2-Butanone

Other names: 2-Butanal

2-Oxobutane

2-butanone (MEK)

2-butanone (MEK; methyl ethyl ketone)

3-Butanone

Acetone, methyl-Aethylmethylketon

Butan-2-one Butanone Butanone 2 C2H5COCH3

Ethyl methyl cetone Ethyl methyl ketone Ethylmethylketon Ketone, ethyl methyl Ketone, methyl ethyl

MEK

METHYL ACETONE

Meetco

Methyl ethyl ketone Metiletilchetone Metyloetyloketon

Rcra waste number U159

UN 1193

Inchi: InChl=1S/C4H8O/c1-3-4(2)5/h3H2,1-2H3
InchiKey: ZWEHNKRNPOVVGH-UHFFFAOYSA-N

Formula: C4H8OSMILES: CCC(C)=O

Mol. weight [g/mol]: 72.11 CAS: 78-93-3

Physical Properties

Property code	Value	Unit	Source
af	0.3200		KDB
affp	827.30	kJ/mol	NIST Webbook
aigt	789.26	K	KDB

basg	795.50	kJ/mol	NIST Webbook
chl	-2436.30 ± 1.50	kJ/mol	NIST Webbook
chl	-2444.20	kJ/mol	NIST Webbook
chl	-2438.40	kJ/mol	NIST Webbook
dm	3.30	debye	KDB
dvisc	0.0003730	Paxs	Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of 1,3-Dioxolane and 1,4-Dioxane with Butyl Acetate, Butyric Acid, Butylamine, and 2-Butanone at 298.15 K
dvisc	0.0003760	Paxs	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of o-Xylene, m-Xylene, p-Xylene, and Isopropylbenzene with 2-Butanone at 298.15 K
dvisc	0.0004011	Paxs	Densities and Viscosities of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
dvisc	0.0003880	Paxs	A volumetric and viscosity study for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluoroborate with some molecular solvents
ea	9.99e-04	eV	NIST Webbook
fII	1.80	% in Air	KDB
flu	11.50	% in Air	KDB
fpc	267.59	K	KDB
fpo	266.48	K	KDB
gf	-146.20	kJ/mol	KDB
hf	-238.60 ± 0.84	kJ/mol	NIST Webbook
hf	-238.70 ± 0.96	kJ/mol	NIST Webbook
hf	-238.10	kJ/mol	NIST Webbook
hf	-238.50	kJ/mol	KDB
hfl	-279.00	kJ/mol	NIST Webbook
hfl	-273.30 ± 1.20	kJ/mol	NIST Webbook
hfus	7.71	kJ/mol	Joback Method
hvap	35.51 ± 0.08	kJ/mol	NIST Webbook
hvap	34.73	kJ/mol	NIST Webbook
hvap	34.92	kJ/mol	NIST Webbook
hvap	34.50 ± 0.10	kJ/mol	NIST Webbook
hvap	34.80 ± 0.10	kJ/mol	NIST Webbook
hvap	32.00 ± 0.01	kJ/mol	NIST Webbook
ie	9.50 ± 0.10	eV	NIST Webbook
	3.30 ± 0.10		TAIGT VVCDDOOK

ie	9.55 ± 0.03	eV	NIST Webbook
ie	9.48 ± 0.02	eV	NIST Webbook
ie	9.51	eV	NIST Webbook
ie	9.49	eV	NIST Webbook
ie	9.54 ± 0.01	eV	NIST Webbook
ie	9.54 ± 0.01	eV	NIST Webbook
ie	9.54 ± 0.03	eV	NIST Webbook
ie	9.53 ± 0.01	eV	NIST Webbook
		eV	
ie	9.53 ± 0.01		NIST Webbook
ie	9.52	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
ie	9.52	eV	NIST Webbook
ie	9.52 ± 0.04	eV	NIST Webbook
ie	9.53 ± 0.01	eV	NIST Webbook
ie	9.56	eV	NIST Webbook
ie	9.54 ± 0.01	eV	NIST Webbook
ie	9.46	eV	NIST Webbook
log10ws	0.52		Aqueous Solubility Prediction Method
log10ws	0.52		Estimated Solubility Method
logp	0.985		Crippen Method
mcvol	68.790	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	4166.00 ± 15.00	kPa	NIST Webbook
рс	4166.00 ± 3.00	kPa	NIST Webbook
рс	4207.00	kPa	KDB
рс	4165.80 ± 20.68	kPa	NIST Webbook
рс	4390.00 ± 202.65	kPa	NIST Webbook
рс	4166.00 ± 3.00	kPa	NIST Webbook
рс	4150.00 ± 34.50	kPa	NIST Webbook
рс	3998.00 ± 202.65	kPa	NIST Webbook
рс	4207.00 ± 10.00	kPa	NIST Webbook
rhoc	269.68 ± 15.14	kg/m3	NIST Webbook
rhoc	251.65 ± 4.33	kg/m3	NIST Webbook
rinpol	575.00		NIST Webbook
rinpol	579.00		NIST Webbook
rinpol	575.00		NIST Webbook
rinpol	572.00		NIST Webbook
rinpol	596.00		NIST Webbook
rinpol	606.00		NIST Webbook
rinpol	604.00		NIST Webbook
rinpol	597.00		NIST Webbook
rinpol	622.00		NIST Webbook
- Impor	022.00		THO! WODDOOK

rinpol	582.70	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	613.00	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	601.80	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	573.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	552.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	567.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	559.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	604.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	589.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	582.00	NIST Webbook
rinpol	612.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	596.00	NIST Webbook
rinpol	590.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	549.00	NIST Webbook
rinpol	575.92	NIST Webbook

rinpol	574.45	NIST Webbook
rinpol	572.75	NIST Webbook
rinpol	572.34	NIST Webbook
rinpol	571.45	NIST Webbook
rinpol	572.61	NIST Webbook
rinpol	572.88	NIST Webbook
rinpol	573.87	NIST Webbook
rinpol	575.19	NIST Webbook
rinpol	576.69	NIST Webbook
rinpol	578.90	NIST Webbook
rinpol	581.30	NIST Webbook
rinpol	603.27	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	601.20	NIST Webbook
rinpol	599.13	NIST Webbook
rinpol	596.14	NIST Webbook
rinpol	598.30	NIST Webbook
rinpol	601.92	NIST Webbook
rinpol	602.60	NIST Webbook
rinpol	603.82	NIST Webbook
rinpol	605.54	NIST Webbook
rinpol	597.00	NIST Webbook
rinpol	578.66	NIST Webbook
rinpol	578.89	NIST Webbook
rinpol	570.79	NIST Webbook
rinpol	538.30	NIST Webbook
rinpol	607.25	NIST Webbook
rinpol	598.20	NIST Webbook
rinpol	609.38	NIST Webbook
rinpol	548.59	NIST Webbook
rinpol	575.77	NIST Webbook
rinpol	575.30	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	574.90	NIST Webbook
rinpol	574.71	NIST Webbook
rinpol	574.80	NIST Webbook
rinpol	574.97	NIST Webbook
rinpol	574.76	NIST Webbook
rinpol	576.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	585.00	NIST Webbook
rinpol	587.00	NIST Webbook

