonic Endudum HighBitgesurie អាចក្រុម ខេត្ត Dakam សិស្ត្រាស់ ស្វាល់ មានក្រុម Solubility of 2-Chlorophenylacetic Acid https://www.doi.org/10.1021/je8004485 https://www.doi.org/10.1021/acs.jced.8b00139 in 12 Pure Solvents from T = https://www.doi.org/10.1016/j.jct.2013.03.002 https://www.doi.org/10.1021/je700426k https://www.doi.org/10.1021/acs.jced.8b00043 Solubility เลอะโลโฮ เลียาระชาเวอา ครั้ง Isoniazid in Different Pure and Binary Neterrabation องประการฝอกเลาวง ประห องโมฆ์ให้ง หรื four Bronsted-acidic ionic กัดที่เจ้าปลอยที่เอเอกมายก็เมนัด ก็หน้าเกา https://www.doi.org/10.1021/acs.jced.8b00785 https://www.doi.org/10.1016/j.jct.2013.12.031 https://www.doi.org/10.1021/je1000582 Managements for Organic Solutes and พละอานาร์ เล่นเป็นเป็น Behavior of Tearly 124 โดยการ์ โดยเกาะ https://www.doi.org/10.1021/je049778g Trifluoromethanesulfonate:

Solubility evaluation and https://www.doi.org/10.1016/j.fluid.2018.05.005 thermodynamic modeling of Beasta Sapatation water and ten https://www.doi.org/10.1021/acs.jced.6b00954 the passione in water and ten (1-grows solid from the passion of t https://www.doi.org/10.1016/j.fluid.2008.02.021 Triestures នៅច្រោះ មេរ៉ាប់គ្រង់គ្រង់គ្រង់គ្រង់គ្រង់ ប្រជាពី នៅក្រុម ប្រជាពី ប្រជាពី នៅក្រុម ប្រជាពី នៅក្រុម ប្រជាពី នៅក្រុម ប្រជាពី ប **ลีกัตี รั≀๊คซึ่งอูกฟกลรธฝกฝะลงย่อกดู Ternary** https://www.doi.org/10.1016/j.fluid.2012.10.019 Measurement and Correlation of Solubility and Thermodynamic
Phoparote properties of the paragraph of Solubility and Thermodynamic
Phoparote properties of the properties of th Measurement and Correlation of https://www.doi.org/10.1021/acs.jced.8b00663 Thermodynamic Properties of (Benzyl Magneti-liquidants hands having leaving the ethyl ethanoate + ethanol + Isobalice hands the interpretation of the ethyl ethanoate + ethanol + Isobalice hands the ethyl of (2) Magnetic Acid hands and the ethyl of (2) Magnetic Acid hands the ethyl of (2) Magnetic Acid hands and the ethyl of (2) Magnetic A https://www.doi.org/10.1016/j.fluid.2012.05.016 The arms of the first of organic and solvent of pacific transition https://www.doi.org/10.1016/j.tca.2012.07.022 https://www.doi.org/10.1021/je050006+ https://www.doi.org/10.1016/j.fluid.2019.01.028 bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate

as solvents in the separation of

1-propanol from water:

