Benzoic acid

Other names: Acide benzoique

BENZOATE

Benzenecarboxylic acid Benzeneformic acid Benzenemethanoic acid Benzenemethonic acid

Benzoesaeure
Benzoesaeure GK
Benzoesaeure GV
Benzoic acid, tech.
Carboxybenzene
Diacylic acid
Dracylic acid

E 210

Flowers of benjamin Flowers of benzoin

HA₁

HA 1 (acid)

Kyselina benzoova

NSC 149 Oracylic acid Phenylcarboxy

Phenylcarboxylic acid
Phenylformic acid

Retarder BA
Retarder BAX
Retardex
Salvo powder
Salvo, liquid
Solvo, powder

Tenn-Plas

InChl=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)

InchiKey: WPYMKLBDIGXBTP-UHFFFAOYSA-N

Formula: C7H6O2

SMILES: O=C(O)c1ccccc1

Mol. weight [g/mol]: 122.12 CAS: 65-85-0

Physical Properties

Property code	Value	Unit	Source
af	0.6200		KDB
affp	821.10	kJ/mol	NIST Webbook
aigt	845.93	K	KDB
basg	790.10	kJ/mol	NIST Webbook
chl	-3227.00 ± 0.20	kJ/mol	NIST Webbook
chs	-3231.97	kJ/mol	NIST Webbook
chs	-3228.06 ± 0.44	kJ/mol	NIST Webbook
chs	-3222.50 ± 4.20	kJ/mol	NIST Webbook
chs	-3226.87 ± 0.18	kJ/mol	NIST Webbook
chs	-3254.71 ± 0.41	kJ/mol	NIST Webbook
chs	-3228.00 ± 0.50	kJ/mol	NIST Webbook
chs	-3227.40 ± 0.30	kJ/mol	NIST Webbook
chs	-3227.20 ± 0.50	kJ/mol	NIST Webbook
chs	-3227.30 ± 0.30	kJ/mol	NIST Webbook
chs	-3227.51 ± 0.32	kJ/mol	NIST Webbook
chs	-3227.60 ± 0.30	kJ/mol	NIST Webbook
chs	-3226.39 ± 0.32	kJ/mol	NIST Webbook
chs	-3229.80	kJ/mol	NIST Webbook
chs	-3228.79	kJ/mol	NIST Webbook
chs	-3231.30	kJ/mol	NIST Webbook
chs	-3229.00	kJ/mol	NIST Webbook
chs	-3226.00	kJ/mol	NIST Webbook
chs	-3227.30 ± 0.30	kJ/mol	NIST Webbook
dm	1.70	debye	KDB
fpo	394.26	K	KDB
gf	-210.60	kJ/mol	KDB
hf	-290.40	kJ/mol	KDB
hfs	-384.80 ± 0.50	kJ/mol	NIST Webbook
hfs	-386.00	kJ/mol	NIST Webbook
hfus	16.82	kJ/mol	Thermodynamics of molecular solids in organic solvents
hfus	18.02	kJ/mol	Odd even effect in melting properties of 12 alkane-a,x-diamides
hvap	78.90	kJ/mol	NIST Webbook
ie	9.47	eV	NIST Webbook
ie	9.75	eV	NIST Webbook
ie	9.60	eV	NIST Webbook
ie	9.30	eV	NIST Webbook

ie	9.80 ± 0.20	eV	NIST Webbook
ie	9.73 ± 0.09	eV	NIST Webbook
log10ws	-1.55		Aqueous and cosolvent solubility data for drug-like organic compounds
log10ws	-1.56		Aqueous Solubility Prediction Method
logp	1.385		Crippen Method
mcvol	93.170	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=2)		KDB
рс	4560.00	kPa	KDB
rinpol	1210.00		NIST Webbook
rinpol	1193.00		NIST Webbook
rinpol	1159.00		NIST Webbook
rinpol	1160.00		NIST Webbook
rinpol	1172.00		NIST Webbook
rinpol	1161.00		NIST Webbook
rinpol	1138.00		NIST Webbook
rinpol	1197.00		NIST Webbook
rinpol	1170.00		NIST Webbook
rinpol	1159.00		NIST Webbook
rinpol	1170.00		NIST Webbook
rinpol	1143.00		NIST Webbook
rinpol	1149.00		NIST Webbook
rinpol	1178.00		NIST Webbook
rinpol	1174.00		NIST Webbook
rinpol	1150.00		NIST Webbook
rinpol	1167.00		NIST Webbook
rinpol	1164.00		NIST Webbook
rinpol	196.52		NIST Webbook
rinpol	1184.00		NIST Webbook
rinpol	1164.00		NIST Webbook
rinpol	1165.00		NIST Webbook
rinpol	1160.00		NIST Webbook
rinpol	1191.00		NIST Webbook
rinpol	1159.00		NIST Webbook
rinpol	1162.00		NIST Webbook
rinpol	1163.00		NIST Webbook
rinpol	1199.00		NIST Webbook
rinpol	1197.00		NIST Webbook
rinpol	1152.00		NIST Webbook
rinpol	1156.00		NIST Webbook
rinpol	1171.00		NIST Webbook
rinpol	1191.00		NIST Webbook

rinpol	1210.00	NIST Webbook
rinpol	1155.00	NIST Webbook
rinpol	1135.00	NIST Webbook
rinpol	1167.00	NIST Webbook
rinpol	1180.00	NIST Webbook
rinpol	1188.80	NIST Webbook
rinpol	1214.00	NIST Webbook
rinpol	1163.00	NIST Webbook
rinpol	1180.00	NIST Webbook
rinpol	1196.00	NIST Webbook
rinpol	199.20	NIST Webbook
rinpol	1168.00	NIST Webbook
rinpol	1185.00	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	1162.00	NIST Webbook
rinpol	1163.00	NIST Webbook
rinpol	1131.00	NIST Webbook
rinpol	1164.00	NIST Webbook
rinpol	1131.00	NIST Webbook
rinpol	1200.00	NIST Webbook
rinpol	195.80	NIST Webbook
rinpol	1185.00	NIST Webbook
rinpol	1191.00	NIST Webbook
rinpol	1160.00	NIST Webbook
rinpol	202.69	NIST Webbook
rinpol	200.65	NIST Webbook
rinpol	196.50	NIST Webbook
rinpol	193.90	NIST Webbook
rinpol	1148.00	NIST Webbook
ripol	2419.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2444.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2426.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2432.00	NIST Webbook
ripol	2435.00	NIST Webbook
ripol	2399.00	NIST Webbook
ripol	2428.00	NIST Webbook
ripol	2404.00	NIST Webbook
ripol	2389.00	NIST Webbook
ripol	2455.00	NIST Webbook

ripol	2432.00	NIST Webbook
ripol	2400.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2385.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2390.00	NIST Webbook
ripol	2407.00	NIST Webbook
ripol	2390.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2416.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2457.00	NIST Webbook
ripol	2449.00	NIST Webbook
ripol	2425.00	NIST Webbook
ripol	2451.00	NIST Webbook
ripol	2449.00	NIST Webbook
ripol	2448.00	NIST Webbook
ripol	2438.00	NIST Webbook
ripol	2399.00	NIST Webbook
ripol	2428.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2401.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2392.00	NIST Webbook
ripol	2408.00	NIST Webbook
ripol	2391.00	NIST Webbook
ripol	2400.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2387.00	NIST Webbook
ripol	2436.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2423.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2405.00	NIST Webbook
ripol	2423.00	NIST Webbook
ripol	2420.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2444.00	NIST Webbook
ripol	2380.00	NIST Webbook
ripol	2446.00	NIST Webbook
ripol	2387.00	NIST Webbook
ripol	2412.00	NIST Webbook