rinpol	582.00	NIST Webbook
rinpol	583.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	537.50	NIST Webbook
rinpol	597.80	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	599.60	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	581.00	NIST Webbook
rinpol	538.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	541.00	NIST Webbook
rinpol	542.00	NIST Webbook
rinpol	533.00	NIST Webbook
rinpol	534.00	NIST Webbook
rinpol	544.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	556.00	NIST Webbook
rinpol	543.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	552.30	NIST Webbook
rinpol	574.00	NIST Webbook
rinpol	552.00	NIST Webbook
rinpol	553.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	533.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	554.00	NIST Webbook
rinpol	590.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	547.00	NIST Webbook
rinpol	548.00	NIST Webbook
rinpol	549.00	NIST Webbook
rinpol	554.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	543.00	NIST Webbook
rinpol	543.00	NIST Webbook
rinpol	582.70	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	601.00	NIST Webbook

rinpol	605.00	NIST Webbook
rinpol	604.00	NIST Webbook
rinpol	597.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	581.60	NIST Webbook
rinpol	596.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	594.70	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	604.00	NIST Webbook
rinpol	604.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	585.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	579.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	611.00	NIST Webbook
rinpol	576.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	576.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	576.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	555.00	NIST Webbook
rinpol	559.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	573.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	592.00	NIST Webbook
rinpol	592.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	578.00	NIST Webbook

rinpol	600.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	601.80	NIST Webbook
rinpol	589.00	NIST Webbook
rinpol	597.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	570.06	NIST Webbook
rinpol	604.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	613.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	564.00	NIST Webbook
rinpol	576.00	NIST Webbook
rinpol	592.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	575.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	583.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	597.00	NIST Webbook
rinpol	551.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	604.00	NIST Webbook
rinpol	590.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	598.00	NIST Webbook
rinpol	602.14	NIST Webbook
ripol	947.76	NIST Webbook
ripol	875.00	NIST Webbook
ripol	885.00	NIST Webbook
ripol	897.00	NIST Webbook

ripol	923.70	NIST Webbook
ripol	937.60	NIST Webbook
ripol	935.77	NIST Webbook
ripol	917.39	NIST Webbook
ripol	912.00	NIST Webbook
ripol	866.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	914.00	NIST Webbook
ripol	924.00	NIST Webbook
ripol	903.00	NIST Webbook
ripol	905.00	NIST Webbook
ripol	891.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	930.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	904.00	NIST Webbook
ripol	920.00	NIST Webbook
ripol	881.00	NIST Webbook
ripol	875.00	NIST Webbook
ripol	894.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	909.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	901.00	NIST Webbook
ripol	882.00	NIST Webbook
ripol	909.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	894.00	NIST Webbook
ripol	910.00	NIST Webbook
ripol	903.00	NIST Webbook
ripol	889.00	NIST Webbook
ripol	888.00	NIST Webbook
ripol	888.00	NIST Webbook
ripol	912.00	NIST Webbook
ripol	953.00	NIST Webbook
ripol	911.00	NIST Webbook
ripol	923.00	NIST Webbook
ripol	890.00	NIST Webbook
ripol	912.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	866.00	NIST Webbook

ripol	866.00	NIST Webbook
ripol	901.00	NIST Webbook
ripol	866.00	NIST Webbook
ripol	888.00	NIST Webbook
ripol	901.00	NIST Webbook
ripol	899.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	920.00	NIST Webbook
ripol	945.00	NIST Webbook
ripol	918.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	893.00	NIST Webbook
ripol	918.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	917.39	NIST Webbook
ripol	922.33	NIST Webbook
ripol	925.59	NIST Webbook
ripol	928.27	NIST Webbook
ripol	931.34	NIST Webbook
ripol	935.77	NIST Webbook
ripol	940.31	NIST Webbook
ripol	943.44	NIST Webbook
ripol	946.71	NIST Webbook
ripol	949.95	NIST Webbook
ripol	914.00	NIST Webbook
ripol	924.00	NIST Webbook
ripol	882.00	NIST Webbook
ripol	904.00	NIST Webbook
ripol	903.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	905.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	901.00	NIST Webbook
ripol	905.00	NIST Webbook
ripol	882.00	NIST Webbook
ripol	893.00	NIST Webbook
ripol	900.00	NIST Webbook
ripol	905.00	NIST Webbook
ripol	875.00	NIST Webbook
ripol	888.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	894.00	NIST Webbook

ripol	915.00		NIST Webbook
ripol	885.00		NIST Webbook
ripol	912.70		NIST Webbook
ripol	926.00		NIST Webbook
ripol	905.00		NIST Webbook
ripol	903.00		NIST Webbook
ripol	897.00		NIST Webbook
ripol	923.30		NIST Webbook
ripol	891.00		NIST Webbook
ripol	908.00		NIST Webbook
ripol	893.00		NIST Webbook
ripol	900.00		NIST Webbook
ripol	900.00		NIST Webbook
ripol	881.00		NIST Webbook
ripol	905.00		NIST Webbook
ripol	930.00		NIST Webbook
ripol	919.00		NIST Webbook
ripol	927.80		NIST Webbook
ripol	937.60		NIST Webbook
ripol	923.70		NIST Webbook
ripol	919.80		NIST Webbook
ripol	938.60		NIST Webbook
ripol	932.30		NIST Webbook
ripol	914.00		NIST Webbook
sl	239.00	J/mol×K	NIST Webbook
sl	241.40	J/mol×K	NIST Webbook
sl	238.82	J/mol×K	NIST Webbook
tb	352.65 ± 0.50	K	NIST Webbook
tb	351.75 ± 1.00	K	NIST Webbook
tb	353.75 ± 1.00	K	NIST Webbook
tb	351.15 ± 4.00	K	NIST Webbook
tb	354.15 ± 2.00	K	NIST Webbook
tb	352.75 ± 1.00	K	NIST Webbook
tb	352.74	K	KDB
tb	352.85	K	Excess molar volumes of ternary mixtures of 1,3-dichlorobenzene and methyl ethyl ketone with 1-alkanols at 303.15K
tb	352.68	K	Measurements and correlation of vapour liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures

tb 352.78 K				
(vapour + līquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones tb 352.72 K Isobaric Vapor-Liquid Equilibrium for 2-Butanor + Ethanol System Containing Different Ioni Liquids at 101.3 kPa tb 352.78 K Measurement of Isobaric Vapor-Liquid Equilibria Dimethyl Carbonate with Acetone, 2-Butanone an 2-Pentanone at 101.3 kPa and Density and Speed of Sound at 298.15 K tb 352.68 K Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium of the 2-Butanone + 2-Butanone to 3 to	tb	352.72	К	equilibrium for 2-butanone + ethanol + phosphate-based ionic
Equilibrium for 2-Butanor	tb	352.69	К	(vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with
Vapor - Liquid Equilibria Dimethyl Carbonate with Acetone, 2-Butanone and 2-Pentanone at 101.3 kp and Density and Speed of Sound at 298.15 k tb 352.68 K Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium of the 2-Butanone + 2-Butanone + 2-Butanone water system tb 352.71 ± 0.10 K NIST Webbook tb 352.75 ± 0.20 K NIST Webbook tb 352.35 ± 0.50 K NIST Webbook tb 352.80 K NIST Webbook tb 352.15 ± 0.40 K NIST Webbook tb	tb	352.72	К	Equilibrium for 2-Butanone + Ethanol System Containing Different Ionic
Vapor-Liquid-Liquid Equilibrium of the 2-Butanone + 2-Butano	tb	352.78	К	Measurement of Isobaric Vapor - Liquid Equilibria of Dimethyl Carbonate with Acetone, 2-Butanone and 2-Pentanone at 101.3 kPa and Density and Speed of Sound at 298.15 K
tb 352.75 ± 0.20 K NIST Webbook tb 352.67 ± 0.20 K NIST Webbook tb 352.75 ± 0.20 K NIST Webbook tb 352.72 ± 0.10 K NIST Webbook tb 352.71 ± 0.20 K NIST Webbook tb 352.35 ± 0.50 K NIST Webbook tb 352.80 K NIST Webbook tb 352.60 ± 0.40 K NIST Webbook tb 352.15 ± 0.40 K NIST Webbook tb 352.00 ± 2.00 K NIST Webbook tb 352.80 K NIST Webbook tb 352.71 ± 0.20 K NIST Webbook	tb	352.68	К	Vapor-Liquid-Liquid Equilibrium of the 2-Butanone + 2-Butanol +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.71 ± 0.10	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.75 ± 0.20	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.67 ± 0.20	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.75 ± 0.20	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.72 ± 0.10	K	
tb 352.80 K NIST Webbook tb 352.60 ± 0.40 K NIST Webbook tb 352.15 ± 0.40 K NIST Webbook tb 352.60 ± 0.30 K NIST Webbook tb 352.15 ± 0.50 K NIST Webbook tb 352.15 ± 0.40 K NIST Webbook tb 352.00 ± 2.00 K NIST Webbook tb 352.80 K NIST Webbook tb 352.71 ± 0.20 K NIST Webbook	tb	352.71 ± 0.20	K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.35 ± 0.50		NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tb	352.80	K	NIST Webbook
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
tb 352.15 ± 0.40 K NIST Webbook tb 352.00 ± 2.00 K NIST Webbook tb 352.80 K NIST Webbook tb 352.71 ± 0.20 K NIST Webbook				
tb 352.00 ± 2.00 K NIST Webbook tb 352.80 K NIST Webbook tb 352.71 ± 0.20 K NIST Webbook				
tb 352.80 K NIST Webbook tb 352.71 ± 0.20 K NIST Webbook				
tb 352.71 ± 0.20 K NIST Webbook				
	tb	352.71 ± 0.30	K	NIST Webbook
tb 353.20 ± 0.40 K NIST Webbook				
tb 352.50 ± 0.50 K NIST Webbook				
tb 352.73 ± 0.30 K NIST Webbook				
tb 352.71 ± 0.20 K NIST Webbook				
tb 352.83 ± 0.20 K NIST Webbook				
th 252.00 · 0.40 V NIOT W-1-1				
tb 353.00 ± 0.40 K NIST Webbook	tb	353.00 ± 0.20	K	NIST Webbook

tb	352.70 ± 0.30	K	NIST Webbook
tb	352.75	K	NIST Webbook
tb	352.65 ± 0.30	K	NIST Webbook
tb	352.70 ± 0.30	K	NIST Webbook
tb	352.50 ± 0.50	K	NIST Webbook
tb	353.15 ± 1.50	K	NIST Webbook
tb	352.65 ± 1.00	K	NIST Webbook
tb	352.55 ± 1.00	K	NIST Webbook
tb	352.75 ± 1.00	K	NIST Webbook
tb	352.85 ± 1.00	K	NIST Webbook
tb	352.75 ± 1.00	K	NIST Webbook
tb	352.65 ± 1.00	K	NIST Webbook
tb	352.75 ± 1.00	K	NIST Webbook
tb	352.75 ± 1.00	K	NIST Webbook
tb	353.15 ± 1.00	K	NIST Webbook
tb	352.35 ± 0.50	K	NIST Webbook
tb	352.55 ± 0.50	K	NIST Webbook
tb	351.75 ± 0.50	K	NIST Webbook
tb	352.77 ± 0.30	K	NIST Webbook
tb	354.15 ± 1.00	K	NIST Webbook
tb	352.40 ± 1.00	K	NIST Webbook
tb	352.72 ± 0.30	K	NIST Webbook
tb	351.75 ± 1.00	K	NIST Webbook
tb	352.80 ± 1.00	K	NIST Webbook
tb	352.65 ± 0.20	K	NIST Webbook
tb	352.75 ± 0.50	K	NIST Webbook
tb	353.15 ± 1.00	K	NIST Webbook
tb	352.65 ± 2.00	K	NIST Webbook
tb	351.65 ± 1.00	K	NIST Webbook
tb	352.75 ± 1.00	K	NIST Webbook
tb	352.80 ± 0.40	K	NIST Webbook
tb	351.40 ± 1.00	K	NIST Webbook
tb	350.65 ± 2.00	K	NIST Webbook
tb	352.65 ± 1.00	K	NIST Webbook
tb	351.55 ± 1.00	K	NIST Webbook
tb	353.15 ± 1.00	K	NIST Webbook
tb	354.15 ± 2.00	K	NIST Webbook
tb	353.90 ± 1.00	K	NIST Webbook
tb	350.15 ± 5.00	K	NIST Webbook
tb	351.85 ± 1.00	K	NIST Webbook
tb	352.68 ± 0.20	K	NIST Webbook
tb	351.15 ± 2.00	K	NIST Webbook
tb	352.70 ± 0.30	K	NIST Webbook
tb	352.95 ± 1.00	K	NIST Webbook