Measurement and correlation of https://www.doi.org/10.1016/j.jct.2017.03.007 (vapour-liquid) equilibrium for binary https://www.doi.org/10.1021/je100033s happinescuich Equilibria for the Ternary Makures to the remain of the https://www.doi.org/10.1021/acs.jced.6b00415 https://www.doi.org/10.1016/j.fluid.2015.09.011 https://www.doi.org/10.1016/j.fluid.2017.02.016 effect upon the vapor-liquid equilibrium https://www.doi.org/10.1021/je020228x Şp[@tatib]Ymaf[@f]nzikmidananles in Alcohols: **Densities and Viscosities of Binary** https://www.doi.org/10.1021/je100848r Mixture of the lonic Liquid
Solubility of the lonic Liquid
Phonography of the lonic Liquid
Interpretation of the lonic liquid of the lonic li Mixture of the Ionic Liquid THE STATE OF THE PROPERTY OF THE PROPERTY OF THE STATE OF https://www.doi.org/10.1016/j.fluid.2013.06.047 ERHUMINIA SUCOMANIA SI MORE 310
KANG AND SECONDA SUCOMANIA SI MORE SULLA SI MORE SULLA SULLA SI MORE SULLA SULLA SI MORE SULLA https://www.doi.org/10.1016/j.jct.2019.03.021 https://www.doi.org/10.1016/j.jct.2013.09.041 https://www.doi.org/10.1021/je300401c https://www.doi.org/10.1021/je300721p PINTING GUINICPORNITION OF THE WAR WATER WATER https://www.doi.org/10.1016/j.fluid.2007.08.008 and the unior of the control of the https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.jct.2008.01.015 Acing Fresh (Property of the Color of the C https://www.doi.org/10.1016/j.jct.2012.06.009 https://www.doi.org/10.1016/j.jct.2014.03.026 https://www.doi.org/10.1021/je900177h https://www.doi.org/10.1021/acs.jced.5b00619 https://www.doi.org/10.1021/je1005517 https://www.doi.org/10.1021/je500191j https://www.doi.org/10.1016/j.fluid.2013.05.008 https://www.doi.org/10.1021/acs.jced.9b00693 thermodynamic model correlation of Askivitylific efficients at he solve hills in the Ionic Liquids Meanyremant annihilate feature of Alkanols in the Ionic Liquids Meanyremant annihilate feature of Alkanols in the Ionic Liquids Meanyremant annihilate feature of Alkanols in the Ionic Liquids Meanyremant annihilate feature of Alkanols in the Ionic Liquids Meanyremant feature feature of Alkanols in the Ionic Liquids Meanyremant feature for International Meanyremant feature for International Meanyremant feature for International Meanyremant feature for International Meany Mixtures of International Meanyremant feature for International Meanyremant feature feature for International Meanyremant feature for International Meanyremant feature feature for International Meanyremant feature https://www.doi.org/10.1021/acs.jced.9b00490 https://www.doi.org/10.1016/j.jct.2016.07.017 https://www.doi.org/10.1021/je0495942 https://www.doi.org/10.1021/acs.jced.6b00763

```
Thermodynamic Analysis of the
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.5b00557
    Experimental Equilibria for the
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.8b00196
      Dieteranimatien Ent Solidailien artd
    Electronics Crierestisses Primary
Bellightiseabne in Different Pure
នៃជំនួននៅ richlorophenoxy)ethyl
Belligign Nethuno(ចាក់ពាស់ពីerent
                                                                                                                                                                                                       https://www.doi.org/10.1021/je200074c
  https://www.doi.org/10.1021/je100255z

https://www.doi.org/10.1021/je100255z

https://www.doi.org/10.1021/je100255z

https://www.doi.org/10.1021/je100255z

https://www.doi.org/10.1016/j.jct.2009.06.011

https://www.doi.org/10.1016/j.jct.2009.06.011

https://www.doi.org/10.1016/j.jct.2016.03.007

https://www.doi.org/10.1016/j.jct.2016.03.007

https://www.doi.org/10.1016/j.jct.2016.03.007

https://www.doi.org/10.1016/j.jct.2016.03.007

https://www.doi.org/10.1016/j.jct.2016.03.007

https://www.doi.org/10.1016/j.jct.2016.03.007

https://www.doi.org/10.1016/j.jct.2018.12.038

https://www.doi.org/10.1016/j.jct.2009.08.016

https://www.doi.org/10.1016/j.jct.2009.08.016

https://www.doi.org/10.1016/j.jct.2009.08.011

https://www.doi.org/10.1016/j.jct.2009.08.011

https://www.doi.org/10.1016/j.jct.2009.08.011

https://www.doi.org/10.1016/j.jct.2018.07.013
                                                                                                                                                                                                       https://www.doi.org/10.1021/je100255z
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.5b00829
     குருந்து விதுற்று அருந்து விதுற்று விற்று விதுற்று விதுற்று விதுற்று விதுற்று விதுற்று விதுற்று விதுற
    https://www.doi.org/10.1016/j.jct.2017.05.037
International Control of the Control
                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2010.01.004
                                                                                                                                                                                                        https://www.doi.org/10.1007/s10765-005-8101-x
                                                                                                                                                                                                       http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
   alkylsulfate-based ionic liquid:
Solubility and Data Correlation of
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.9b00703
    b-Arbutin in Different Monosolvents
Folklybity/Modeling/swc Mixing
Properties for Benzoin in Different
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.7b00743
   Properties for Benzoin in Different Montosodyengs in strong which it says the Ambidity of the azimpoide in the azimpoide is cussion of the Effect of azimpoide is cussion of the Effect of azimpoide is a paray of activation for viscous and excess
                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2017.04.014
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.8b01084
                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.9b00353
                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2017.07.022
    Gibbs energy of activation for viscous
                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2017.06.005
    N-etappyyldin/affardtcyanamide
ใดวรุ่ง/เรือดวสุเพาะเพื่อสุดในท
dicyanamide system at 100 kPa:
```

```
solubilities of apigenin and apigenin
       Programmesyeinertsiaedreseved
propertiestofiliatied/felkandeures:
Research on Dissolution Capability of
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2011.10.023
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/acs.jced.8b00288
       Several Antofloxacin Salts:
Solubility of Phenacetinum in
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je700209v
       Methanol, Ethanol, 1-Propanol,
จิสาสเสเตกาอายุมแผ่งอยู่ ที่อุทาลที่จุลเลก https://www.doi.org/10.1016/j.fluid.2015.03.027
        with the value methanide has beingen
fronger Vapord en Phase
Equilibrium Measurements,
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.8b00033
    Equilibrium Measurements, Colubbitos of Aravastatini Sodium in Matara Mothornole Mhangle 20 Propanol, Expositional Matara Mothornole Mhangle 20 Propanol, Expositional Matara Mat
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je800196k
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2016.08.003
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2019.02.027
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2006.06.001
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.tca.2006.02.017
         diamana kajennarie kystemstey from T
goldigi ky allomet por eation, and
Solvent Effect of
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.8b01226
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.12.028
         <u> Polyhilitysom etispidentydionidaade 12</u>
The Borg organic solvents and liquid powers and responsible of the Borg organic solvents and liquid powers are solvents and powers are solvents. State of the powers are solvents and powers are solvents and powers are solvents and powers are solvents. The powers are solvents are solvents are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents. The powers are solvents are solvents are solvents are solvents. The powers are solvents are solvents. The powers are solvents are solvents are solvents. The powers are solvents are solvent
       Pine By organic solvents and liquid
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2016.07.009
        1-propanol +water + copper(II) chloride
สู่เคองดูpaysical Characterization of the https://www.doi.org/10.1021/acs.jced.5b01023
        Mixtures of the lonic Liquid
       https://www.doi.org/10.1021/acs.jced.5b00746
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je1012839
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2016.01.012
    THE TOTAL STREET WATER HEAT PORT OF THE TOTAL STREET WATER HEAT PROPERTY OF THE PROPERTY OF TH
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je0503554
                                                                                                                                                                                                                                                                                                      https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=819
       Hydrocarbons, Alcohols, Esters, and Wessurement and correlation of solubility of cicles on the seven pure solubility of cicles on the s
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.10.014
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/acs.jced.8b00555
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2016.10.046
     พารเกาะรับรายการ Wedate Tras อาการสายเรื่องเรียกรายการ and เรื่องเหล่าได้เกาะรับรายการ and เรื่องเรียก เรื่องเกาะรับรายการ เรื่องเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการยกรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการเกาะรับรายการยายการเกาะรับรายการเกาะรับรายการเกาะรับรายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยายการยา
                                                                                                                                                                                                                                                                รัฐโทยโวกุชกรสท์อกเพ.doi.org/10.1021/acs.jced.5b00181
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2014.04.011
```

