Piperazine

Other	names	
Other	names.	

1,4-Diazacyclohexane 1,4-Diethylenediamine 1,4-Piperazine Antiren Asca-Trol No. 3 Diethylenediamine Diethyleneimine Dispermine Eraverm Hexahydro-1,4-diazine Hexahydropyrazine Lumbrical NSC 474 Piperazidine Piperazin Piperazine, anhydrous Pipersol Pyrazine hexahydride Pyrazine, hexahydro-UN 2579 Upixon Uvilon Vermex Worm-A-Ton Wurmirazin InChI=1S/C4H10N2/c1-2-6-4-3-5-1/h5-6H,1-4H2 GLUUGHFHXGJENI-UHFFFAOYSA-N C4H10N2 C1CNCCN1 Mol. weight [g/mol]: 86.14 110-85-0

Physical Properties

Inchi:

CAS:

InchiKey:

Formula: SMILES:

Property code	Value	Unit	Source
affp	943.70	kJ/mol	NIST Webbook
basg	914.70	kJ/mol	NIST Webbook

chs	-2957.60 ± 1.60	kJ/mol	NIST Webbook
chs	-2961.40 ± 1.10	kJ/mol	NIST Webbook
gf	190.38	kJ/mol	Joback Method
hf	21.20	kJ/mol	NIST Webbook
hf	25.00 ± 6.30	kJ/mol	NIST Webbook
hfs	-41.80 ± 1.10	kJ/mol	NIST Webbook
hfs	-45.60 ± 1.60	kJ/mol	NIST Webbook
hfus	16.06	kJ/mol	Joback Method
hsub	66.80	kJ/mol	NIST Webbook
hsub	67.00 ± 6.30	kJ/mol	NIST Webbook
hvap	38.75	kJ/mol	Joback Method
ie	8.98	eV	NIST Webbook
ie	8.72	eV	NIST Webbook
log10ws	1.07		Aqueous Solubility Prediction Method
logp	-0.821		Crippen Method
mcvol	76.320	ml/mol	McGowan Method
рс	5420.00	kPa	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method
рс	5800.00 ± 200.00	kPa	NIST Webbook
rhoc	321.97 ± 24.98	kg/m3	NIST Webbook
rinpol	852.00		NIST Webbook
rinpol	813.00		NIST Webbook
rinpol	813.00		NIST Webbook
rinpol	840.00		NIST Webbook
rinpol	870.00		NIST Webbook
rinpol	852.00		NIST Webbook
rinpol	852.00		NIST Webbook
ripol	1390.00		NIST Webbook
ripol	1415.00		NIST Webbook
ripol	1405.00		NIST Webbook
ripol	1410.00		NIST Webbook
ripol	1440.00		NIST Webbook
ripol	1386.00		NIST Webbook
ripol	1386.00		NIST Webbook
ripol	1440.00		NIST Webbook
ripol	1391.00		NIST Webbook
tb	418.15 ± 2.00	K	NIST Webbook
tb	415.15 ± 1.50	K	NIST Webbook
tb	419.20	K	NIST Webbook
tc	661.00 ± 2.00	K	NIST Webbook
tf	384.55 ± 0.20	K	NIST Webbook

tf	380.48	К	Aqueous Solubility Prediction Method
tf	383.20 ± 0.60	К	NIST Webbook
tf	383.46 ± 0.30	К	NIST Webbook
tt	384.60 ± 0.30	К	NIST Webbook
VC	0.268	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [[K] Source
cpg	147.62	J/mol×K	450.33	Joback Method
cpg	192.19	J/mol×K	602.70	Joback Method
cpg	181.90	J/mol×K	564.60	Joback Method
cpg	171.04	J/mol×K	526.51	Joback Method
cpg	159.62	J/mol×K	488.42	Joback Method
cpg	135.05	J/mol×K	412.24	Joback Method
cpg	201.92	J/mol×K	640.79	Joback Method
cpl	225.00	J/mol×K	413.20	Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)
cpl	222.80	J/mol×K	408.20	Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)
cpl	220.50	J/mol×K	403.20	Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)
cpl	218.70	J/mol×K	398.20	Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)
cpl	216.30	J/mol×K	393.20	Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)
cpl	237.00	J/mol×K	413.00	NIST Webbook

psub	0.37	kPa	321.12	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.31	kPa	318.69	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.30	kPa	318.25	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.20	kPa	313.57	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.12	kPa	308.37	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

psub	0.08	kPa	304.27	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.05	kPa	299.16	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.03	kPa	292.58	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.01	kPa	286.85	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
psub	0.01	kPa	286.78	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

psub	6.50e-03	kPa	279.48	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
------	----------	-----	--------	--

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.49629e+01
Coeff. B	-3.59933e+03
Coeff. C	-7.12570e+01
Temperature range (K), min.	316.52
Temperature range (K), max.	444.19