tb	254.00 + 2.00	K	NIST Webbook
tb	354.00 ± 2.00 354.00 ± 2.00	K	NIST Webbook
tb	352.65 ± 2.00	K	NIST Webbook
tb	352.75 ± 0.25	K	NIST Webbook
tb	351.15 ± 1.00	K	NIST Webbook
tb	352.15 ± 0.50	K	NIST Webbook
tb	352.85 ± 0.50	K	NIST Webbook
tb	352.30 ± 1.00	K	NIST Webbook
tb	350.90 ± 1.00	K	NIST Webbook
tb	352.75 ± 0.30	K	NIST Webbook
tb	353.65 ± 2.00	K	NIST Webbook
tb	352.75 ± 0.50	K	NIST Webbook
tb	351.40 ± 1.00	K	NIST Webbook
tb	350.65 ± 2.00	K	NIST Webbook
tb	352.80 ± 0.30	K	NIST Webbook
tb	352.40 ± 1.00	K	NIST Webbook
tc	535.77 ± 0.30	K	NIST Webbook
tc	536.78	K	KDB
tc	536.80	K	NIST Webbook
tc	535.77 ± 0.20	K	NIST Webbook
tc	535.77 ± 0.20	K	NIST Webbook
tc	535.77 ± 0.20	K	NIST Webbook
tc	533.00 ± 3.00	K	NIST Webbook
tc	533.70 ± 3.00	K	NIST Webbook
tc	535.70 ± 0.39	K	NIST Webbook
tc	536.78 ± 0.20	K	NIST Webbook
tf	186.50	K	Aqueous Solubility Prediction Method
tf	186.55 ± 0.30	K	NIST Webbook
tf	186.00 ± 2.00	K	NIST Webbook
tf	186.25 ± 0.30	K	NIST Webbook
tf	186.46 ± 0.01	K	NIST Webbook
tf	186.42 ± 0.02	K	NIST Webbook
tf	186.85	K	NIST Webbook
tf	186.48	K	KDB
tf	186.80 ± 0.20	K	NIST Webbook
tt	186.50 ± 0.01	K	NIST Webbook
tt	186.10 ± 0.10	K	NIST Webbook
tt	186.48 ± 0.03	K	NIST Webbook
tt	186.40 ± 0.06	K	NIST Webbook
tt	186.47 ± 0.04	K	NIST Webbook
VC	0.267	m3/kmol	KDB
ZC	0.2516810		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	113.43 ± 0.23	J/mol×K	347.15	NIST Webbook	
cpg	115.65 ± 0.17	J/mol×K	358.79	NIST Webbook	
cpg	118.70 ± 0.18	J/mol×K	371.90	NIST Webbook	
cpg	119.03 ± 0.24	J/mol×K	372.15	NIST Webbook	
cpg	121.75 ± 0.18	J/mol×K	385.60	NIST Webbook	
cpg	124.39 ± 0.25	J/mol×K	397.15	NIST Webbook	
cpg	124.60 ± 0.19	J/mol×K	399.55	NIST Webbook	
cpg	126.98 ± 0.19	J/mol×K	410.70	NIST Webbook	
cpg	131.71 ± 0.26	J/mol×K	432.15	NIST Webbook	
cpg	138.62 ± 0.28	J/mol×K	467.15	NIST Webbook	
cpl	162.20	J/mol×K	303.15	NIST Webbook	
cpl	159.00	J/mol×K	298.15	NIST Webbook	
cpl	158.40	J/mol×K	298.15	NIST Webbook	
cpl	158.40	J/mol×K	298.15	NIST Webbook	
cpl	158.41	J/mol×K	298.15	NIST Webbook	
cpl	158.40	J/mol×K	298.10	NIST Webbook	
cpl	159.20	J/mol×K	298.15	NIST Webbook	
cpl	158.70	J/mol×K	298.15	NIST Webbook	
cpl	158.00	J/mol×K	293.00	NIST Webbook	
cpl	158.91	J/mol×K	298.15	NIST Webbook	
cpl	157.91	J/mol×K	298.15	NIST Webbook	
cpl	160.70	J/mol×K	297.00	NIST Webbook	
cpl	160.70	J/mol×K	297.00	NIST Webbook	
dvisc	0.0003168	Paxs	323.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003167	Paxs	323.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	

dvisc	0.0003303	Paxs	318.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003461	Paxs	313.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0004306	Paxs	288.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003793	Paxs	303.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003793	Paxs	303.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003962	Paxs	298.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	

dvisc	0.0003962	Paxs	298.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0004136	Paxs	293.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0004306	Paxs	288.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003030	Paxs	323.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	
dvisc	0.0003160	Paxs	318.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	
dvisc	0.0003300	Paxs	313.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	
dvisc	0.0002545	Paxs	313.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0003450	Paxs	308.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	

dvisc	0.0003620	Paxs	303.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	
dvisc	0.0003600	Paxs	303.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
dvisc	0.0003520	Paxs	308.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
dvisc	0.0003780	Paxs	298.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
dvisc	0.0003440	Paxs	308.15	Density and Viscosity of Ketones with Toluene at Different Temperatures and at Atmospheric Pressure	
dvisc	0.0003653	Paxs	303.15	Density and Viscosity of Ketones with Toluene at Different Temperatures and at Atmospheric Pressure	

dvisc	0.0003856	Paxs	298.15	Density and Viscosity of Ketones with Toluene at Different Temperatures and at Atmospheric Pressure	
dvisc	0.0002601	Paxs	308.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0003680	Paxs	303.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
dvisc	0.0002666	Paxs	303.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0002828	Paxs	298.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0003956	Pa×s	293.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	