https://www.doi.org/10.1016/j.jct.2010.09.013

Measurement and correlation of

Densities and volumetric properties of https://www.doi.org/10.1016/j.jct.2007.11.010 (N-(2-hydroxyethyl)morpholine + Visansiţies and pansiţies of Bianol, + Mixturas pa (N-4) Acetylianun palices 3.15 Acetyli Measwes ne reining Garrestion of 13 to Setwhility of Two Isomers of Capar by Multh Eaviting Number 150 vive see https://www.doi.org/10.1021/acs.jced.7b00301 https://www.doi.org/10.1021/je700316s គឺ ត្រូវក្រុស្តិ៍ 45hv drox ya e ក្នុង[dehyde in New Black of the state of the sta http://webbook.nist.gov/cgi/cbook.cgi?ID=C71238&Units=SI Measurement of activity coefficients at infinite dilution of organic solutes in the property of the property o Measurement of activity coefficients at https://www.doi.org/10.1016/j.jct.2013.10.017 https://www.doi.org/10.1021/acs.jced.5b00919 https://www.doi.org/10.1016/j.fluid.2006.04.010 https://www.doi.org/10.1016/j.jct.2018.05.018 Veterment appropries or relation of solubility of linezolid form II in different by season blas entology (1-alkanol + 1-octene mixtures at 298.15K