Sources

Absorption capacity and viscosity for CO2 capture process using high company Meth PZ-DEAE aqueous

Solution: Density, Viscosity, and Surface Tension of Aqueous Solutions of Potassi Matory Cinate + Piperazine in the Bange of (288.15 to 323.15) K: NIST Webbook:

Vapor Pressure and Its Temperature Dependence of 28 Organic Convisionals: apacity Anthe Solyenic Evision and Conversion of the Solyenic Evision of N-Methyldiethanolamine + Papertriver and consent and coving in 21 the and consent and down on 21 the and consent and down of the solyent of the solvent solutions of N-Methyldiethanolamine + Papertriver and consent and down on 21 the and the solvent system (International for the solvent system (International for the signostic of an of solvent and and distributed for the solvent system (International for the signostic of a consent of solvent distributed for the solvent solver and an of solvent and 3-(methylamino) propylamine, their aqueous binaries, and aqueous ternaries with piperazine:

https://www.doi.org/10.1016/j.jct.2016.05.022 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1021/je101192x https://en.wikipedia.org/wiki/Joback_method http://webbook.nist.gov/cgi/cbook.cgi?ID=C110850&Units=SI https://www.doi.org/10.1021/acs.jced.6b00576 https://www.doi.org/10.1016/j.jct.2009.07.005 https://www.doi.org/10.1021/je060195b https://www.doi.org/10.1016/j.fluid.2010.11.004 https://www.doi.org/10.1021/je0602465 https://www.doi.org/10.1021/je800031p https://www.doi.org/10.1016/j.jct.2009.11.006 https://www.doi.org/10.1021/je2008523 https://www.doi.org/10.1016/j.jct.2013.08.025 https://www.doi.org/10.1021/je1012263 https://www.doi.org/10.1016/j.tca.2013.10.016

Experiment and modeling solubility of CO2 in aqueous solutions of Busiese that the and a Mass of DMA2P, DMARD WEA and a MASB To Laqueous Selution of A Contractions of Aqueous Solutions of Acutesia

H2O System: Density and Viscosity of Partially

 (293 to 333) K and (0.3 to 1.4) molecular form
 http://ink.spiniger.com/article/10.1007/BF02311

 (293 to 333) K and (0.3 to 1.4) molecular form
 http://ink.spiniger.com/article/10.1007/BF02311

 (293 to 333) K and (0.3 to 1.4) molecular form
 http://ink.spiniger.com/article/10.1007/BF02311

 (293 to 333) K and (0.3 to 1.4) molecular form
 http://ink.spiniger.com/article/10.1007/BF02311

 (293 to 333) K and (0.3 to 1.4) molecular form
 http://www.doi.org/10.1016/j.fluid.2011.11.007

 (201 to 1.021/je200124h
 https://www.doi.org/10.1021/je200124h

 (201 to 1.021/je200124h
 https://www.doi.org/10.1021/je200124h

 (201 to 1.021/je200124h
 https://www.doi.org/10.1021/je2001917

 (201 to 1.021/je2000069
 https://www.doi.org/10.1021/je2000069

 (201 to 1.021/je2000069
 https://www.doi.org/10.1021/acs.jced.6b00856

Willing the provident of a propertie of the perturbation of the provident of the provident of the perturbation of the perturba

Monoethanolamine and Piperazine:

https://www.doi.org/10.1016/j.jct.2013.11.025 https://www.doi.org/10.1016/j.jct.2016.12.022 https://www.doi.org/10.1021/je9003383 Aqueous Solutions of Aqueous Solutions of https://www.doi.org/10.1016/j.fluid.2013.12.017 http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa https://www.doi.org/10.1021/acs.jced.7b00144 Carbonated Aqueous Solutions Construction and https://www.doi.org/10.1021/acs.jced.8b01174 Considering and the particular operatures between with prime at Temperatures between prime at Temperatures between with prime at Temperatures between prime at Temperatures between with prime at Temperatures between the prime a https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure 2-Amino-2-methyl-propanol (AMP) Plus GO2 Abmer Provide and Nethering Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Aqueous Piperazine Solutions Using Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Methylic and Coefficients of N2O in Advector Methylic and Coefficients of N2O in Methylic and Coeff http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2016.08.006

https://www.doi.org/10.1021/je3003354

https://www.doi.org/10.1021/je101234t

Legend

affp:	Proton affinity
basg:	Gas basicity
chs:	Standard solid enthalpy of combustion
cpg:	Ideal gas heat capacity

cpl:	Liquid phase heat capacity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfs:	Solid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hsub:	Enthalpy of sublimation at standard conditions
hvap:	Enthalpy of vaporization at standard conditions
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
psub:	Sublimation pressure
pvap:	Vapor pressure
rhoc:	Critical density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
VC:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/21-951-2/Piperazine.pdf

Generated by Cheméo on 2024-04-29 02:17:02.260869558 +0000 UTC m=+16646271.181446870. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.