npol 2405.00 NIST Webbook npol 2417.00 NIST Webbook npol 2417.00 NIST Webbook npol 2417.00 NIST Webbook ss 166.71 J/molxK NIST Webbook ss 166.71 J/molxK NIST Webbook ss 167.52 J/molxK NIST Webbook ss 167.59 J/molxK NIST Webbook ss 167.59 J/molxK NIST Webbook ss 167.73 J/molxK NIST Webbook tb 522.20 K NIST Webbook tb 522.20 K NIST Webbook tb 522.20 K NIST Webbook tb 523.18 ± 0.20 K NIST Webbook tb 523.99 ± 0.20 K NIST Webbook tb 523.00 K K KDB tc 755.00 K Vapor-liquid critical point measurements of lifteen compounds by the pulse-healing method tc 755.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method tf 395.60 K NIST Webbook tf 395.60 K NIST Webbook tf 395.60 K NIST Webbook tf 395.55 K NIST Webbook tf 395.60 K NIST Webbook tf 395.60 K NIST Webbook tf 395.50 K NIST Webbook tf 395.60 K NIST Webbook tf 395.50 LOG K NIST Webbook tf 395.50 LOG K NIST Webbook tf 395.50 LOG K NIST Webbook tf 395.50 ± 0.06 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook tf 395.00 ± 0.00 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook	ripol	2433.00		NIST Webbook
Property				
Page				
SS	•			
ss 170.70 J/molxK NIST Webbook ss 167.82 J/molxK NIST Webbook ss 167.73 J/molxK NIST Webbook tb 522.20 K NIST Webbook tb 522.20 K NIST Webbook tb 523.18 ± 0.20 K NIST Webbook tb 523.59 ± 0.20 K NIST Webbook tb 523.09 K KDB tc 755.00 K Vapor-liquid critical point tc 755.00 K Vapor-liquid critical point tc 755.00 K KDB tf 395.00 K NIST Webbook tf 395.00 K NIST Webbook tf 395.60 K KDB tf 395.60 K KDB tf 394.95 ± 0.20 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.60 ± 0.06 K NIST Webb	•		J/mol×K	
SS				
SS	SS			
SS				
tb 522.20 K NIST Webbook tb 522.00 K NIST Webbook tb 523.18 ± 0.20 K NIST Webbook tb 523.18 ± 0.20 K NIST Webbook tb 523.59 ± 0.20 K NIST Webbook tb 523.00 K K NIST Webbook tc 755.00 K VApor-liquid critical point neasurements of fifteen compounds by the pulse-heating method tc 752.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method tf 395.60 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.55 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.60 ± 2.00 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.65 ± 0.15 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.65 ± 1.50 K NIST Webbook tf 395.65 ± 1.50 K NIST Webbook tf 395.60 ± 2.00 K NIST Webbook tf 395.65 ± 1.50 K NIST Webbook tf 395.60 ± 2.00 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.50 ± 2.00 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook	SS		J/mol×K	NIST Webbook
tb 523.18 ± 0.20 K NIST Webbook tb 523.59 ± 0.20 K NIST Webbook tb 523.00 K K KDB tc 755.00 K Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method tc 752.00 K NIST Webbook tf 395.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method ff 395.60 K NIST Webbook tf 394.70 ± 1.00 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.55 ± 0.06 K NIST Webbook tf 395.55 ± 0.06 K NIST Webbook tf 395.56 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.68 ± 0.15 K NIST Webbook tf 395.69 ± 0.00 K NIST Webbook tf 395.60 K NIST Webbook tf 395.50 ± 0.40 K NIST Webbook tf 395.50 ± 0.40 K NIST Webbook tf 395.51 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook			K	NIST Webbook
tb 523.59 ± 0.20 K NIST Webbook tb 523.00 K NDB tc 755.00 K Vapor-liquic ritical point measurements of fifteen compounds by the pulse-heating method tc 752.00 K NDB tf 395.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method tf 395.60 K NDB tf 394.70 ± 1.00 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.60 K NIST Webbook tf 395.60 K NIST Webbook tf 395.50 ± 0.06 K NIST Webbook tf 395.50 ± 0.06 K NIST Webbook tf 395.50 ± 0.06 K NIST Webbook tf 395.52 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.60 ± 2.00 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook	tb	522.00	K	NIST Webbook
tb 523.00 K KDB tc 755.00 K Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method to 752.00 K NIST Webbook tf 395.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method tf 394.70 ± 1.00 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.60 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.52 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.63 ± 0.15 K NIST Webbook tf 395.63 ± 0.15 K NIST Webbook tf 395.63 ± 0.15 K NIST Webbook tf 395.65 ± 1.50 K NIST Webbook tf 395.60 ± 0.00 K NIST Webbook tf 395.60 ± 0.00 K NIST Webbook tf 395.60 ± 0.00 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 395.00 ± 0.00 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook tf 395.50 ± 0.00 K NIST Webbook	tb	523.18 ± 0.20	K	NIST Webbook
tc 755.00 K Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method tc 752.00 K KDB tf 395.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method tf 395.60 K KDB tf 394.70 ± 1.00 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.60 ± 0.06 K NIST Webbook tf 395.60 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.68 ± 0.15 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 395.65 ± 1.50 K NIST Webbook tf 395.60 ± 1.50 K NIST Webbook tf 395.60 ± 1.50 K NIST Webbook tf 395.60 ± 1.50 K NIST Webbook tf 395.00 ± 2.00 K N	tb	523.59 ± 0.20	K	NIST Webbook
Telephone	tb	523.00	K	KDB
tf 395.00 K NIST Webbook tf 395.55 K Aqueous Solubility Prediction Method tf 395.60 K KDB tf 394.70 ± 1.00 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.60 ± 0.06 K NIST Webbook tf 395.55 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 393.65 ± 1.50 K NIST Webbook tf 395.60 K NIST Webbook tf 395.00 <	tc	755.00	К	measurements of fifteen compounds by the
tf 395.55 K Aqueous Solubility Prediction Method tf 395.60 K KDB tf 394.70 ± 1.00 K NIST Webbook tf 394.95 ± 0.20 K NIST Webbook tf 395.60 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 390.00 ± 1.00 K NIST Webbook tf 395.60 K NIST Webbook tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 395.00	tc	752.00	K	KDB
## ## ## ## ## ## ## ## ## ## ## ## ##	tf	395.00	K	NIST Webbook
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tf	395.55	K	Aqueous Solubility Prediction Method
ff 394.95 ± 0.20 K NIST Webbook ff 395.60 ± 0.06 K NIST Webbook ff 395.55 ± 0.06 K NIST Webbook ff 395.57 ± 0.06 K NIST Webbook ff 395.62 ± 0.06 K NIST Webbook ff 395.02 ± 0.00 K NIST Webbook ff 395.00 ± 2.00 K NIST Webbook ff 393.65 ± 1.50 K NIST Webbook ff 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements ff 395.25 ± 0.40 K NIST Webbook ff 395.00 ± 2.00 K NIST Webbook ff 394.65 ± 0.40 K NIST Webbook ff 395.70 ± 0.10 K NIST Webbook ff 395.75 ± 1.00 K NIST Webbook	tf	395.60	K	KDB
tf 395.60 ± 0.06 K NIST Webbook tf 395.55 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 390.00 ± 1.00 K NIST Webbook tf 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 394.65 ± 0.40 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	394.70 ± 1.00	K	NIST Webbook
tf 395.55 ± 0.06 K NIST Webbook tf 395.57 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 390.00 ± 1.00 K NIST Webbook tf 393.65 ± 1.50 K NIST Webbook tf 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 394.65 ± 0.40 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	394.95 ± 0.20	K	NIST Webbook
tf 395.57 ± 0.06 K NIST Webbook tf 395.62 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 390.00 ± 1.00 K NIST Webbook tf 393.65 ± 1.50 K NIST Webbook tf 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 394.65 ± 0.40 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	395.60 ± 0.06	K	NIST Webbook
tf 395.62 ± 0.06 K NIST Webbook tf 395.58 ± 0.15 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 390.00 ± 1.00 K NIST Webbook tf 393.65 ± 1.50 K NIST Webbook tf 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 394.65 ± 0.40 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	395.55 ± 0.06	K	NIST Webbook
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tf	395.57 ± 0.06	K	NIST Webbook
tf 395.00 ± 2.00 K NIST Webbook tf 390.00 ± 1.00 K NIST Webbook tf 393.65 ± 1.50 K NIST Webbook tf 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 394.65 ± 0.40 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	395.62 ± 0.06	K	NIST Webbook
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tf	395.58 ± 0.15	K	NIST Webbook
tf 393.65 ± 1.50 K NIST Webbook tf 395.60 K Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements tf 395.25 ± 0.40 K NIST Webbook tf 395.00 ± 2.00 K NIST Webbook tf 394.65 ± 0.40 K NIST Webbook tf 395.70 ± 0.10 K NIST Webbook tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	395.00 ± 2.00	K	NIST Webbook
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tf	390.00 ± 1.00	K	NIST Webbook
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tf	393.65 ± 1.50	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	395.60	К	correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	395.25 ± 0.40	K	NIST Webbook
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tf	395.00 ± 2.00	K	NIST Webbook
tf 395.15 ± 1.00 K NIST Webbook tf 395.53 ± 0.00 K NIST Webbook	tf	394.65 ± 0.40	K	NIST Webbook
tf 395.53 ± 0.00 K NIST Webbook	tf	395.70 ± 0.10	K	NIST Webbook
	tf	395.15 ± 1.00	K	NIST Webbook
tf 395.15 ± 1.00 K NIST Webbook	tf	395.53 ± 0.00	K	NIST Webbook
	tf	395.15 ± 1.00	K	NIST Webbook