dvisc	0.0003980	Paxs	293.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
dvisc	0.0003303	Paxs	318.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003461	Paxs	313.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003626	Paxs	308.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003980	Paxs	293.15	Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters	

dvisc	0.0003780	Paxs	298.15	Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters	
dvisc	0.0003600	Paxs	303.15	Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters	
dvisc	0.0003856	Paxs	298.15	Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures	
dvisc	0.0003653	Paxs	303.15	Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures	
dvisc	0.0003440	Paxs	308.15	Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures	
dvisc	0.0003810	Paxs	298.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	

dvisc	0.0003626	Paxs	308.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0004136	Paxs	293.15	Densities, Viscosities and Refractive Indices of the Ternary Mixture Dimethyladipate + 2-Butanone + 1-Butanol at T = (288.15 to 323.15) K	
dvisc	0.0003390	Paxs	313.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
hfust	8.44	kJ/mol	186.48	NIST Webbook	
hfust	8.38	kJ/mol	186.47	NIST Webbook	
hfust	8.44	kJ/mol	186.50	NIST Webbook	
hfust	8.44	kJ/mol	186.50	NIST Webbook	
hfust	8.48	kJ/mol	186.10	NIST Webbook	
hvapt	32.30 ± 0.10	kJ/mol	338.00	NIST Webbook	
hvapt	30.00 ± 0.10	kJ/mol	370.00	NIST Webbook	
hvapt	30.50 ± 0.10	kJ/mol	363.00	NIST Webbook	
hvapt	31.30 ± 0.10	kJ/mol	352.00	NIST Webbook	
hvapt	33.90	kJ/mol	342.00	NIST Webbook	
hvapt	33.80	kJ/mol	315.00	NIST Webbook	
hvapt	35.60	kJ/mol	310.00	NIST Webbook	
hvapt	33.90	kJ/mol	339.00	NIST Webbook	
hvapt	31.10	kJ/mol	505.00	NIST Webbook	
hvapt	31.60	kJ/mol	438.00	NIST Webbook	
hvapt	32.50	kJ/mol	378.00	NIST Webbook	
hvapt	34.60	kJ/mol	318.00	NIST Webbook	
hvapt	33.80 ± 0.10	kJ/mol	314.00	NIST Webbook	
hvapt	31.21	kJ/mol	352.60	KDB	
hvapt	31.30	kJ/mol	352.80	NIST Webbook	

pvap	101.30	kPa	352.68	Measurements and correlation of vapour liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures	
pvap	30.00	kPa	319.95	Measurements and correlation of vapour liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures	
pvap	101.30	kPa	352.72	Isobaric vapor-liquid equilibrium for 2-butanone + ethanol + phosphate-based ionic liquids at 101.3 kPa	
pvap	94.00	kPa	350.25	Vapor Liquid Equilibria Measurements for the Five Linear C6 Esters with n-Octane	
pvap	101.30	kPa	352.72	Isobaric Vapor-Liquid Equilibrium for 2-Butanone + Ethanol System Containing Different Ionic Liquids at 101.3 kPa	
pvap	15.74	kPa	303.15	Density, Viscosity, Vapor-Liquid Equilibrium, Excess Molar Volume, Viscosity Deviation, and Their Correlations for the Chloroform + 2-Butanone Binary System	
pvap	20.00	kPa	309.65	Measurements and correlation of vapour liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures	

rfi	1.37879	293.15	Mixing properties
		200.10	of binary mixtures presenting azeotropes at several temperatures
rfi	1.36565	318.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of
			Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K
rfi	1.36294	323.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K
rfi	1.37910	293.15	Isothermal Vapor-Liquid Equilibrium Measurements of Butan-2-one +
rfi	1.37900	2-Met 293.15	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis

rfi	1.37870	293.15	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
rfi	1.37690	298.15	Bubble-Temperature Measurements on Some Binary Mixtures Formed by Tetrahydrofuran or Amyl Alcohol with Hydrocarbons, Chlorohydrocarbons, or Butanols at (94.6 or 95.8) kPa
rfi	1.37623	298.15	Densities and Viscosities for Binary and Ternary Mixtures of Ethanol, 2-Butanone, and 2,2,4-Trimethylpentane at T = (298.15, 308.15, and 318.15) K
rfi	1.37879	293.15	Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K
rfi	1.37618	298.15	Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K
rfi	1.37355	303.15	Mixing properties of binary mixtures presenting azeotropes at several temperatures
rfi	1.37618	298.15	Mixing properties of binary mixtures presenting azeotropes at several temperatures

rfi	1.37102	36	08.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K	
rfi	1.37604	29	98.15	Properties of ionic liquid HMIMPF6 with carbonates, ketones and alkyl acetates	
rfi	1.37614	29	98.15	Isobaric vapour liquid equilibria for binary systems of 2-butanone with ethanol, 1-propanol, and 2-propanol at 20 and 101.3 kPa	
rfi	1.37623	29	98.15	Vapor liquid equilibria for binary and ternary mixtures of ethanol, 2-butanone, and 2,4-trimethylpentane at 101.3 kPa	
rfi	1.37355	30	03.15	Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K	
rfi	1.37690	29	98.15	(Vapor + liquid) equilibrium of binary mixtures formed by N,N-dimethyl formamide with some compounds at 95.1 kPa	
rfi	1.37880	29	93.15 Ph	Solubilities of osphorus-Containing Compounds in Selected Solvents	

rfi	1.37880	293.15	Isothermal Vapor Liquid Equilibrium Data for the Butan-2-one + Methanol or Ethanol Systems Using a Static-Analytic Microcell
rfi	1.37618	298.15	Ternary Liquid-Liquid Equilibria Ethanol + 2-Butanone + 1-Butyl-3-methylimidazolium Hexafluorophosphate, 2-Propanol + 2-Butanone + 1-Butyl-3-methylimidazolium Hexafluorophosphate, and 2-Butanone + 2-Propanol + 1,3-Dimethylimidazolium Methyl Sulfate at 298.15 K
rfi	1.37930	298.15	Isobaric Vapor Liquid Equilibria for Binary Systems of Acetone + Isopropenyl Acetate, 2-Butanone + Isopropenyl Acetate, and Isopropenyl Acetate + Acetylacetone at 101.3 kPa
rfi	1.37610	298.15	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Ethanol and 2-Propanol with 2-Butanone and Butyl Propionate at 101.3 kPa
rfi	1.37366	303.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K