Experimental entology (1-alkanol + 1-octene mixtures at 298.15K

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.org/10.1016/j.fluid.2014.09.008

https://www.doi.o https://www.doi.org/10.1016/j.fluid.2016.10.021 https://www.doi.org/10.1016/j.jct.2005.08.004
diution activity coefficients of
diution of this plane its important in the production activity coefficients of
divide of this plane its important in the production of the production Henrinié savures strants and infinite nic https://www.doi.org/10.1016/j.jct.2005.08.004 https://www.doi.org/10.1016/j.fluid.2012.04.008 dissolution properties of ethyl vanillin https://www.doi.org/10.1016/j.fluid.2018.06.013 coefficients at infinite dilution for https://www.doi.org/10.1016/j.fluid.2019.03.023 **ARPHIN**ationurés in the ionic liquid Applifiate on the ionic liquid property of the interest of the ionic liquid property of the ionic liquid for veletions, and the ionic liquid property of the ioni Ethers, and Ketones at High Pressures Activity 880 refinites in 1-hexyl-3Incharin Marcoll in High Water 1-Alkanol Marketing of Toyles in 1-hexyl-3Incharin Marcoll in High Water 1-Alkanol Marketing of Toyles in Twelve Pure and Water + Methanol Binary Solvents

https://www.doi.org/10.1016/j.jct.2013.10.038

https://www.doi.org/10.1021/acs.jced.7b00078

https://www.doi.org/10.1021/je301029j

https://www.doi.org/10.1021/je034053i

https://www.doi.org/10.1021/je034053i

https://www.doi.org/10.1021/je034053i and Water + Methanol Binary Solvents

at Temperatures from 273.15 to 318.15

K:

Solubilities of Organic Semiconductors https://www.doi.org/10.1021/acs.jced.8b00536 and Nonsteroidal Anti-inflammatory They and Properties and They are and the control of the contr Drage of Pring Hard Wise of Hard and Solve life: Wasser of Solve life: Wasser of Solve life: Wasser of Solve life: Wasser of Aqueous Systems of Masser of Aqueous Systems of Masser of Hard Solve of New Synthesized Trication to Ionic Liquid Tharmody Market Solve of Hard Stratunalymaisesolulalitysmosteling, solvantation and preferential solvation before and preferential solvation and preferential solvation and preferential solvation and preference and pr bromochloromethane, or + 1.2-dichloroethane or +1-bromo-2-chloroethane) at T = 313.15

https://www.doi.org/10.1016/j.fluid.2014.01.029 https://www.doi.org/10.1021/je900059e https://www.doi.org/10.1021/je101208p https://www.doi.org/10.1016/j.jct.2016.06.016 https://www.doi.org/10.1021/acs.jced.8b00601 https://www.doi.org/10.1016/j.jct.2018.11.022 https://www.doi.org/10.1007/s10765-013-1483-2

Separation of Azeotropes Hexane + Ethanol/1-Propanol by Ionic Liquid

Phase reginilly reginal Liquid Phase

Eigenvelime hydrogen saturate ionic

Eigenvelime solubility and solution thermodynamics Bropertiási of invarrenduty blancison bums: nitrate ionic liquid and its binary

The inergy you will be in the ionic liquid and its binary

The inergy you will be in the ionic liquid and its binary

The ionic liquid and its binary nitrate ionic liquid and its binary
Interpresy parameter and stretty = (293.15 to 101.000)
Interpresy parameter and stretty = (293.15 to 101.000)
Interpresy parameter and stretty = (293.15 to 101.000)
Interpresy parameter and stretty interpretation in the stretty interpretation of solubility of Loratadine in Different the stretty in the stretty interpretation of the stretty interpretation of the stretty interpretation of the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in Different the stretty interpretation of solubility of Loratadine in D thermodypamicatunctions of pensional participants of pensional production of the pension of the Same of the state Containing alcohols (C1 C4) and Sunface least on a Binary Mixtures of 2,2,4-Trimethylpentane +1-Alkanols Folkibity (Bete (12)) as ion and Thermodynamic Modeling of Pathermination notice of Pathermination Solubolity watemixing thermodynamic properties of levamisole hydrochloride Petwenia ping 30N GRE alavanovis Peterune dine ably Gres elevances collegigies et de la ligitace del ligitace del ligitace de la ligitace del ligitace del ligitace de la ligitace de la ligitace de la ligitace de la ligitace del ligitace del ligitace del ligitace de la ligitace de la ligitace del ligitace de la ligitace del ligitace del ligitace del lig ropen-1-one ត្រូវប្រាម្នាស់ នៅក្នុង នៅក្បាន នៅក្នុង នៅក្នុង នៅក្នុង នៅក្នុង នៅក្នុង នៅក្នុង នៅក្នុង នៅក្ប