tf	395.50 ± 0.01	К	NIST Webbook
tf	395.00	К	Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity
tf	395.50	K	Solid-Liquid Equilibria for Benzoic Acid + p-Toluic Acid + Chloroform, Benzoic Acid + p-Toluic Acid + Acetic Acid, and Terephthalic Acid + Isophthalic Acid + N,N-Dimethylformamide
tf	395.30	К	Isothermal Thermogravimetric Study for Determining Sublimation Enthalpies of Some Hydroxyflavones
tf	395.15	К	Liquid pharmaceuticals formulation by eutectic formation
tf	394.65 ± 1.50	K	NIST Webbook
tf	395.37	К	Vapour pressures of selected organic compounds down to 1 mPa, using mass-loss Knudsen effusion method
tf	395.50	К	The use of organic calibration standards in the enthalpy calibration of differential scanning calorimeters
tt	395.52 ± 0.01	K	NIST Webbook
tt	395.52 ± 0.01	K	NIST Webbook
tt	392.50	К	Solubility Determination of Nicotinamide and Its Application for the Cocrystallization with Benzoic Acid
tt	396.80	К	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis
tt	395.63	К	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
tt	395.52 ± 0.01	K	NIST Webbook
tt	395.52 ± 0.01	K	NIST Webbook
VC	0.341	m3/kmol	KDB
ZC	0.2486940		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	193.99	J/mol×K	532.29	Joback Method	
cpg	202.56	J/mol×K	567.22	Joback Method	
cpg	237.41	J/mol×K	741.85	Joback Method	
cpg	231.43	J/mol×K	706.92	Joback Method	
cpg	224.97	J/mol×K	672.00	Joback Method	
cpg	218.03	J/mol×K	637.07	Joback Method	
cpg	210.57	J/mol×K	602.14	Joback Method	
cpl	259.00	J/mol×K	413.00	NIST Webbook	
cps	66.57	J/mol×K	106.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	147.14	J/mol×K	299.99	NIST Webbook	
cps	167.40	J/mol×K	298.15	NIST Webbook	
cps	146.80	J/mol×K	298.15	NIST Webbook	
cps	149.00	J/mol×K	301.00	NIST Webbook	
cps	147.07	J/mol×K	299.62	NIST Webbook	
cps	146.79	J/mol×K	298.15	NIST Webbook	
cps	146.65	J/mol×K	298.15	NIST Webbook	
cps	146.23	J/mol×K	296.29	NIST Webbook	
cps	147.03	J/mol×K	298.90	NIST Webbook	
cps	147.78	J/mol×K	300.00	NIST Webbook	
cps	178.60	J/mol×K	368.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	177.80	J/mol×K	366.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	176.90	J/mol×K	364.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	175.90	J/mol×K	362.53	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

4						
	cps	175.10	J/mol×K	360.58	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	174.20	J/mol×K	358.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	173.30	J/mol×K	356.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	172.40	J/mol×K	354.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	171.60	J/mol×K	352.80	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	170.80	J/mol×K	350.86	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	169.90	J/mol×K	348.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	169.00	J/mol×K	346.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	168.10	J/mol×K	345.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	167.30	J/mol×K	343.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	166.30	J/mol×K	341.12	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	165.50	J/mol×K	339.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

1						
	cps	164.50	J/mol×K	337.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	163.70	J/mol×K	335.28	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	162.90	J/mol×K	333.34	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	162.00	J/mol×K	331.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	161.20	J/mol×K	329.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	160.30	J/mol×K	327.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	159.50	J/mol×K	325.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	158.60	J/mol×K	323.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	157.60	J/mol×K	321.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	156.70	J/mol×K	319.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	155.90	J/mol×K	317.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	155.10	J/mol×K	315.83	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	154.20	J/mol×K	313.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	153.20	J/mol×K	311.95	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	152.30	J/mol×K	310.01	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	151.40	J/mol×K	308.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	150.60	J/mol×K	306.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	149.70	J/mol×K	304.19	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	148.70	J/mol×K	302.25	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	147.80	J/mol×K	300.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	146.90	J/mol×K	298.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	146.10	J/mol×K	296.43	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	145.20	J/mol×K	294.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	144.30	J/mol×K	292.55	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

in the second se						
	cps	143.40	J/mol×K	290.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	142.50	J/mol×K	288.67	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	141.60	J/mol×K	286.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	140.70	J/mol×K	284.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	139.80	J/mol×K	282.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	138.90	J/mol×K	280.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	138.00	J/mol×K	278.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	137.20	J/mol×K	277.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	136.30	J/mol×K	275.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	135.40	J/mol×K	273.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	134.50	J/mol×K	271.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	133.70	J/mol×K	269.28	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

1						
	cps	132.80	J/mol×K	267.35	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	131.90	J/mol×K	265.41	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	131.00	J/mol×K	263.47	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	130.10	J/mol×K	261.54	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	129.30	J/mol×K	259.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	128.30	J/mol×K	257.66	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	127.50	J/mol×K	255.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	126.50	J/mol×K	253.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	125.70	J/mol×K	251.84	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	124.80	J/mol×K	249.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	123.90	J/mol×K	247.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	123.10	J/mol×K	246.04	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	122.20	J/mol×K	244.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	121.30	J/mol×K	242.16	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	120.50	J/mol×K	240.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	119.60	J/mol×K	238.29	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	118.70	J/mol×K	236.36	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	130.00	J/mol×K	340.00	NIST Webbook	
cps	146.31	J/mol×K	298.15	NIST Webbook	
cps	147.02	J/mol×K	298.15	NIST Webbook	
cps	149.79	J/mol×K	298.15	NIST Webbook	
cps	146.81	J/mol×K	298.15	NIST Webbook	
cps	146.81	J/mol×K	298.15	NIST Webbook	
cps	160.20	J/mol×K	323.00	NIST Webbook	
cps	117.80	J/mol×K	234.43	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	117.10	J/mol×K	232.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	116.20	J/mol×K	230.56	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	115.40	J/mol×K	228.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	115.20	J/mol×K	228.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	114.60	J/mol×K	226.93	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	114.40	J/mol×K	226.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	113.70	J/mol×K	224.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	113.70	J/mol×K	224.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	112.80	J/mol×K	223.05	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	112.70	J/mol×K	222.63	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	112.00	J/mol×K	221.12	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	111.20	J/mol×K	219.18	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	110.30	J/mol×K	217.24	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	109.50	J/mol×K	215.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	108.70	J/mol×K	213.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	107.90	J/mol×K	211.44	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

107.10	J/mol×K	209.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
106.30	J/mol×K	207.57	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
105.40	J/mol×K	205.64	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
104.60	J/mol×K	203.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
103.80	J/mol×K	201.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
103.00	J/mol×K	199.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
102.20	J/mol×K	197.92	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
101.40	J/mol×K	195.99	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
100.50	J/mol×K	194.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
99.77	J/mol×K	192.14	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
98.94	J/mol×K	190.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
98.11	J/mol×K	188.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed
	106.30 105.40 104.60 103.80 102.20 101.40 99.77	106.30 J/molxK 105.40 J/molxK 104.60 J/molxK 103.80 J/molxK 103.00 J/molxK 104.60 J/molxK 105.40 J/molxK	106.30 J/molxK 207.57 105.40 J/molxK 205.64 104.60 J/molxK 203.71 103.80 J/molxK 201.78 103.00 J/molxK 199.85 102.20 J/molxK 197.92 101.40 J/molxK 195.99 100.50 J/molxK 194.07 99.77 J/molxK 192.14

cps	97.28	J/mol×K	186.39	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	96.53	J/mol×K	184.47	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	95.78	J/mol×K	182.54	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	94.95	J/mol×K	180.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	145.10	J/mol×K	295.10	NIST Webbook	
cps	94.12	J/mol×K	178.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	93.37	J/mol×K	176.79	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	92.62	J/mol×K	174.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	91.79	J/mol×K	172.96	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	91.04	J/mol×K	171.05	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	90.30	J/mol×K	169.14	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	89.55	J/mol×K	167.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	88.80	J/mol×K	165.32	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	88.05	J/mol×K	163.41	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	87.30	J/mol×K	161.50	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	86.55	J/mol×K	159.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	85.81	J/mol×K	157.69	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	85.06	J/mol×K	155.78	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	84.39	J/mol×K	153.88	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	83.64	J/mol×K	151.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	82.89	J/mol×K	150.07	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	82.16	J/mol×K	148.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	81.45	J/mol×K	146.27	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	80.73	J/mol×K	144.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	79.99	J/mol×K	142.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

