1,2-Ethanediamine, N,N'-dimethyl-

Other names: 1,2-Bis(methylamino)ethane

1,2-Ethanediamine, N1,N2-dimethyl-

2,5-Diazahexane

CH3NHCH2CH2NHCH3

Ethylenediamine, N,N'-dimethyl-N,N'-Dimethyl-1,2-ethanediamine N,N'-Dimethyldiaminoethane N,N'-Dimethylethanediamine N,N'-Dimethylethano-1,2-diamine N,N'-Dimethylethylenediamine

N1,N2-dimethylethane-1,2-diamine

sym-Dimethylethylenediamine

InChl=1S/C4H12N2/c1-5-3-4-6-2/h5-6H,3-4H2,1-2H3

InchiKey: KVKFRMCSXWQSNT-UHFFFAOYSA-N

 Formula:
 C4H10N2

 SMILES:
 CNCCNC

 Mol. weight [g/mol]:
 86.14

 CAS:
 110-70-3

Physical Properties

Property code	Value	Unit	Source
affp	989.20	kJ/mol	NIST Webbook
basg	946.90	kJ/mol	NIST Webbook
gf	161.58	kJ/mol	Joback Method
hf	-18.95	kJ/mol	Joback Method
hfus	16.31	kJ/mol	Joback Method
hvap	37.37	kJ/mol	Joback Method
log10ws	0.12		Crippen Method
logp	-0.575		Crippen Method
mcvol	87.180	ml/mol	McGowan Method
рс	4026.13	kPa	Joback Method
tb	393.20	K	NIST Webbook
tc	567.87	K	Joback Method
tf	240.16	K	Joback Method
VC	0.330	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K] Source	
cpg	165.53	J/mol×K	391.26	Joback Method	
cpg	175.20	J/mol×K	420.69	Joback Method	
cpg	184.48	J/mol×K	450.13	Joback Method	
cpg	193.40	J/mol×K	479.56	Joback Method	
cpg	201.95	J/mol×K	509.00	Joback Method	
cpg	210.16	J/mol×K	538.43	Joback Method	
cpg	218.02	J/mol×K	567.87	Joback Method	
pvap	2.11	kPa		Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines Experimental and Computational Study	
pvap	0.69	kPa		Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines Experimental and Computational Study	
pvap	1.02	kPa		Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines Experimental and Computational Study	
pvap	0.50	kPa		Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines Experimental and Computational Study	
pvap	2.89	kPa	305.60	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines Experimental and Computational Study	d ::
pvap	3.97	kPa		Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines Experimental and Computational Study	

pvap	3.41	kPa	308.20	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	0.43	kPa	279.20	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	0.59	kPa	283.30	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	0.86	kPa	288.20	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	1.23	kPa	293.20	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	1.50	kPa	295.80	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	1.78	kPa	298.20	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study
pvap	2.48	kPa	303.40	Thermodynamic Properties of N-Methyl-Substituted Ethane-1,2-diamines: Experimental and Computational Study

Correlations

Information	Value
Intermation	Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.56411e+01
Coeff. B	-3.77810e+03
Coeff. C	-5.04460e+01
Temperature range (K), min.	274.78
Temperature range (K), max.	416.20

https://www.doi.org/10.1021/acs.jced.5b01003

Sources

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C110703&Units=SI

The Yaws Handbook of Vapor https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Pressure: Crippen Method:

http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Thermodynamic Properties of

N-Methyl-Substituted

Perhanse Methyl-Substituted

https://en.wikipedia.org/wiki/Joback_method

Computational Study:

Legend

Proton affinity affp: basg: Gas basicity

Ideal gas heat capacity cpg:

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions Enthalpy of fusion at standard conditions hfus:

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

Critical Pressure pc: pvap: Vapor pressure

tb: Normal Boiling Point Temperature tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/21-189-9/1-2-Ethanediamine-N-N-dimethyl.pdf

Generated by Cheméo on 2024-04-10 02:15:36.176466631 +0000 UTC m=+15004585.097043952.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.