rfi	1.37631	298.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K	
rfi	1.37892	293.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K	
rfi	1.38153	288.15	Experimental Determination and Modeling of Densities, Refractive Indices of the Binary Mixtures of Dimethylphthalate (or Dimethyladipate) + 1-Butanol, or + 2-Butanone at T = (288.15 to 323.15) K	
rfi	1.37700	298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidon with ketones at T = 303.15 K	e

rfi	1.37383	303.15	Density, viscosity,
			refractive index, excess molar enthalpy, viscosity, and refractive index deviations for the (1-butanol + 2-butanone) binary system at T = 303 K. A new adiabatic calorimeter for
rfi	1.37500	298.15	heat of mixing Densities, Viscosities, and
			Refractive Indices of Binary Mixtures of Methyl Ethyl
			Ketone + Pentanol Isomers at Different Temperatures
rfi	1.37000	308.15	Densities, Viscosities, and Refractive
			Indices of Binary Mixtures of Methyl Ethyl
			Ketone + Pentanol Isomers at Different Temperatures
rfi	1.36834	313.15	Experimental Determination and Modeling of
			Densities, Refractive Indices of the Binary Mixtures
			of Dimethylphthalate (or
			Dimethyladipate) + 1-Butanol, or + 2-Butanol, or + 2-Butanone at T = (288.15 to
£:	4.20570	240.45	323.15) K
rfi	1.36570	318.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Methyl Ethyl Ketone + Pentanol Isomers
			at Different Temperatures

rhol	800.30	kg/m3	298.15	Liquid-liquid equilibria for the pseudo-ternary system {aqueous sulfuric acid solution + methyl ethyl ketone or methyl isopropyl ketone + phosphonium-based ionic liquids} at 298.15 K and atmospheric pressure	
rhol	794.63	kg/m3	303.15	Excess molar volumes of (1-chlorobutane +heptane + 2-butanone or 2-pentanone) at 288.15, 303.15 and 313.15 K. Measurements and correlations.	
rhol	784.01	kg/m3	313.15	Excess molar volumes of (1-chlorobutane +heptane + 2-butanone or 2-pentanone) at 288.15, 303.15 and 313.15 K. Measurements and correlations.	
rhol	810.26	kg/m3	288.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	805.06	kg/m3	293.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	794.57	kg/m3	303.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	

rhol	789.27	kg/m3	308.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure
rhol	783.95	kg/m3	313.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure
rhol	799.83	kg/m3	298.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure
rhol	799.70	kg/m3	298.15	Isobaric Vapor Liquid Equilibrium for the Binary Systems of sec-Butyl Acetate + Methyl Ethyl Ketone, 2-Methoxyethanol, or 1,2-Dimethoxyethane at 101.3 kPa
rhol	799.62	kg/m3	298.15	Excess Molar Volumes and Surface Tensions of Xylene with Acetone or 2-Butanone at 298.15 K
rhol	794.60	kg/m3	303.15	Viscometric Behavior of Binary Mixtures of Butan-2-one with Benzene at T = (303.15, 313.15, and 323.15) K

rhol	784.00	kg/m3	313.15	Viscometric Behavior of Binary Mixtures of Butan-2-one with Benzene at T = (303.15, 313.15, and 323.15) K	
rhol	773.30	kg/m3	323.15	Viscometric Behavior of Binary Mixtures of Butan-2-one with Benzene at T = (303.15, 313.15, and 323.15) K	
rhol	799.97	kg/m3	298.15	Thermodynamics of Ketone + Amine Mixtures. Part VIII. Molar Excess Enthalpies at 298.15 K for n-Alkanone + Aniline or + N-Methylaniline Systems	
rhol	804.97	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	799.74	kg/m3	298.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	794.47	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	

rhol	789.18	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	783.85	kg/m3	313.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	778.48	kg/m3	318.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	773.09	kg/m3	323.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	804.83	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	799.60	kg/m3	298.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	

rhol	794.33	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	789.04	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	783.72	kg/m3	313.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	778.36	kg/m3	318.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	772.97	kg/m3	323.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	804.90	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	

rhol	799.68	kg/m3	298.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	794.41	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	789.12	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	783.80	kg/m3	313.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	778.44	kg/m3	318.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	773.04	kg/m3	323.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	

rhol	805.17	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	799.94	kg/m3	298.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	794.67	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	789.38	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	794.60	kg/m3	303.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	
rhol	784.00	kg/m3	313.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	

rhol	773.30	kg/m3	323.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K
rhol	799.71	kg/m3	303.15	Excess Molar Enthalpies and Vapor-Liquid Equilibrium for N-Methyl-2-pyrrolidone with Ketones
rhol	799.69	kg/m3	303.15	Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents
rhol	794.55	kg/m3	303.15	Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures
rhol	799.78	kg/m3	298.15	Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures
rhol	805.06	kg/m3	293.15	Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures

rhol	799.60	kg/m3	298.15	Volumetric and optical properties for some (2-butanone + chloroalkane) binary mixtures at T = 298.15 K	
rhol	799.97	kg/m3	298.15	Thermodynamics of (ketone + amine) mixtures. Part XI. Excess molar enthalpies at T = 298.15 K for the (1-propanol + N,N,N-triethylamine + 2-butanone) system	
rhol	786.94	kg/m3	313.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K	
rhol	792.45	kg/m3	308.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K	
rhol	797.88	kg/m3	303.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K	
rhol	803.24	kg/m3	298.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K	

rhol	808.64	kg/m3	293.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K
rhol	794.50	kg/m3	303.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T = 303.15 K
rhol	799.75	kg/m3	298.15 no	Excess molar enthalpies and volumes of binary mixtures of onafluorobutylmethylether with ketones at T = 298.15 K
rhol	799.80	kg/m3	293.15	(Vapour + liquid) equilibria for (2-ethoxypropene + acetone) and (2-ethoxypropene + butanone)
rhol	802.03	kg/m3	298.15	Quaternary isothermal vapor-liquid equilibrium of the model biofuel 2-butanone + n-heptane + tetrahydrofuran + cyclohexane using Raman spectroscopic characterization