4						
	cps	79.26	J/mol×K	140.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	78.54	J/mol×K	138.70	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	77.81	J/mol×K	136.81	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	77.12	J/mol×K	134.92	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	76.42	J/mol×K	133.03	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	75.72	J/mol×K	131.15	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	75.00	J/mol×K	129.26	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	74.30	J/mol×K	127.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	73.60	J/mol×K	125.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	72.89	J/mol×K	123.61	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	72.20	J/mol×K	121.73	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
	cps	71.50	J/mol×K	119.85	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps	70.81	J/mol×K	117.97	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	70.13	J/mol×K	116.10	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	69.38	J/mol×K	114.23	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	68.69	J/mol×K	112.36	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	68.01	J/mol×K	110.49	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	67.29	J/mol×K	108.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	7.24	J/mol×K	15.95	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	7.83	J/mol×K	17.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	9.96	J/mol×K	19.00	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	12.14	J/mol×K	20.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	14.48	J/mol×K	22.91	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	16.99	J/mol×K	25.23	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	19.32	J/mol×K	27.83	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	22.55	J/mol×K	30.45	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	25.66	J/mol×K	33.46	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	28.56	J/mol×K	36.82	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	31.83	J/mol×K	40.35	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	34.49	J/mol×K	42.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	35.05	J/mol×K	44.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	38.04	J/mol×K	46.36	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	39.20	J/mol×K	50.06	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	40.57	J/mol×K	52.26	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	41.94	J/mol×K	54.24	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	43.06	J/mol×K	54.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	43.66	J/mol×K	56.71	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	46.10	J/mol×K	59.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	45.51	J/mol×K	59.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	47.67	J/mol×K	63.04	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	50.03	J/mol×K	67.38	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	52.48	J/mol×K	72.18	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	54.70	J/mol×K	77.01	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	56.45	J/mol×K	81.66	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	58.38	J/mol×K	86.47	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	60.83	J/mol×K	91.42	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	62.66	J/mol×K	96.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	64.69	J/mol×K	101.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	66.75	J/mol×K	106.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	68.59	J/mol×K	111.42	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	70.27	J/mol×K	116.46	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	72.23	J/mol×K	121.51	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	74.39	J/mol×K	126.57	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	76.40	J/mol×K	131.52	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	78.39	J/mol×K	136.54	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	80.14	J/mol×K	141.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	81.95	J/mol×K	146.72	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	83.84	J/mol×K	151.83	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	85.94	J/mol×K	156.96	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	87.95	J/mol×K	162.08	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	90.16	J/mol×K	167.21	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	92.08	J/mol×K	172.34	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	93.88	J/mol×K	177.47	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	95.82	J/mol×K	182.61	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	97.76	J/mol×K	187.75	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	100.22	J/mol×K	192.89	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	102.35	J/mol×K	198.03	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	104.33	J/mol×K	203.11	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	106.33	J/mol×K	208.20	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	108.35	J/mol×K	213.34	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	110.69	J/mol×K	218.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	113.13	J/mol×K	223.64	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	115.06	J/mol×K	228.80	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	117.66	J/mol×K	233.96	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	120.10	J/mol×K	239.10	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	122.38	J/mol×K	244.26	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	124.56	J/mol×K	249.39	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	127.05	J/mol×K	254.51	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	129.62	J/mol×K	259.67	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	131.98	J/mol×K	264.84	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	134.13	J/mol×K	269.99	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	137.14	J/mol×K	275.13	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	138.73	J/mol×K	280.31	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	141.06	J/mol×K	285.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	143.42	J/mol×K	290.65	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	146.34	J/mol×K	296.60	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	148.97	J/mol×K	302.17	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	151.12	J/mol×K	306.93	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	153.27	J/mol×K	312.15	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	155.37	J/mol×K	317.33	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	157.74	J/mol×K	322.49	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	

cps	160.60	J/mol×K	326.50	Design and construction of	
				an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	161.44	J/mol×K	330.48	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	163.80	J/mol×K	335.65	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	165.96	J/mol×K	340.82	Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T=15 K to T=350 K	
cps	146.06	J/mol×K	298.15	Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K	
cps	2.27	J/mol×K	10.26	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	
cps	3.02	J/mol×K	11.36	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	,

cps	3.97	J/mol×K	12.61	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	5.14	J/mol×K	13.99	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	6.54	J/mol×K	15.52	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	8.22	J/mol×K	17.23	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	10.17	J/mol×K	19.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	12.39	J/mol×K	21.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	14.97	J/mol×K	23.54	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	17.79	J/mol×K	26.10	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	20.88	J/mol×K	28.96	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	24.14	J/mol×K	32.16	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	27.61	J/mol×K	35.67	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	31.21	J/mol×K	39.58	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	34.80	J/mol×K	43.90	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	38.39	J/mol×K	48.73	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	42.02	J/mol×K	54.07	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	45.71	J/mol×K	60.00	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	49.33	J/mol×K	66.57	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps 52.81 J/molxK 73.88 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 56.69 J/molxK 82.00 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 60.28 J/molxK 91.01 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 63.46 J/molxK 100.97 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 75.08 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 76.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 76.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 76.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 76.93 J/molxK 151.47 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 76.94 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005) cps 77.08 Low-temperature heat capacity and standard thermodynamic functions of Jeta-D-(-)-arabinose (CSH1005)						
heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10OS)		cps	52.81	J/mol×K	73.89	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 63.46 J/molxK 100.97 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5) cps 82.66 J/molxK 151.47 Low-temperature heat capacity and standard thermodynamic functions of JetaD-(-)-arabinose (C5H10O5)	_	cps	56.69	J/mol×K	82.00	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5) cps 67.66 J/molxK 111.11 Low-temperature heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5) cps 82.66 J/molxK 151.47 Low-temperature heat capacity and standard thermodynamic functions of betaD-(-)-arabinose (CSH10O5)		cps	60.28	J/mol×K	91.01	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 71.28 J/molxK 121.20 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 75.08 J/molxK 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/molxK 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 82.66 J/molxK 151.47 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)	_	cps	63.46	J/mol×K	100.97	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 75.08 J/mol×K 131.23 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/mol×K 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 82.66 J/mol×K 151.47 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)		cps	67.66	J/mol×K	111.11	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 78.93 J/mol×K 141.33 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 82.66 J/mol×K 151.47 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose of .betaD-(-)-arabinose		cps	71.28	J/mol×K	121.20	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5) cps 82.66 J/mol×K 151.47 Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose		cps	75.08	J/mol×K	131.23	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose		cps	78.93	J/mol×K	141.33	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose
		cps	82.66	J/mol×K	151.47	heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose

cps	86.28	J/mol×K	161.56	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	90.21	J/mol×K	171.65	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	94.38	J/mol×K	181.75	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	98.14	J/mol×K	191.83	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	101.91	J/mol×K	201.92	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	106.35	J/mol×K	212.02	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	110.99	J/mol×K	222.12	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	115.40	J/mol×K	232.21	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)

cps	119.97	J/mol×K	242.21	Low-temperature heat capacity and standard thermodynamic
				functions of .betaD-(-)-arabinose (C5H10O5)
cps	124.67	J/mol×K	252.40	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	128.80	J/mol×K	262.46	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	133.51	J/mol×K	272.51	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	138.20	J/mol×K	282.55	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	141.62	J/mol×K	292.70	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	144.34	J/mol×K	302.71	Low-temperature heat capacity and standard thermodynamic functions of .betaD-(-)-arabinose (C5H10O5)
cps	104.86	J/mol×K	208.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study

cps	105.69	J/mol×K	210.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	106.52	J/mol×K	211.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	107.61	J/mol×K	213.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	108.96	J/mol×K	216.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	110.02	J/mol×K	218.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	111.86	J/mol×K	221.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	113.15	J/mol×K	224.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	114.43	J/mol×K	226.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	114.68	J/mol×K	227.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	116.19	J/mol×K	230.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	117.68	J/mol×K	233.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	119.14	J/mol×K	236.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	120.59	J/mol×K	239.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	122.50	J/mol×K	243.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	124.38	J/mol×K	247.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	126.69	J/mol×K	252.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	128.74	J/mol×K	256.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	130.54	J/mol×K	260.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	132.10	J/mol×K	264.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	134.09	J/mol×K	268.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	135.19	J/mol×K	271.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	136.06	J/mol×K	273.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	137.59	J/mol×K	276.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	138.90	J/mol×K	279.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	140.41	J/mol×K	283.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	142.15	J/mol×K	287.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	144.10	J/mol×K	291.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	144.31	J/mol×K	292.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	144.75	J/mol×K	293.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	145.18	J/mol×K	294.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	145.61	J/mol×K	295.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.70	J/mol×K	297.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.89	J/mol×K	298.15	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	146.92	J/mol×K	298.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	147.13	J/mol×K	298.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	148.44	J/mol×K	301.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	149.32	J/mol×K	303.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	150.19	J/mol×K	305.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	151.07	J/mol×K	307.72	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	152.18	J/mol×K	310.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	153.96	J/mol×K	314.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	155.75	J/mol×K	318.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	

