2-Methyl-1,5-pentanediamine

Other names: 1,5-Pentanediamine, 2-methyl-

1,5-diamino-2-methylpentane 2-Methylpentamethylenediamine 2-methyl-1,5-diaminopentane 2-methylpentane-1,5-diamine

Dytek A MPMD

Methylpentamethylenediamine

InChl=1S/C6H16N2/c1-6(5-8)3-2-4-7/h6H,2-5,7-8H2,1H3

InchiKey: JZUHIOJYCPIVLQ-UHFFFAOYSA-N

Formula: C6H16N2 SMILES: CC(CN)CCCN

Mol. weight [g/mol]: 116.20 **CAS:** 15520-10-2

Physical Properties

Property code	Value	Unit	Source
gf	130.10	kJ/mol	Joback Method
hf	-104.87	kJ/mol	Joback Method
hfus	18.17	kJ/mol	Joback Method
hvap	49.84	kJ/mol	Joback Method
log10ws	-0.96		Crippen Method
logp	0.320		Crippen Method
mcvol	115.360	ml/mol	McGowan Method
рс	3577.07	kPa	Joback Method
rinpol	897.00		NIST Webbook
tb	481.30	K	Joback Method
tc	678.51	K	Joback Method
tf	308.90	K	Joback Method
VC	0.423	m3/kmol	Joback Method

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

cpg	330.86	J/mol×K	678.51	Joback Method
cpg	321.29	J/mol×K	645.64	Joback Method
cpg	311.21	J/mol×K	612.77	Joback Method
cpg	300.61	J/mol×K	579.90	Joback Method
cpg	289.47	J/mol×K	547.04	Joback Method
cpg	277.78	J/mol×K	514.17	Joback Method
cpg	265.50	J/mol×K	481.30	Joback Method
pvap	1.61	kPa	353.15 1,5-c	Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or diamino-2-methylpentane) and water at several temperatures
pvap	0.93	kPa	343.15 1,5-c	Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or diamino-2-methylpentane) and water at several temperatures
pvap	2.67	kPa	363.15 1,5-c	Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or diamino-2-methylpentane) and water at several temperatures
pvap	0.52	kPa	333.15 1,5-c	Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or diamino-2-methylpentane) and water at several temperatures

pvap	0.27	kPa	323.15 Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures
pvap	0.14	kPa	313.15 Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures
pvap	0.07	kPa	303.15 Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures
pvap	0.03	kPa	293.15 Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures
pvap	0.01	kPa	283.15 Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures

pvap 4.00e-03 kPa 273.15 Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures

Sources

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C15520102&Units=SI

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Phase equilibrium properties of binary mixtures containing departures for https://www.doi.org/10.1016/j.jct.2014.12.008 https://en.wikipedia.org/wiki/Joback_method

1,5-diamino-2-methylpentane) and water at several temperatures:

Legend

cpg: Ideal gas heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/18-347-7/2-Methyl-1-5-pentanediamine.pdf

Generated by Cheméo on 2025-12-05 22:21:10.429343574 +0000 UTC m=+4721467.959384238.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.