rhol	800.87	kg/m3	298.15 Experimental measurements and modelling of volumetric properties, refractive index and viscosity of binary systems of ethyl lactate with methyl ethyl
			ketone, toluene and n-methyl-2-pirrolidone at 288.15 323.15 K and atmospheric pressure. New UNIFAC VISCO and ASOG VISCO interaction parameters
rhol	799.97	kg/m3	298.15 Thermodynamics
rhol	799.97	kg/m3	298.15 Thermodynamics of ketone + amine mixtures. Part IX. Excess molar enthalpies at 298.15K for dipropylamine, or dibutylamine + 2-alkanone systems and modeling of linear or aromatic amine + 2-alkanone mixtures in terms of DISQUAC and ERAS
rhol	800.30	kg/m3	313.15 Effect of temperature on ultrasonic velocity and thermodynamic parameters of bisphenol-C-formaldehyde-acrylate resin solutions

rhol	800.10	kg/m3	308.15 bisphe	Effect of temperature on ultrasonic velocity and thermodynamic parameters of nol-C-formaldehyderesin solutions	acrylate
rhol	802.50	kg/m3	303.15 bisphe	Effect of temperature on ultrasonic velocity and thermodynamic parameters of nol-C-formaldehyde- resin solutions	acrylate
rhol	805.00	kg/m3	293.00	KDB	
rhol	810.33	kg/m3	288.15	Excess molar volumes of (1-chlorobutane +heptane + 2-butanone or 2-pentanone) at 288.15, 303.15 and 313.15 K. Measurements and correlations.	
sfust	45.25	J/mol×K	186.48	NIST Webbook	
sfust	44.98	J/mol×K	186.47	NIST Webbook	
sfust	45.59	J/mol×K	186.10	NIST Webbook	
speedsl	1192.00	m/s	298.15	Vapor liquid equilibria for systems of diethyl carbonate and ketones and determination of group interaction parameters for the UNIFAC and ASOG methods	
speedsl	1212.30	m/s	293.15	Thermodynamics of ketone + amine mixtures Part IV. Volumetric and speed of sound data at (293.15; 298.15 and 303.15 K) for 2-butanone +dipropylamine, +dibutylamine or +triethylamine systems	

speedsl	1170.80	m/s	303.15	Thermodynamics of ketone + amine mixtures Part IV. Volumetric and speed of sound data at (293.15; 298.15 and 303.15 K) for 2-butanone +dipropylamine, +dibutylamine or +triethylamine systems	
speedsl	1212.00	m/s	293.15	Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for 2-Butanone + Aniline, + N-Methylaniline, or + Pyridine Systems	
speedsl	1190.80	m/s	298.15	Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for 2-Butanone + Aniline, + N-Methylaniline, or + Pyridine Systems	
speedsl	1170.60	m/s	303.15	Thermodynamics of Ketone + Amine Mixtures. Part III. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for 2-Butanone + Aniline, + N-Methylaniline, or + Pyridine Systems	

speedsl	1178.00	m/s	303.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
speedsl	1191.00	m/s	298.15	Thermodynamics of ketone + amine mixtures Part IV. Volumetric and speed of sound data at (293.15; 298.15 and 303.15 K) for 2-butanone +dipropylamine, +dibutylamine or +triethylamine systems
speedsl	1136.00	m/s	313.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
speedsl	1158.00	m/s	308.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
srf	0.02	N/m	298.20	KDB
srf	0.02	N/m	298.15	Concentration Dependence of Surface Tension for Very Dilute Aqueous Solutions of Organic Non-Electrolytes

	tcondl	0.14	W/m×K	344.54	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
	tcondl	0.14	W/m×K	323.96	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
	tcondl	0.14	W/m×K	334.71	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
	tcondl	0.14	W/m×K	314.26	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
	tcondl	0.13	W/m×K	354.33	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
	tcondl	0.13	W/m×K	364.46	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
_	tcondl	0.13	W/m×K	374.56	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	

tcondl	0.15	W/m×K	305.02	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
tcondl	0.15	W/m×K	294.42	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	
tcondl	0.15	W/m×K	284.48	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.45436e+01
Coeff. B	-3.04648e+03
Coeff. C	-4.60570e+01
Temperature range (K), min.	259.76
Temperature range (K), max.	376.05

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	6.69787e+01
Coeff. B	-6.16017e+03
Coeff. C	-7.78365e+00
Coeff. D	6.13927e-06
Temperature range (K), min.	186.48
Temperature range (K), max.	535.50

Datasets

Viscosity, Pa*s

Temperature, K - Liquid Pressure, kPa - Liquid Viscosity, Pa*s - Liquid

308.15 101.30 0.0003160

Reference

https://www.doi.org/10.1021/je8003723

Sources

Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with Regimes dynamic grog of thing for solubility of solubility and the solubility and thermodynamic solubility and thermodynamic solubility and thermodynamic Solubility and Thermodynamic Pensines Visynatics and iRefinetivere Penseties Visuanities and indinative estima of the (Erianu Minuter) Binary sprange of the Erianu Minuter of the Erianu Minute British เหมาะ เมื่อสามารถ เกมาะ เมื่อสามารถ เกมาะ เมื่อสามารถ โดย โตยตรี เมื่อสามารถ เกมาะ เกมา infinite cultury activity coefficients of inclation of an inclation of a ctivity coefficient at infinite dilution for organic solutes in Neas Granges of activity coefficient at infinite dilution for organic solutes in Entablished Hammonium chloride + Athylenegament desirable Hammonium chloride + Athylenegament desirable Hammonium chloride + Athylenegament desirable Hammonium chloride Hammonium desirable Hammonium chloride Hammonium technique:

https://www.doi.org/10.1016/j.jct.2009.01.006 https://www.doi.org/10.1016/j.jct.2016.10.006 https://www.doi.org/10.1021/acs.jced.9b00406 https://www.doi.org/10.1021/je200195q https://www.doi.org/10.1021/acs.jced.8b00663 https://www.doi.org/10.1021/je5007696 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.tca.2010.09.004 https://www.doi.org/10.1021/je0504109 https://www.doi.org/10.1016/j.jct.2011.09.028 https://www.doi.org/10.1021/acs.jced.9b00341 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1016/j.fluid.2007.08.006 https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1021/je100472t https://www.doi.org/10.1016/j.jct.2017.05.013 https://www.doi.org/10.1021/je0498762 https://www.doi.org/10.1021/je049655w https://www.doi.org/10.1021/je100998r https://www.doi.org/10.1021/acs.jced.8b01014 https://www.doi.org/10.1016/j.fluid.2018.01.019 https://www.doi.org/10.1021/je9006585 -imidazolium-1-yl) https://www.doi.org/10.1016/j.jct.2015.08.017 https://www.doi.org/10.1021/acs.jced.9b00243 https://www.doi.org/10.1021/je100341q