cps	157.11	J/mol×K	321.22	Enthalpies of sublimation of L-methionine and DL-methionine: Knudsen's effusion mass spectrometric study	
cps	2.28	J/mol×K	10.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.58	J/mol×K	10.71	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.90	J/mol×K	11.18	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.26	J/mol×K	11.68	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.65	J/mol×K	12.20	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.07	J/mol×K	12.74	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.54	J/mol×K	13.30	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.05	J/mol×K	13.89	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.60	J/mol×K	14.50	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	6.19	J/mol×K	15.14	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	6.66	J/mol×K	15.64	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	8.09	J/mol×K	17.10	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	9.72	J/mol × K	18.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	11.56	J/mol × K	20.41	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	13.61	J/mol × K	22.32	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	15.91	J/mol × K	24.40	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	18.40	J/mol × K	26.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	20.97	J/mol×K	29.13	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	23.77	J/mol×K	31.84	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	26.64	J/mol×K	34.80	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	29.60	J/mol×K	38.03	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	32.79	J/mol×K	41.56	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	35.88	J/mol × K	45.42	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	39.11	J/mol × K	49.63	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	42.18	J/mol×K	54.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	45.06	J/mol×K	59.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	47.92	J/mol×K	64.78	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	50.65	J/mol×K	70.79	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	53.75	J/mol×K	77.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	57.18	J/mol×K	84.51	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	61.03	J/mol×K	92.38	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	64.26	J/mol×K	100.95	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	67.64	J/mol × K	110.98	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	71.22	J/mol × K	121.09	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	75.19	J/mol×K	131.21	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	78.86	J/mol×K	141.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	82.29	J/mol × K	151.34	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	85.76	J/mol×K	161.49	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	90.18	J/mol×K	171.59	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	95.02	J/mol×K	181.67	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	98.70	J/mol×K	191.74	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	102.27	J/mol×K	201.82	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	106.37	J/mol×K	211.92	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	112.07	J/mol×K	222.00	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	117.31	J/mol×K	232.09	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	119.60	J/mol×K	242.17	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	124.22	J/mol×K	252.25	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	128.72	J/mol×K	262.35	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	133.00	J/mol×K	272.46	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps 137.80 J/molxK 282.54 Low-temperature heat capacity measurements on insulating powders sealed under pressure cps 141.72 J/molxK 292.59 Low-temperature heat capacity measurements on insulating powders sealed under pressure cps 146.37 J/molxK 302.66 Low-temperature heat capacity measurements on insulating powders sealed under pressure cps 2.29 J/molxK 10.30 Thermodynamic Propretes of [C6mim]INT12] in the Condensed State cps 2.68 J/molxK 10.90 Thermodynamic Propertes of [C6mim]INT12] in the Condensed State cps 3.09 J/molxK 11.50 Thermodynamic Propertes of [C6mim]INT12] in the Condensed State cps 3.53 J/molxK 12.10 Thermodynamic Propertes of [C6mim]INT12] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Propertes of [C6mim]INT12] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Propertes of [C6mim]INT12] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Propertes of [C6mim]INT12 in the Condensed State cps 5.57	4						
heat capacity measurements on insulating powders sealed under pressure cps 146.37 J/molxK 302.66 Low-temperature heat capacity measurements on insulating powders sealed under pressure cps 2.29 J/molxK 10.30 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 3.09 J/molxK 11.50 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 3.53 J/molxK 11.50 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 3.53 J/molxK 12.10 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 4.00 J/molxK 12.71 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 4.50 J/molxK 13.33 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 5.02 J/molxK 13.34 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 5.57 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTI2] in the Condensed State		cps	137.80	J/mol×K	282.54	heat capacity measurements on insulating powders sealed	
heat capacity measurements on insulating powders sealed under pressure		cps	141.72	J/mol×K	292.59	heat capacity measurements on insulating powders sealed	
Comministration Comministr		cps	146.37	J/mol×K	302.66	heat capacity measurements on insulating powders sealed	
Properties of [C6mim] NTf2] in the Condensed State		cps	2.29	J/mol×K	10.30	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State		cps	2.68	J/mol×K	10.90	Properties of [C6mim][NTf2] in the Condensed	
Cps 4.00 J/molxK 12.71 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 4.50 J/molxK 13.33 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State		cps	3.09	J/mol×K	11.50	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 4.50 J/molxK 13.33 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.02 J/molxK 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.57 J/molxK 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed		cps	3.53	J/mol×K	12.10	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 5.02 J/mol×K 13.94 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 5.57 J/mol×K 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State		cps	4.00	J/mol×K	12.71	Properties of [C6mim][NTf2] in the Condensed	
cps 5.57 J/mol×K 14.56 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Thermodynamic Properties of [C6mim][NTf2] in the Condensed		cps	4.50	J/mol×K	13.33	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed		cps	5.02	J/mol×K	13.94	Properties of [C6mim][NTf2] in the Condensed	
		cps	5.57	J/mol×K	14.56	Properties of [C6mim][NTf2] in the Condensed	

cps 6.13 J/molxK 15.17 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 6.82 J/molxK 15.90 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 7.64 J/molxK 16.73 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 8.47 J/molxK 17.56 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 9.33 J/molxK 18.39 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 10.21 J/molxK 19.22 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 11.09 J/molxK 20.06 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 12.34 J/molxK 21.19 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 13.90 J/molxK 22.62 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 15.49 J/molxK 24.04 Thermodynamic Properties of ICAMIMINTE2 in the Condensed State cps 17.05 J/molxK 25.46 Thermodynamic Properties o						
Properties of C6mim NT2 in the Condensed State	cps	6.13	J/mol×K	15.17	Properties of [C6mim][NTf2] in the Condensed	
Properties of Common Com	cps	6.82	J/mol×K	15.90	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mmi NT12 in the Condensed State	cps	7.64	J/mol×K	16.73	Properties of [C6mim][NTf2] in the Condensed	
Properties of CommiNTI2 in the Condensed State	cps	8.47	J/mol×K	17.56	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim] NTf2 in the Condensed State	cps	9.33	J/mol×K	18.39	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State Cps 12.34 J/molxK 21.19 Thermodynamic Properties of [C6mim NTf2 in the Condensed State Cps 13.90 J/molxK 22.62 Thermodynamic Properties of (C6mim NTf2 in the Condensed State Cps 15.49 J/molxK 24.04 Thermodynamic Properties of (C6mim NTf2 in the Condensed State Cps 17.05 J/molxK 25.46 Thermodynamic Properties of (C6mim NTf2 in the Condensed State Cps 18.61 J/molxK 26.89 Thermodynamic Properties of C6mim NTf2 in the Condensed State Cps Thermodynamic Properties of C6mim NTf2 in the Condensed State Cps Condensed State Cps Condensed	cps	10.21	J/mol×K	19.22	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State	cps	11.09	J/mol×K	20.06	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State	cps	12.34	J/mol×K	21.19	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State cps 17.05 J/mol×K 25.46 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State cps 18.61 J/mol×K 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed of [C6mim][NTf2] in the Condensed	cps	13.90	J/mol×K	22.62	Properties of [C6mim][NTf2] in the Condensed	
cps 18.61 J/mol×K 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 18.61 J/mol×K 26.89 Thermodynamic Properties of [C6mim][NTf2] in the Condensed	cps	15.49	J/mol×K	24.04	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed	cps	17.05	J/mol×K	25.46	Properties of [C6mim][NTf2] in the Condensed	
	cps	18.61	J/mol×K	26.89	Properties of [C6mim][NTf2] in the Condensed	

cps	20.19	J/mol×K	20.22	Thermodynamia	
	20.10	3/IIIOIAIX	28.33	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	21.74	J/mol×K	29.77	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	23.43	J/mol×K	31.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	25.21	J/mol×K	33.11	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	26.94	J/mol×K	34.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	28.60	J/mol×K	36.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	30.21	J/mol×K	38.37	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	31.74	J/mol×K	40.13	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	33.33	J/mol×K	41.98	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	34.99	J/mol×K	43.94	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	36.51	J/mol×K	45.90	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	38.01	J/mol×K	47.87	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	

cps 39.43 J/molxK 49.84 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 40.77 J/molxK 51.81 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 42.06 J/molxK 53.78 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 43.33 J/molxK 55.75 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 44.56 J/molxK 57.72 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 45.75 J/molxK 59.69 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 46.91 J/molxK 61.67 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 48.01 J/molxK 63.65 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 49.04 J/molxK 65.63 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 50.10 J/molxK 67.61 Thermodynamic Properties of [C6mim]NTF2] in the Condensed State cps 51.07 J/molxK 69.60 Thermodynam						
Properties of Commin INT2 in the Condensed State	cps	39.43	J/mol×K	49.84	Properties of [C6mim][NTf2] in the Condensed	
Properties of CommingNTr2 in the Condensed State	cps	40.77	J/mol×K	51.81	Properties of [C6mim][NTf2] in the Condensed	
Cps	cps	42.06	J/mol×K	53.78	Properties of [C6mim][NTf2] in the Condensed	
Properties of	cps	43.33	J/mol×K	55.75	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim] NTf2 in the Condensed State	cps	44.56	J/mol×K	57.72	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State Cps	cps	45.75	J/mol×K	59.69	Properties of [C6mim][NTf2] in the Condensed	
Properties of C6mim NTf2 in the Condensed State	cps	46.91	J/mol×K	61.67	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State	cps	48.01	J/mol×K	63.65	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed State Cps 51.07 J/mol×K 69.60 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State Cps 52.00 J/mol×K 71.59 Thermodynamic Properties of [C6mim][NTf2] in the Condensed of [C6mim][NTf2] in the Condensed	cps	49.04	J/mol×K	65.63	Properties of [C6mim][NTf2] in the Condensed	
cps 52.00 J/mol×K 71.59 Thermodynamic Properties of [C6mim][NTf2] in the Condensed State 71.59 Thermodynamic Properties of [C6mim][NTf2] in the Condensed	cps	50.10	J/mol×K	67.61	Properties of [C6mim][NTf2] in the Condensed	
Properties of [C6mim][NTf2] in the Condensed	cps	51.07	J/mol×K	69.60	Properties of [C6mim][NTf2] in the Condensed	
	cps	52.00	J/mol×K	71.59	Properties of [C6mim][NTf2] in the Condensed	