https://www.doi.org/10.1021/acs.jced.7b00643 https://www.doi.org/10.1016/j.jct.2006.10.009 https://www.doi.org/10.1016/j.fluid.2015.03.022 https://www.doi.org/10.1016/j.jct.2012.10.008 https://www.doi.org/10.1021/je300632p https://www.doi.org/10.1021/acs.jced.9b00005 https://www.doi.org/10.1016/j.jct.2011.08.006 https://www.doi.org/10.1016/j.fluid.2011.01.003 https://www.doi.org/10.1021/acs.jced.5b00903 https://www.doi.org/10.1021/acs.jced.9b00190 https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1016/j.fluid.2007.07.066 https://www.doi.org/10.1016/j.tca.2014.03.027 https://www.doi.org/10.1016/j.fluid.2008.04.010 https://www.doi.org/10.1016/j.fluid.2013.05.014 https://www.doi.org/10.1016/j.jct.2019.105882 https://www.doi.org/10.1021/acs.jced.9b00381 https://www.doi.org/10.1021/acs.jced.7b00542 https://www.doi.org/10.1021/acs.jced.9b00047 https://www.doi.org/10.1021/je400709f https://www.doi.org/10.1016/j.fluid.2007.03.030 https://www.doi.org/10.1021/je300847v https://www.doi.org/10.1021/je900764f https://www.doi.org/10.1016/j.jct.2013.05.008 https://www.doi.org/10.1016/j.jct.2016.06.032

Thermophysical properties of binary https://www.doi.org/10.1016/j.jct.2017.12.009 mixtures of https://www.doi.org/10.1021/je201032t <u>İsəthərməh Vapyap yılışı ildi Equili</u>brium PRINTING THE BRITISH PRINTING THE ROLL THE BRITISH BETTER THE BRITISH https://www.doi.org/10.1021/je5007604 https://www.doi.org/10.1021/acs.jced.8b00257 https://www.doi.org/10.1021/je0301904 Anthracene Dissolved in Alcohol +
Carrono dending onic Liquids. 5. Activity
Cotafficiention and modelling of
Homesuir benkloulity in reference of
Homesuir benkloulity in reference on
Remarked by the production
of
Remarked by the production of
Remarked by the production of the
Remarked by the product https://www.doi.org/10.1021/je050125p https://www.doi.org/10.1016/j.jct.2016.09.015 https://www.doi.org/10.1016/j.jct.2017.04.019 https://www.doi.org/10.1021/acs.jced.8b00975 https://www.doi.org/10.1016/j.jct.2012.07.021 https://www.doi.org/10.1016/j.jct.2010.02.006 https://www.doi.org/10.1021/acs.jced.6b00761 https://www.doi.org/10.1021/je300736k https://www.doi.org/10.1021/je400622g https://www.doi.org/10.1016/j.jct.2016.10.006 https://www.doi.org/10.1016/j.jct.2005.05.007 https://www.doi.org/10.1021/je800497u https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1021/je0603574 https://www.doi.org/10.1021/je030207i https://www.doi.org/10.1021/je034203p https://www.doi.org/10.1016/j.jct.2012.02.037 https://www.doi.org/10.1016/j.jct.2003.08.018 https://www.doi.org/10.1021/je050145r identify with the second control of the properties of the properti https://www.doi.org/10.1021/acs.jced.5b01053 TRANSISTINGUES POLYMORPHS of glycolide:
Determination and Correlation of
Solubility and Thermodynamic
Pastitiene's officients tis in the properties of the p https://www.doi.org/10.1021/acs.jced.7b00665 https://www.doi.org/10.1016/j.jct.2006.03.010 https://www.doi.org/10.1016/j.fluid.2013.10.034 https://www.doi.org/10.1021/acs.jced.9b00445 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1016/j.tca.2008.11.007 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1016/j.fluid.2010.02.007 1,3-didecyl-2-methylimidazolium Solybility and Jhermodynamic Modeling of Sulfanilamide in 12 Mono https://www.doi.org/10.1021/acs.jced.9b00411 Solvailityand Mixingy Therrand marnies https://www.doi.org/10.1021/acs.jced.7b00714
#Congries of a single gresulfonamide and a statistical from the single gresulfonamide https://www.doi.org/10.1016/j.jct.2017.03.004
| https://www.doi.org/10.1016/j.jct.2017.03.004
| way a short from the single form and a short from the single for TEAlphexane/cyclohexene and ethylbenzene/styrene based on limiting activity coefficients:

VLE of CO2 + glycerol + (ethanol or https://www.doi.org/10.1016/j.fluid.2011.01.019 1-propanol or 1-butanol): Determination and Correlation of https://www.doi.org/10.1021/je300517q Pyridazin-3-amine Solubility in Eight ช่วยลาโะเรษที่ อัสเยเน็อาเอกกอลสนา์ เรา https://www.doi.org/10.1021/je3004194 The suite of Ternary

https://www.doi.org/10.1016/j.jct.2019.01.013

https://www.doi.org/10.1016/j.jct.2019.01.013

https://www.doi.org/10.1016/j.jct.2019.01.013

https://www.doi.org/10.1016/j.jct.2019.01.013

https://www.doi.org/10.1016/j.jct.2019.01.013

https://www.doi.org/10.1016/j.jct.2019.01.013

https://www.doi.org/10.1016/j.jct.2010.07.008

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005

https://www.doi.org/10.1016/j.jct.2010.07.005 HERSUTEMENTS TO THAT SOUTHS and WASSER MALE TENTAL PIE OF TERRAY HIT PROPERTY MEMORY M wasesm Madar Enthalpies of Ternary https://www.doi.org/10.1021/je8007606 https://www.doi.org/10.1021/je200279q https://www.doi.org/10.1016/j.jct.2015.06.004 https://www.doi.org/10.1021/je050406x https://www.doi.org/10.1016/j.tca.2012.04.033 https://www.doi.org/10.1016/j.jct.2019.105884 https://www.doi.org/10.1021/je060248p https://www.doi.org/10.1021/je9006426 https://www.doi.org/10.1021/acs.jced.8b00182 https://www.doi.org/10.1021/je800105r https://www.doi.org/10.1021/acs.jced.9b00854 https://www.doi.org/10.1016/j.fluid.2015.03.050 https://www.doi.org/10.1016/j.fluid.2008.05.002 https://www.doi.org/10.1021/je050394f Coefficients of n-Alcohols and Benzene Arbitanium itemiesiamists in extraction of hierbrus for interest and interest to the edible oil industry:

Anticology of the interest and next action of hierbrus for interest to the edible oil industry:

Alcohols and Benzene Arbitanium interest and next action of hierbrus for interest to the edible oil industry:

Alcohols and Benzene Arbitanium interest and next action of hitps://www.doi.org/10.1016/j.fluid.2018.09.024

https://www.doi.org/10.1016/j.fluid.2014.08.022

https://www.doi.org/10.1016/j.fluid.2014.08.022

https://www.doi.org/10.1016/j.fluid.2014.08.022

https://www.doi.org/10.1016/j.fluid.2014.08.022

https://www.doi.org/10.1021/je301374c

https://www.doi.org/10.1021/je301374c

https://www.doi.org/10.1021/je301374c

https://www.doi.org/10.1021/je301374c

https://www.doi.org/10.1021/je301374c

https://www.doi.org/10.1016/j.fluid.2017.06.012

https://www.doi.org/10.1021/je301374c

https://www.doi.org/10.1021/je301374c Coefficients of n-Alcohols and Benzene https://www.doi.org/10.1016/j.fluid.2014.08.022 interest to the edible oil industry:

wiscost coefficients at definited deution
of Stenes in Find the print of the print o Imidazolium Cations and

Bis(trifluoromethylsulfonyl)imide Anion

with 1-Propanol:

Liquid liquid equilibria for the ternary systems water + 1-propanol + methyl methas in the systems water + 1-propanol + methyl methas in the systems water + 1-propanol + methyl methas is 162-C6) and Their Correlatives will be sufficient to the system distribution of the system distribution Liquid liquid equilibria for the ternary https://www.doi.org/10.1016/j.fluid.2007.05.018 Solution by legical equilibrium and critical states for the system acetic acid infinite billion herioin section acetic acid infinite dilution of organic solutes in https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1021/je7005049 https://www.doi.org/10.1021/je7005049 https://www.doi.org/10.1021/je7005049 https://www.doi.org/10.1021/je7005049 https://www.doi.org/10.1021/je7005049 https://www.doi.org/10.1021/je3011634 https://www.doi.org/10.1016/j.jct.2014.12.023 https://www.doi.org/10.1016/j.jct.2014.12.023 https://www.doi.org/10.1016/j.jct.2014.12.023 https://www.doi.org/10.1016/j.jct.2018.09.017 https://www.doi.o https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=819 infinite dilution of organic solutes in infinite dilution of organic solutes in the properties of Binary and Fornation with the properties of Binary with the properties of Binary and Fornation with the properties of Binary with the properties with the properties of Binary with the properties with the properties of Binary with the properties with the https://www.doi.org/10.1021/je060253t https://www.doi.org/10.1016/j.fluid.2012.05.006 https://www.doi.org/10.1021/acs.jced.9b00778 https://www.doi.org/10.1016/j.fluid.2013.06.021 https://www.doi.org/10.1021/acs.jced.6b00957 https://www.doi.org/10.1016/j.fluid.2008.11.005 alkanols: Liquid-Liquid Equilibrium of https://www.doi.org/10.1021/acs.jced.5b00771 Hydrophilic Alcohols with Three Địl (allo) (allo) bịl (allo) based ionic https://www.doi.org/10.1016/j.jct.2016.01.017 Found in the separation processes: Present status of the modified UNIFAC https://www.doi.org/10.1016/j.fluid.2014.03.006 two-phase systems at different temperatures: Experiment and

