Perfluorooctyl bromide

Other names: 1-Bromoperfluorooctane

1-bromoheptadecafluorooctane

InChl=1S/C8BrF17/c9-7(22,23)5(18,19)3(14,15)1(10,11)2(12,13)4(16,17)6(20,21)8(24,25)

InchiKey: WTWWXOGTJWMJHI-UHFFFAOYSA-N

Formula: C8BrF17

 $\textbf{SMILES:} \qquad \qquad \mathsf{FC}(\mathsf{F})(\mathsf{F})\mathsf{C}(\mathsf{F})(\mathsf{F})\mathsf{C}(\mathsf{F})(\mathsf{F})\mathsf{C}(\mathsf{F})(\mathsf{F})\mathsf{C}(\mathsf{F})(\mathsf{F})\mathsf{C}(\mathsf{F})(\mathsf{F})\mathsf{C}(\mathsf{F})(\mathsf{F})\mathsf{Br}$

Mol. weight [g/mol]: 498.96 CAS: 423-55-2

Physical Properties

Property code	Value	Unit	Source
gf	-3258.25	kJ/mol	Joback Method
hf	-3585.99	kJ/mol	Joback Method
hfus	14.81	kJ/mol	Joback Method
hvap	45.60 ± 0.40	kJ/mol	NIST Webbook
log10ws	-6.96		Crippen Method
logp	6.348		Crippen Method
mcvol	171.170	ml/mol	McGowan Method
рс	1562.28	kPa	Joback Method
tb	410.35	K	Joback Method
tc	536.18	K	Joback Method
tf	269.11	K	Joback Method
VC	0.763	m3/kmol	Joback Method

Temperature Dependent Properties

Value	Unit	Temperature [K]	Source
430.77	J/mol×K	410.35	Joback Method
456.22	J/mol×K	452.29	Joback Method
467.52	J/mol×K	473.26	Joback Method
477.92	J/mol×K	494.24	Joback Method
487.48	J/mol×K	515.21	Joback Method
496.22	J/mol×K	536.18	Joback Method
443.99	J/mol×K	431.32	Joback Method
	430.77 456.22 467.52 477.92 487.48 496.22	430.77 J/molxK 456.22 J/molxK 467.52 J/molxK 477.92 J/molxK 487.48 J/molxK 496.22 J/molxK	430.77 J/molxK 410.35 456.22 J/molxK 452.29 467.52 J/molxK 473.26 477.92 J/molxK 494.24 487.48 J/molxK 515.21 496.22 J/molxK 536.18

hfust	12.13	kJ/mol	278.90	NIST Webbook	
hfust	12.13	kJ/mol	278.90	NIST Webbook	
hfust	1.60	kJ/mol	146.40	NIST Webbook	
kvisc	0.0000008	m2/s	318.15	Viscosities of Liquid Fluorocompounds	
kvisc	0.0000008	m2/s	313.15	Viscosities of Liquid Fluorocompounds	
kvisc	0.0000009	m2/s	308.15	Viscosities of Liquid Fluorocompounds	
kvisc	0.0000011	m2/s	298.15	Viscosities of Liquid Fluorocompounds	
kvisc	0.0000010	m2/s	303.15	Viscosities of Liquid Fluorocompounds	
pvap	2.24	kPa	318.09	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	4.70	kPa	332.78	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	1.67	kPa	313.18	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	1.30	kPa	308.22	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	0.98	kPa	303.26	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	3.69	kPa	327.88	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	0.69	kPa	298.08	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	0.54	kPa	293.20	Densities and Vapor Pressures of Highly Fluorinated Compounds	

pvap	2.89	kPa	322.92	Densities and Vapor Pressures of Highly Fluorinated Compounds	
pvap	0.38	kPa	288.22	Densities and Vapor Pressures of Highly Fluorinated Compounds	
rhol	1869.53	kg/m3	311.72	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids	
rhol	1926.65	kg/m3	288.63	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids	
rhol	1917.00	kg/m3	292.57	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids	
rhol	1906.56	kg/m3	298.78	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids	
rhol	1892.19	kg/m3	302.71	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids	

rhol	1881.37	kg/m3	307.01	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids	
sfust	43.49	J/mol×K	278.90	NIST Webbook	
sfust	10.93	J/mol×K	146.40	NIST Webbook	
srf	0.02	N/m	318.55	Surface Tension of Liquid Fluorocompounds	
srf	0.02	N/m	287.15	Surface Tension of Liquid Fluorocompounds	
srf	0.02	N/m	292.75	Surface Tension of Liquid Fluorocompounds	
srf	0.02	N/m	303.35	Surface Tension of Liquid Fluorocompounds	
srf	0.02	N/m	308.45	Surface Tension of Liquid Fluorocompounds	
srf	0.02	N/m	313.45	Surface Tension of Liquid Fluorocompounds	
srf	0.02	N/m	298.35	Surface Tension of Liquid Fluorocompounds	

Sources

Viscosities of Liquid https://www.doi.org/10.1021/je700632z

Fluorocompounds: liquid-liquid equilibrium of substituted https://www.doi.org/10.1016/j.fluid.2008.04.011 perfluoro-n-octane + n-octane systems: Crippen Method:

https://www.chemeo.com/doc/models/crippen_log10ws

Solubility of oxygen in substituted https://www.doi.org/10.1016/j.fluid.2005.09.011 perfluorocarbons: Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je050056e **Densities and Vapor Pressures of** Highly Fluorinated Compounds: Low pressure solubility and https://www.doi.org/10.1016/j.jct.2006.11.012 thermodynamics of solvation of Swygone, tansion ตองห่งแต่ dnd carbon โปลดีดีดีอาณาแบ้ใจกลted liquids: Joback Method: https://www.doi.org/10.1021/je060199g https://en.wikipedia.org/wiki/Joback_method

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C423552&Units=SI

Legend

cpg: Ideal gas heat capacity

gf: Standard Gibbs free energy of formation
hf: Enthalpy of formation at standard conditions
hfus: Enthalpy of fusion at standard conditions
hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions

kvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerhol: Liquid Density

sfust: Entropy of fusion at a given temperature

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/21-224-9/Perfluorooctyl-bromide.pdf

Generated by Cheméo on 2025-12-22 15:57:42.59123448 +0000 UTC m=+6167260.121275134.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.