silver

Other names: argentum

silver element

Inchi: InChl=1S/Ag

InchiKey: BQCADISMDOOEFD-UHFFFAOYSA-N

 Formula:
 Ag

 SMILES:
 [Ag]

 Mol. weight [g/mol]:
 107.87

 CAS:
 7440-22-4

Physical Properties

Value	Unit	Source
1.30 ± 0.20	eV	NIST Webbook
1.30 ± 0.01	eV	NIST Webbook
1.30 ± 0.00	eV	NIST Webbook
1.30 ± 0.03	eV	NIST Webbook
284.90 ± 0.80	kJ/mol	NIST Webbook
7.62 ± 0.07	eV	NIST Webbook
7.57	eV	NIST Webbook
7.50 ± 0.30	eV	NIST Webbook
7.58	eV	NIST Webbook
7.80 ± 0.20	eV	NIST Webbook
7.50	eV	NIST Webbook
7.51 ± 0.07	eV	NIST Webbook
7.58	eV	NIST Webbook
7.53	eV	NIST Webbook
7.58	eV	NIST Webbook
7.58	eV	NIST Webbook
7.57	eV	NIST Webbook
7.60	eV	NIST Webbook
173.00 ± 0.00	J/mol×K	NIST Webbook
42.55 ± 0.20	J/mol×K	NIST Webbook
	1.30 ± 0.20 1.30 ± 0.01 1.30 ± 0.00 1.30 ± 0.03 284.90 ± 0.80 7.62 ± 0.07 7.57 7.50 ± 0.30 7.58 7.80 ± 0.20 7.50 7.51 ± 0.07 7.58 7.53 7.58 7.58 7.58 7.58 7.57 7.60 173.00 ± 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
dvisc	0.0035200	Paxs	1273.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0029040	Pa×s	1323.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0028120	Paxs	1373.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0026490	Paxs	1423.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0025400	Paxs	1473.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0024980	Paxs	1523.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0023990	Paxs	1573.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0023320	Paxs	1623.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	

dvisc	0.0022140	Paxs	1673.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
econd	61070000.00	S/m	298.00	Structural and physical studies of the Ag-rich alloys from Ag-Li system	
hvapt	265.10	kJ/mol	1367.00	Mass spectrometric study of the vaporization behaviour of alpha-Na2NpO4: Thermodynamic investigation of the enthalpy of formation	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.66364e+01
Coeff. B	-2.82950e+04
Coeff. C	-8.12200e+01
Temperature range (K), min.	1283.00
Temperature range (K), max.	2453.15

Sources

Calorimetric studies and thermodynamic properties of liquid Ag-Ga, Au-Ga and Ag-Au-Ga alloys: Thermodynamic properties of liquid Ag-Li alloys: Thermodynamic properties of liquid silver-gold-gallium alloys determined Mans in the agent of th Calorimetric studies and

Pressure:

https://www.doi.org/10.1016/j.jct.2014.05.021

https://www.doi.org/10.1016/j.jct.2016.12.020

https://www.doi.org/10.1016/j.jct.2016.06.013

https://www.doi.org/10.1016/j.tca.2018.02.012

https://www.doi.org/10.1016/j.jct.2012.11.034

https://www.doi.org/10.1016/j.tca.2005.02.005

https://www.doi.org/10.1016/j.tca.2007.07.015

https://www.doi.org/10.1016/j.tca.2017.09.002

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

The measurement of thermal conductivity variation with Range range resident to the conductivity variation with the conduc Thermodynamic behavior of polyvalent solutes in solid silver: System Ag Sb: Experimentally determined

https://www.doi.org/10.1016/j.tca.2012.12.012 https://www.doi.org/10.1016/j.tca.2011.04.032 https://www.doi.org/10.1016/j.tca.2012.09.037 https://www.doi.org/10.1016/j.jct.2013.11.006 thermodynamic properties of Schrossystyllage from (400 to 700) K by a Schlaushidigatian Einger Viscometer for High-Temperature Measurements in Eigundum Instantian Standard From Ag-Li system: KDB:

https://www.doi.org/10.1016/j.jct.2013.11.031 https://www.doi.org/10.1007/s10765-016-2104 https://www.doi.org/10.1016/j.tca.2019.01.016 https://www.doi.org/10.1016/j.tca.2019.01.016 https://www.doi.org/10.1016/j.tca.2019.01.016 https://www.doi.org/10.1007/s10765-016-2104-7 https://www.doi.org/10.1016/j.tca.2019.01.016

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1944

http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440224&Units=SI

https://www.doi.org/10.1016/j.fluid.2016.02.026 modelling of phase equilibria for the Ageon my same find hou the Ag-Sb-S and the age the EMF method:
Enthalpy of mixing in the Ag-Cd-In ternary liquid phase:
Calorimetric measurements and first https://www.doi.org/10.1016/j.jct.2016.03.009 https://www.doi.org/10.1016/j.jct.2016.12.005 https://www.doi.org/10.1016/j.jct.2014.10.023 principles to study the (Ag-Li) liquid

Legend

system:

NIST Webbook:

Experimental investigation and

dvisc: Dynamic viscosity ea: Electron affinity

econd: Electrical conductivity

hf: Enthalpy of formation at standard conditions

hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy Vapor pressure pvap:

sgb: Molar entropy at standard conditions (1 bar)

Solid phase molar entropy at standard conditions SS:

Latest version available from:

https://www.chemeo.com/cid/18-740-0/silver.pdf

Generated by Cheméo on 2025-12-23 02:29:32.638606 +0000 UTC m=+6205170.168646653.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.