cps	52.93	J/mol×K	73.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	53.90	J/mol×K	75.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	54.88	J/mol×K	77.59	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	56.16	J/mol×K	80.71	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	56.92	J/mol×K	82.55	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	57.66	J/mol×K	84.38	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	58.43	J/mol×K	86.22	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	59.17	J/mol×K	88.06	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	59.92	J/mol×K	89.91	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	60.64	J/mol×K	91.62	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	60.69	J/mol×K	91.76	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State
cps	61.50	J/mol×K	93.75	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State

cps	62.21	J/mol×K	95.60	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	62.98	J/mol×K	97.45	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	63.71	J/mol×K	99.31	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	64.44	J/mol×K	101.17	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	65.18	J/mol×K	103.02	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	65.85	J/mol×K	104.89	Thermodynamic Properties of [C6mim][NTf2] in the Condensed State	
cps	155.20	J/mol×K	298.00	NIST Webbook	
dvisc	0.0001471	Paxs	532.29	Joback Method	
dvisc	0.0002251	Paxs	494.54	Joback Method	
dvisc	0.0031482	Paxs	343.57	Joback Method	
dvisc	0.0003697	Paxs	456.80	Joback Method	
dvisc	0.0006638	Paxs	419.06	Joback Method	
dvisc	0.0091461	Paxs	305.82	Joback Method	
dvisc	0.0013384	Paxs	381.31	Joback Method	
hfust	17.40	kJ/mol	395.00	NIST Webbook	
hfust	18.00	kJ/mol	395.52	NIST Webbook	
hfust	18.01	kJ/mol	395.52	NIST Webbook	
hfust	16.23	kJ/mol	395.00	NIST Webbook	
hfust	17.10	kJ/mol	395.40	NIST Webbook	
hfust	17.32	kJ/mol	395.00	NIST Webbook	
hfust	16.99	kJ/mol	396.90	NIST Webbook	
hfust	17.30	kJ/mol	394.40	NIST Webbook	
hfust	17.99	kJ/mol	395.50	NIST Webbook	
hsubt	86.60 ± 1.30	kJ/mol	302.50	NIST Webbook	
		k I/mal	360.50	NIST Webbook	
hsubt	89.30 ± 0.40	kJ/mol			
hsubt hsubt	89.00 ± 0.40	kJ/mol	360.50	NIST Webbook	
hsubt					

hsubt	88.50 ± 1.60	kJ/mol	305.50	NIST Webbook	
hsubt	88.30 ± 2.90	kJ/mol	302.00	NIST Webbook	
hsubt	90.40 ± 0.80	kJ/mol	358.00	NIST Webbook	
hsubt	89.10 ± 0.20	kJ/mol	345.00	NIST Webbook	
hsubt	89.50 ± 0.05	kJ/mol	353.50	NIST Webbook	
hsubt	91.00 ± 2.00	kJ/mol	303.00	NIST Webbook	
hsubt	87.80	kJ/mol	398.00	NIST Webbook	
hsubt	95.10 ± 1.80	kJ/mol	294.00	NIST Webbook	
hsubt	86.60 ± 1.70	kJ/mol	302.50	NIST Webbook	
hsubt	87.50 ± 0.30	kJ/mol	335.00	NIST Webbook	
hsubt	88.70 ± 0.90	kJ/mol	310.50	NIST Webbook	
hsubt	86.70	kJ/mol	328.00	NIST Webbook	
hsubt	90.50 ± 0.30	kJ/mol	358.50	NIST Webbook	
hsubt	93.00 ± 4.00	kJ/mol	312.50	NIST Webbook	
hsubt	90.00 ± 0.50	kJ/mol	308.00	NIST Webbook	
hsubt	90.90 ± 2.00	kJ/mol	375.00	NIST Webbook	
hsubt	89.23	kJ/mol	298.15	NIST Webbook	
hsubt	88.90 ± 0.50	kJ/mol	363.00	NIST Webbook	
hsubt	90.90	kJ/mol	299.00	NIST Webbook	
hsubt	84.20 ± 0.80	kJ/mol	318.00	NIST Webbook	
hsubt	84.10 ± 0.80	kJ/mol	318.00	NIST Webbook	
hsubt	84.50 ± 0.50	kJ/mol	385.50	NIST Webbook	
hsubt	88.10 ± 0.20	kJ/mol	302.00	NIST Webbook	
hsubt	90.00 ± 0.30	kJ/mol	300.50	NIST Webbook	
hsubt	85.00 ± 2.00	kJ/mol	369.50	NIST Webbook	
hsubt	90.80 ± 0.60	kJ/mol	306.00	NIST Webbook	
hsubt	85.80	kJ/mol	361.00	NIST Webbook	
hvapt	66.30	kJ/mol	464.00	NIST Webbook	
hvapt	63.30 ± 0.60	kJ/mol	408.50	NIST Webbook	
hvapt	87.45	kJ/mol	335.00	NIST Webbook	
hvapt	65.40	kJ/mol	428.00	NIST Webbook	
hvapt	90.50	kJ/mol	331.00	Studying the sublimation thermodynamics of ethionamide and pyridine carbothioamide isomers by transpiration method	
hvapt	87.30	kJ/mol	357.00	Sublimation and thermal decomposition of ammonia borane: Competitive processes controlled by pressure	

hvapt	90.80	kJ/mol	308.21	Enthalpy of sublimation of natural aromatic amino acids determined by Knudsen's effusion mass spectrometric method
hvapt	50.63	kJ/mol	523.00	KDB
hvapt	67.70	kJ/mol	460.50	NIST Webbook
hvapt	90.20	kJ/mol	348.00	Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydantoins
hvapt	67.80	kJ/mol	398.00	NIST Webbook
psub	6.43e-04	kPa	312.86	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	3.02e-03	kPa	327.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	2.50e-04	kPa	304.75	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.42e-04	kPa	299.96	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.43e-04	kPa	300.03	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation

psub	6.93e-03	kPa	336.46	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	4.36e-03	kPa	331.62	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	2.68e-03	kPa	326.76	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.08e-04	kPa	297.67	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	1.64e-03	kPa	321.91	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	9.69e-04	kPa	316.91	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	5.73e-04	kPa	312.08	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	0.11	kPa	367.50	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

psub	0.07	kPa	362.50	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.05	kPa	357.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.03	kPa	352.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.02	kPa	347.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	0.01	kPa	342.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	8.09e-03	kPa	337.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	
psub	4.95e-03	kPa	332.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods	

psub	3.35e-04	kPa	307.27	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	2.14e-03	kPa	324.00	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	1.47e-03	kPa	320.40	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	9.50e-04	kPa	316.30	Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods
psub	1.93e-04	kPa	302.51	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	4.89e-03	kPa	332.85	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	4.82e-03	kPa	332.80	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states
psub	4.95e-03	kPa	332.60	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states

psub	3.13e-03	kPa	327.90	Thermodynamic	
			027.00	properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	3.10e-03	kPa	327.88	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	2.98e-03	kPa	327.63	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.88e-03	kPa	322.99	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.82e-03	kPa	322.95	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.83e-03	kPa	322.70	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.10e-03	kPa	318.02	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.13e-03	kPa	318.02	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.10e-03	kPa	317.91	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub	1.07e-03	kPa	317.89	Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	

psub 6.61e-04 kPa 313.19 Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states psub 4.36e-04 kPa 309.63 Vapor pressures and vaporization	
and vaporization	
enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one Data evaluation	e.
psub 3.78e-04 kPa 308.00 Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub 2.05e-04 kPa 302.99 Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states	
psub 4.57e-03 kPa 332.60 The thermodynamic properties of 1-bromoadamantane in the gaseous state	
psub 2.89e-03 kPa 327.90 The thermodynamic properties of 1-bromoadamantane in the gaseous state	
psub 1.74e-03 kPa 322.99 The thermodynamic properties of 1-bromoadamantane in the gaseous state	
psub 1.69e-03 kPa 322.70 The thermodynamic properties of 1-bromoadamantane in the gaseous state	
psub 1.02e-03 kPa 318.02 The thermodynamic properties of 1-bromoadamantane in the gaseous state	
psub 0.03 kPa 354.15 Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds	

psub	7.51e-03	kPa	338.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds	
psub	1.67e-03	kPa	323.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds	
psub	2.85e-04	kPa	307.15	Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds	
psub	1.01e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.02e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.05e-03	kPa	317.32	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	8.30e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	7.99e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	8.15e-04	kPa	315.27	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.47e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.22e-04	kPa	313.20	The design, construction, and testing of a new Knudsen effusion apparatus	