correlation:

https://www.doi.org/10.1021/acs.jced.8b00554 Propan-1-ol + n-Octane or n-Nonane or Advetility Atomogethyt-Knetrogy, not gele in https://www.doi.org/10.1016/j.fluid.2018.05.023 Autering a pure more supposed in the street of the property of https://www.doi.org/10.1016/j.fluid.2005.08.018 https://www.doi.org/10.1016/j.fluid.2008.11.014 data for mixtures of (water + 1-propanol Fluits hars Terrongy DE Brageins as a Gradabax member 18 Pagganol at 101.3 kPa: Solubility of Avermectin B1a in Some https://www.doi.org/10.1007/s10765-015-1922-3 https://www.doi.org/10.1021/je900772h Pure and Mixed Solvents from (278.2 to Application of the Extended Langmuir Model for the Determination of https://www.doi.org/10.1007/s10765-009-0581-7 Model for the Determination of Infusions at the temperature of the Infusional form the Alexicht figurial phase equilibria of Grand Infusional form the Alexicht figurial phase equilibria of Grand Infusional form the Alexicht figurial phase equilibria of Grand Infusional form the Infusio https://www.doi.org/10.1016/j.jct.2016.12.011 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.fluid.2012.11.001 https://www.doi.org/10.1021/acs.jced.6b00741 รูงตาลาง (liquid + liquid) equilibria for (water + 1-propanol + dimethyl ในบังเกละเอกตาเลยใหญ่ สหรองสะย) ยงยกสะยายาเลยใหญ่ สหรองสะย) ยงยกสะยายาเลยใหญ่ สหรองสะย) ยงยกสะยายาเลยใหญ่ สหรองสะย) ยงยกสะยายาเลยใหญ่ เป็น เกละเอกเลยใหญ่ เกละเอกเลยใหญ่ เป็น เกละเอกเลยใหญ่ เกล https://www.doi.org/10.1016/j.jct.2013.04.002 https://www.doi.org/10.1016/j.jct.2005.06.011 https://www.doi.org/10.1016/j.jct.2018.03.010 https://www.doi.org/10.1021/acs.jced.8b01144 https://www.doi.org/10.1021/je100581m https://www.doi.org/10.1016/j.tca.2011.05.006 https://www.doi.org/10.1016/j.fluid.2015.04.009 https://www.doi.org/10.1016/j.jct.2015.10.024 https://www.doi.org/10.1016/j.fluid.2010.03.004 experimental determination of Paparinal Misegaity of a tank is a Control of Paparinal Misegaity of a tank is a Control of Misegaity of a tank is a Control of Misegaity of a tank is a Control of Misegaity of a tank is a tank is a control of Misegaity of a tank is a tank is a control of Misegaity of the many of Misegaity of Misega Activity Coefficients at Infinite Dilution of Organic Compounds in Mensurguers and periodic in in its finite program in the significant of the sig https://www.doi.org/10.1016/j.fluid.2016.08.038 https://www.doi.org/10.1016/j.jct.2019.105881 https://www.doi.org/10.1021/acs.jced.7b00065 https://www.doi.org/10.1021/acs.jced.8b00124 1-(2-Dimethylaminoethyl)-5-mercapto-1 โรวไฟล์เยี่ยงได้และเพลาเลอยุลย์กูลเลียง 1-tetrazole https://www.doi.org/10.1016/j.jct.2016.03.011 https://www.doi.org/10.1021/je9003806 https://www.doi.org/10.1016/j.jct.2016.10.023 https://www.doi.org/10.1016/j.jct.2011.01.005 https://www.doi.org/10.1016/j.fluid.2010.03.008 https://www.doi.org/10.1021/je700621d https://www.doi.org/10.1016/j.jct.2012.09.006