Psub 6.43e-04 KPa 313.20						
psub 5.12e-04 kPa 311.30 The design, construction, and testing of a new Knudsen effusion apparatus psub 5.25e-04 kPa 311.30 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.20e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.08e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.23e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	6.43e-04	kPa	313.20	construction, and testing of a new Knudsen effusion	
psub 5.25e-04 kPa 311.30 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.20e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.08e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.08e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.23e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	5.24e-04	kPa	311.30	construction, and testing of a new Knudsen effusion	
psub 4.20e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.08e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.23e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	5.12e-04	kPa	311.30	construction, and testing of a new Knudsen effusion	
psub 4.08e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.23e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	5.25e-04	kPa	311.30	construction, and testing of a new Knudsen effusion	
psub 4.14e-04 kPa 309.25 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.23e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	 psub	4.20e-04	kPa	309.25	construction, and testing of a new Knudsen effusion	
psub 3.23e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	4.08e-04	kPa	309.25	construction, and testing of a new Knudsen effusion	
psub 3.26e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	4.14e-04	kPa	309.25	construction, and testing of a new Knudsen effusion	
psub 3.32e-04 kPa 307.13 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus	psub	3.23e-04	kPa	307.13	construction, and testing of a new Knudsen effusion	
psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.71e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion and testing of a new Knudsen effusion	psub	3.26e-04	kPa	307.13	construction, and testing of a new Knudsen effusion	
construction, and testing of a new Knudsen effusion apparatus psub 2.61e-04 kPa 305.24 The design, construction, and testing of a new Knudsen effusion	psub	3.32e-04	kPa	307.13	construction, and testing of a new Knudsen effusion	
construction, and testing of a new Knudsen effusion	psub	2.71e-04	kPa	305.24	construction, and testing of a new Knudsen effusion	
	psub	2.61e-04	kPa	305.24	construction, and testing of a new Knudsen effusion	

psub	2.65e-04	kPa	305.24	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.10e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.01e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus
psub	2.03e-04	kPa	303.16	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.55e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.60e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.62e-04	kPa	301.04	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.31e-04	kPa	299.33	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.34e-04	kPa	299.33	The design, construction, and testing of a new Knudsen effusion apparatus
psub	8.73e-03	kPa	338.98	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation
psub	5.54e-03	kPa	334.07	Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation

Psub 3.43e-03 RPa 329.20 Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation					
Section Sect	psub	3.43e-03	kPa	329.20	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
Sub Sub	psub	2.12e-03	kPa	324.39	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
Second S	psub	1.27e-03	kPa	319.48	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation psub 7.79e-03 kPa 337.71 Thermodynamic properties of 2-adamantanone in the condensed and ideal gaseous states rhol 1075.00 kg/m3 403.00 KDB sfust 45.51 J/molxK 395.52 NIST Webbook sfust 41.10 J/molxK 395.00 NIST Webbook sfust 43.80 J/molxK 395.00 NIST Webbook sfust 44.00 J/molxK 395.00 NIST Webbook sfust 44.00 J/molxK 395.00 NIST Webbook stust 45.52 J/molxK 395.52 NIST Webbook stust 299.30 J/molxK 298.15 NIST Webbook svapt 261.00 J/molxK 335.00 NIST Webbook tcondl 0.14 W/mxK 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	psub	7.38e-04	kPa	314.40	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
rhol 1075.00 kg/m3 403.00 KDB sfust 45.51 J/mol×K 395.52 NIST Webbook sfust 41.10 J/mol×K 395.00 NIST Webbook sfust 43.80 J/mol×K 395.00 NIST Webbook sfust 44.00 J/mol×K 395.00 NIST Webbook sfust 45.52 J/mol×K 395.52 NIST Webbook sfust 45.52 J/mol×K 395.00 NIST Webbook sfust 45.52 J/mol×K 395.00 NIST Webbook sfust 45.52 J/mol×K 395.52 NIST Webbook ssubt 299.30 J/mol×K 395.52 NIST Webbook svapt 261.00 J/mol×K 335.00 NIST Webbook tcondl 0.14 W/m×K 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	psub	7.54e-04	kPa	314.59	and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one.
sfust 45.51 J/molxK 395.52 NIST Webbook sfust 41.10 J/molxK 395.00 NIST Webbook sfust 43.80 J/molxK 395.00 NIST Webbook sfust 44.00 J/molxK 395.00 NIST Webbook sfust 45.52 J/molxK 395.52 NIST Webbook ssubt 299.30 J/molxK 298.15 NIST Webbook svapt 261.00 J/molxK 335.00 NIST Webbook tcondl 0.14 W/mxK 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	psub	7.79e-03	kPa	337.71	properties of 2-adamantanone in the condensed and ideal
sfust 41.10 J/molxK 395.00 NIST Webbook sfust 43.80 J/molxK 395.00 NIST Webbook sfust 44.00 J/molxK 395.00 NIST Webbook sfust 45.52 J/molxK 395.52 NIST Webbook ssubt 299.30 J/molxK 298.15 NIST Webbook svapt 261.00 J/molxK 335.00 NIST Webbook tcondl 0.14 W/mxK 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	rhol	1075.00	kg/m3	403.00	KDB
sfust 43.80 J/molxK 395.00 NIST Webbook sfust 44.00 J/molxK 395.00 NIST Webbook sfust 45.52 J/molxK 395.52 NIST Webbook ssubt 299.30 J/molxK 298.15 NIST Webbook svapt 261.00 J/molxK 335.00 NIST Webbook tcondl 0.14 W/mxK 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	 sfust	45.51	J/mol×K	395.52	NIST Webbook
sfust 44.00 J/mol×K 395.00 NIST Webbook sfust 45.52 J/mol×K 395.52 NIST Webbook ssubt 299.30 J/mol×K 298.15 NIST Webbook svapt 261.00 J/mol×K 335.00 NIST Webbook tcondl 0.14 W/m×K 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	sfust	41.10		395.00	
sfust 45.52 J/mol×K 395.52 NIST Webbook ssubt 299.30 J/mol×K 298.15 NIST Webbook svapt 261.00 J/mol×K 335.00 NIST Webbook tcondl 0.14 W/m×K 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K	sfust	43.80	J/mol×K		
ssubt 299.30 J/mol×K 298.15 NIST Webbook svapt 261.00 J/mol×K 335.00 NIST Webbook tcondl 0.14 W/m×K 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K					
svapt 261.00 J/mol×K 335.00 NIST Webbook tcondl 0.14 W/m×K 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K					
tcondl 0.14 W/mxK 406.80 Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K					
and Thermal Conductivity of Conductivity of Aqueous Benzoic Acid Mixtures between 375 K					
	tcondl	0.14	W/m×K	406.80	and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K

tcondl	0.14	W/m×K	424.40	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K	
tcondl	0.13	W/m×K	444.90	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K	
tcondl	0.13	W/m×K	465.10	Density, Viscosity and Thermal Conductivity of Aqueous Benzoic Acid Mixtures between 375 K and 465 K	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	406.20	K	1.30	NIST Webbook
tbrp	406.00	K	1.30	NIST Webbook

Correlations

Information	Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.50844e+01
Coeff. B	-4.20667e+03
Coeff. C	-1.20264e+02
Temperature range (K), min.	395.52
Temperature range (K), max.	550.71

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	-7.46843e+01

Coeff. B	-4.45389e+03
Coeff. C	1.47811e+01
Coeff. D	-1.71981e-05
Temperature range (K), min.	395.52
Temperature range (K), max.	560.15

Sources

chromatographic and solubility

measurements:

https://www.doi.org/10.1016/j.jct.2009.10.002 Partial molar volumes of some drug and pro-drug substances in 1-octanol দুখেৰা এক্ট্ৰপূৰ্ণ হিন্দু ublimation enthalpy by https://www.doi.org/10.1016/j.tca.2017.06.024 thermogravimetry: Analysis of the application of the application of the second statement of the second statement of the second s https://www.doi.org/10.1021/je300488y https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je101319f Solubilities of Benzene Carboxylic Solubilities of Benzene Carboxylic
Acids in Isobutyl Acetate from (299.73
Experiment and Computation of
Solubility and Dissolution Properties
Varendlapid Maisalephiatits
Interpretation of Maisalephiatits
Interpretation of Enzyl Alcohol and Mathyma the resulting and Properties of ethionamide and problems of ethionamide and ethionamide an https://www.doi.org/10.1016/j.fluid.2014.07.038 Palvesitation method: Low-temperature heat capacity and https://www.doi.org/10.1016/j.jct.2015.08.031 standard thermodynamic functions of Solid-Liquid-Earthletiums/Heast personner in the standard thermodynamic functions of Solid-Liquid-Earthletiums/Heast personner in the standard thermodynamic functions of Solid-Liquid-Earthletiums/Heast personner in the standard thermodynamic functions of Solid Interest in the standard thermodynamic functions of the standard ther Liquid Equilibrium of Ma**ସେଧାୟ ଅଧାର୍ଥୀ ଅବସ**zoic Acid in Acetic http://link.springer.com/article/10.1007/BF02311772 PRAGMATBURGIDEN SOIC Acid in Acetic Acid/Methanol + Water and Acetic Acid I har item by the Market Brisipe souther than the souther brisipe souther brisipe souther brisipe souther by the Mater and Water-Ethanol Mixtures within the Tempelability of the Acetic Acid Mixtures within the Tempelability of the Acetic Acid Mixtures within the Tempelability of the Acetic Acid Mixtures within the Tempelability of the Acetic Mixtures within the Acetic Mixtures wi https://www.doi.org/10.1016/j.fluid.2006.10.014 https://www.doi.org/10.1016/j.fluid.2014.09.013 https://www.doi.org/10.1016/j.jct.2005.07.007 https://www.doi.org/10.1016/j.jct.2004.12.006 https://www.doi.org/10.1016/j.jct.2019.05.009 measurements on insulating powders Southing Harts of Color in Aqueous Solutions Containing Ethanol or நுஷ்குந்து இetermination and https://www.doi.org/10.1021/je800507m https://www.doi.org/10.1021/acs.jced.9b00190 Thermodynamic Modeling of Aquences protection of the pro https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751500/ toridenesliken rearroscom records: Solubility of chlocyphos in different solvents: https://www.doi.org/10.1016/j.fluid.2012.06.010 Gaseous Phase Heat Capacity of https://www.doi.org/10.1021/je900999b Benzoic Acid:
Thermodynamics of molecular solids in https://www.doi.org/10.1016/j.jct.2011.12.015 organic solvents:
Determination and modeling of https://www.doi.org/10.1016/j.fluid.2012.11.023 aqueous solubility of 4-position stips (Runs diameters) at ill appropriate the stip of the https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Prossible temperature solution: Sublimation thermodynamics of four https://www.doi.org/10.1016/j.jct.2016.10.010 fluoroquinolone antimicrobial
Thermodynamic Modeling and
Solubility Measurement of Cetirizine https://www.doi.org/10.1021/acs.jced.9b00620 Solubility Measurement of Cettrizine
By the lity of the tank of the property of the tank of the property of the tank of the property of the tank o https://www.doi.org/10.1016/j.jct.2016.07.023

https://www.doi.org/10.1016/j.jct.2018.05.003

Enthalpy of sublimation of natural aromatic amino acids determined by Measuserscertosidaan Sepacity by พหลิสินิยาระหาดรู้เปลากระยาacity by Asis อุปการะหาดรู้เปลากระยาสามารถเกราะ อุปการะหาดรู้เปลากระยาสามารถเกราะ อุปการะหาดรู้เกาะ อุปการะหาด Measurement and Correlation of the Ezmannia idenybumation malic amethide ipg and Dlanetbionine: kwwesonarmaguniqaesormulation by eutectic formationy: Solubility of benzoic acid in acetone, 2-propanol, acetic acid and by cuence of Eigenth Solvent Repetition of the Common of t

thermochemical properties with Bompitem energies per Industrial of Bompitem energies per Industrial of Bompitem energies per Industrial energies Benzoic Acid Industrial energies Benzoic Acid Industrial energies energies energies en Bolvents and Binary Mixtures: Crippen Method:

KDB:

Measurement and Correlation of the Solid-Liquid-Gas Equilibria for the BrightilikaMeanmeneetan Solubility Therseadynamic Modeling of ४ अप्रकृतिकशामिकतकार प्रकार स्टब्स्ट Bateongraphynd Magas Coe aladion of + p-Toluic Acid + Chloroform, Benzoic AelubilityTeluitibutenylnethyl Aelerialed TereTriphenylkin Chlesiale in acid + Nacionalis Acid + Nac https://www.doi.org/10.1021/je900769d
Apide in-Spircfitiral Mater at
Temperature interpretation Spiral interpr Resultility of Branzoin atch Salia vilice + Benzoic Acid from 292.55 to 372.10 K:

https://www.doi.org/10.1016/j.jct.2014.02.003 https://www.doi.org/10.1021/je100658y https://www.doi.org/10.1016/j.tca.2005.06.043 https://www.doi.org/10.1016/j.tca.2012.03.028 https://www.doi.org/10.1016/j.tca.2006.08.018 https://www.doi.org/10.1021/je7004038 https://www.doi.org/10.1021/acs.jced.8b00888 https://www.doi.org/10.1021/je600527c https://www.doi.org/10.1016/j.jct.2016.06.011 https://www.doi.org/10.1016/j.jct.2019.04.006 https://www.doi.org/10.1016/j.fluid.2017.05.009 https://www.doi.org/10.1016/j.fluid.2010.06.021 https://www.doi.org/10.1021/acs.jced.8b00416 http://webbook.nist.gov/cgi/cbook.cgi?ID=C65850&Units=SI Benzoic acid derivatives: Evaluation of https://www.doi.org/10.1016/j.tca.2015.03.026 https://www.doi.org/10.1021/je0497247 https://www.doi.org/10.1021/je100675r http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=955 https://www.doi.org/10.1021/je0342280 https://www.doi.org/10.1021/acs.jced.7b01034 https://www.doi.org/10.1021/je700486g https://www.doi.org/10.1021/acs.jced.6b00230 The section and its application for the cadry state and its application of the solid-Liquid Phase Equilibrium for solubility is application and application of the solid-Liquid Phase Equilibrium for solubility is applicated and its application of the solid-Liquid Phase Equilibrium for solubility is application and application of the solid-Liquid Phase Equilibrium for solubility is application and application of the solid-Liquid Phase Equilibrium for solubility is application of the solid-Liquid Phase Equilibrium for solubility is application of the solid-Liquid Phase Equilibrium for solubility is application of the s https://www.doi.org/10.1016/j.fluid.2014.11.026 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=955 Solvents: Solid-Liquid Equilibria for Benzoic Acid https://www.doi.org/10.1021/je049801y https://www.doi.org/10.1021/je9000944 https://www.doi.org/10.1016/j.jct.2006.03.016 https://www.doi.org/10.1021/je900769d

Solubility, Model Correlation, and

Solvent Effect of

Solutitity3MaeswrementiandcMpaleting This is the first of the first of this is the first of th

The design, construction, and testing of a new Knudsen effusion apparatus: Solubility Measurement and

Thermodynamic Modeling of Benzoic Sellability Measurement and Thermodynamic Modeling of Benzoic Sellability differential and Binary Thermodynamic Analysis of Bioactive Rasseria bin specific of Bioactive Rasseria bin specific of Bioactive Rasseria bin specific of Frome Company of the Sellability of Rand Company of Property System (Company of the Sellability of Rand Sellability of Rand

ธิจุมช่าผู้ทุนการทองอาการของ เลือง Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary

Mixtures:

https://www.doi.org/10.1021/acs.jced.8b01226

https://www.doi.org/10.1021/acs.jced.8b00192

https://www.doi.org/10.1021/acs.jced.8b01265

https://www.doi.org/10.1016/j.jct.2005.08.013

https://www.doi.org/10.1021/acs.jced.8b00025

https://www.doi.org/10.1021/acs.jced.9b00717

https://www.doi.org/10.1021/acs.jced.8b01075

https://www.doi.org/10.1021/acs.jced.8b00170

https://www.doi.org/10.1021/acs.jced.6b00163

https://www.doi.org/10.1021/acs.jced.5b00746

Legend

af: Acentric Factor affp: Proton affinity

Autoignition Temperature aigt:

Gas basicity basg:

chl: Standard liquid enthalpy of combustion chs: Standard solid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl: cps: Solid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity

Flash Point (Open Cup Method) fpo:

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Ratingnfpah: NFPA Health Ratingpc: Critical Pressure

psub: Sublimation pressure

pvap: Vapor pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

ss: Solid phase molar entropy at standard conditionsssubt: Entropy of sublimation at a given temperaturesvapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/18-337-8/Benzoic-acid.pdf

Generated by Cheméo on 2025-12-24 08:59:22.483587547 +0000 UTC m=+6314960.013628201.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.