P-rho-T Data and Modeling for

Solubility of Benzoic Acid in Aqueous Solutions Containing Ethanol or Name band Viscosity of Binary Newsipanori Viscosity of Binary
Mixtures of Ethyl-2-methylbutyrate and
Belybilitieanofatetivitin เพียงคลองvents at
Eth 283115n396160343015at323355and
สูญนาสหาร์ เปรามากลาง mixtures of
propane 1,2-diol with methanol,
Vidpand Vill helleas พอเพองชลาด1-ol, or
pinary victure containing \$759975sc2:
\$100 yellow the containing \$759975s (27898988989898) PC-Melasturement and inverse parameters and weather review and weather review and weather review are reviewed and are marky at the collection of the separation of the review and parameters and parame (27%grsnetest)\$.98)poundasturement and รูกบุษที่ข้าง ๑๑฿ล์เฉลlin in Several Mixed Bolvents of Anthracene in Binary Propyl Acetate + Alcohol Solvent White desaduring to the Internet of Acetate + Alcohol Solvent White desaduring to the Internet of Acetate + Alcohol Solvent White desaduring to the Internet of Acetate + Alcohol Solvent White desaduring to the Internet of Acetate + Alcohol Solvent White desaduring to the Internet of Acetate + Alcohol Solvent White desaduring to the Internet of Acetate + Alcohol Solvent White desaduring the Internet of Acetate + Alcohol Solvent White desaduring the Internet of Acetate + Alcohol Solvent White Hall Desagnation of the Acetate + Alcohol Solvent White Hall Desagnation of the Acetate hall in the Internet of Acetate + Alcohol Solvent White Hall Desagnation of the Acetate hall in the Internet of Internet White Hall Internet is a solvent of Internet White Hall Internet Internet is a solvent of Internet White Hall Internet Inter Activities of the control of the con ቆ‡(ฮะiฅ**γลr**ชx**ሃխዋ6၉%)**)-4-methylmorpholinium

bis(trifluoromethylsulfonyl)-amide:

https://www.doi.org/10.1021/je800507m https://www.doi.org/10.1021/je0500633 https://www.doi.org/10.1016/j.fluid.2007.07.030 https://www.doi.org/10.1016/j.jct.2012.12.003 https://www.doi.org/10.1021/je025599s https://www.doi.org/10.1021/je900337a https://www.doi.org/10.1016/j.jct.2011.05.014 https://www.doi.org/10.1021/je200195q https://www.doi.org/10.1021/je401044h https://www.doi.org/10.1021/je5004912 https://www.doi.org/10.1016/j.jct.2008.01.004 https://www.doi.org/10.1016/j.fluid.2011.08.009 https://www.doi.org/10.1021/acs.jced.7b00523 https://www.doi.org/10.1021/acs.jced.5b01024 Water Ministres:
Vapour pressures and osmotic
coefficients of binary mixtures
Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate in Alcohol
Aquenus Solubility of Genoma Nitrate
Compounds in Four New
Terranny Name Solubility of Binary
Bisturn of Solubility of Genoma Nitrate
Terranny Name Azeotropic Systems
Interview Name Azeotropic Systems
Interview Name Azeotropic Systems
Interview Name Nitrate Name
Interview Name Name
Interview Name Name
Interview Name https://www.doi.org/10.1016/j.jct.2013.05.027 https://www.doi.org/10.1016/j.fluid.2005.05.012 https://www.doi.org/10.1016/j.fluid.2013.12.022 https://www.doi.org/10.1021/acs.jced.5b00714 https://www.doi.org/10.1016/j.fluid.2012.06.013 https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.doi.org/10.1021/je200628n

Solid-liquid equilibria for selected binary systems containing diphenyl paneitias and Viscosities of Binary Mixtures Containing Possitias of binary prixterns of diphete discontaining prixterns of diphete discontaining binary prixterns of diphete discontaining (C1 C3) at temperatures from T = 303.15 K to T = 323.15 K:

https://www.doi.org/10.1016/j.fluid.2018.09.023 https://www.doi.org/10.1021/je401124t https://www.doi.org/10.1016/j.jct.2006.10.016

Legend

af: Acentric Factor affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacitycps: Solid phase heat capacity

dm: Dipole Momentdvisc: Dynamic viscosity

fli: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method)fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sg: Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume
volm: Molar Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/15-582-9/1-Propanol.pdf

Generated by Cheméo on 2025-12-22 19:39:19.555048808 +0000 UTC m=+6180557.085089474.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.