Measurement of Henry s Law https://www.doi.org/10.1021/je034137r Constants for Acetone, 2-Butanone, Experimental hospital and the property of the EXPBURIABUIDING ANU GROUNT SANGE HYDE THE RESIDENCE OF THE PROPERTY OF THE WIND PROPERTY OF THE WIND PARTY OF THE WIND P https://www.doi.org/10.1021/je1011604 https://www.doi.org/10.1021/je060150a https://www.doi.org/10.1016/j.jct.2014.04.004 https://www.doi.org/10.1021/je200150r Sogue interactions of https://www.doi.org/10.1021/acs.jced.8b00235 Trimetazidine Hydrochloride in 12 HANDARIAN MIRANISE HAR EVISE HARRINGS OF https://www.doi.org/10.1016/j.jct.2010.12.027 https://www.doi.org/10.1021/acs.jced.8b00600 Polytication of a lay representation of the control The proposed of the property of the control of the property of Tetrahydrofuran at 303.15 K: Volumetric Behavior of the Binary https://www.doi.org/10.1021/je800883b Mixtures of Methyl Ethyl Ketone with Ratitione Cogific texts and Composing a single processing the control of the Binary Mixtures of Methyl Ethyl Ketone with Ratitione Cogific texts and Composing a single processing the control of https://www.doi.org/10.1016/j.fluid.2014.01.043 https://www.doi.org/10.1021/je5007604
https://www.doi.org/10.1016/j.fluid.2006.
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1016/j.jct.2012.0g
https://www.doi.org/10.1021/je800571y
https://www.doi.org/10.1021/je800571y
https://www.doi.org/10.1021/je800571y
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1016/j.jct.2016.10
https://www.doi.org/10.1021/je200637v
https://www.doi.org/10.1021/je200637v https://www.doi.org/10.1016/j.fluid.2006.11.011 https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.jct.2017.04.019 https://www.doi.org/10.1021/acs.jced.8b00552 https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1016/j.jct.2016.10.037 https://www.cheric.org/files/research/kdb/mol/mol1192.mol organic solvents at elevated

temperatures:

```
Solubility of Veratric Acid in Eight
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je400029t
      Monosolvents and Ethanol + 1-Butanol
      Solvabilitys of empetayures itropyrazole in https://www.doi.org/10.1016/j.fluid.2018.05.023
    seventeen pure solvents at
                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2012.06.011
    solvents:
Solubilities of
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je1010054
   N-[(4-Bromo-3,5-difluorine)-phenyl]maleimide
โกษัสเซอฟทองกับเลโลเซอฟตลส์อา: https:
Solubility of 1-Hydroxybenzotriazole in
อิโษเนียดเรียเจะสะเลิก โลเพอสุมเกรียมที่อิก https:
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.7b00316
                                                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.fluid.2014.11.020
   The street of th
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2007.02.027
       Printing Dilution of Benzene, Toluene, Briting Dilution of Benzene, Toluene, Briting Dilution of Benzene, Toluene, Briting Dilution of Benzene, Toluene, Toluene, Briting Dilution of Benzene, Briting Dilution of 
Hither Dilution of Benzene, Toluene, Bentlability Betas of Cresiles it in the provisor in Maria in the provisor in
                                                                                                                                                                                                                                                                                                                                                                                    Funstiana ବାର୍ଗକର୍ଧାନ୍ତ୍ରମୟର୍ମ୍ୟ nine
biguiddiguidefauilibifa fer (१७७८.15 to
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.07.054
      BASHON KENDALNUM HE IN PARTIES OF
                                                                                                                                                                                                                                                                                                                                                                                      http://pubs.acs.org/doi/abs/10.1021/ci990307l
   Selly Magray solution + metnyi etnyi ketone or metnyi isopropyi ketone + metnyi etnyi ketone or metnyi isopropyi ketone + metnyi metnyi isopropyi ketone + metnyi etnyi isopropyi ketone oranga metalika 
                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je0495942
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2004.08.002
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.09.036
 evaluation and thermodynamic
Assivitys Google on the production of the production of
    Mydites case with chloroalkanes by the chloroalkanes of ketones with chloroalkanes of ketones with chloroalkanes of the chloroalkanes of ketones with chloroalkanes of the chloro
                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.tca.2005.03.009
```

Tetrahydrofuran or Amyl Alcohol with Hydrocarbons, Chlorohydrocarbons, or

Butanols at (94.6 or 95.8) kPa:

```
Excess Molar Enthalpies and
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900262t
     Vapor-Liquid Eguilibrium for
  Names nytration Painentewan at Surface
Tension for Very Dilute Aqueous
Surfiams ประกัติภาษา MoVaprectrolytes:
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je049955d
                                                                                                                                                                                                                               https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
    Pressure:
   Measurement of activity coefficients at https://www.doi.org/10.1016/j.jct.2007.01.004
    infinite dilution in
                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2016.07.043
    Maasuteroeps and myndelliasoff im
 MARSKUTETOPPS and IN MARIUS DITUM

BAPRING DE DITTALE IO INVENTE DELLE PER LA PROPERTIE DE LA 
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2018.06.003
                                                                                                                                                                                                                               http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2008.06.004
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2007.06.005
                                                                                                                                                                                                                             https://www.doi.org/10.1021/je050110r
   Providence Bandwars Artime my montaine Systems (Paclohexane and Systems (Paclohexane and Systems (Paclohexane) (Pa
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2005.02.006
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2010.10.008
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je049793l
      VisnositicaeDeyIniticazondrapeeds of
  https://www.doi.org/10.1016/j.fluid.2006.04.010
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2007.06.009
https://www.doi.org/10.1021/je060033f
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2016.02.031
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2015.09.003
                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.9b00190
                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.8b00902
    The construction of the co
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2015.02.023
   Pulled at Spike to Marious and Taken and Taken
                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.tca.2012.01.013
Modeling of Densities, Refractive ladies of specification and https://www.doi.org/10.1016/j.tca.2012.01.01

Modeling of Densities, Refractive ladies of specification and https://www.doi.org/10.1021/acs.jced.5b0058

https://www.doi.org/10.1021/acs.jced.8b0093

https://www.doi.org/10.1021/acs.jced.8b0093

https://www.doi.org/10.1021/acs.jced.8b0093

https://www.doi.org/10.1021/acs.jced.9b0065

https://www.doi.org/10.1021/acs.jced.9b0065

https://www.doi.org/10.1021/acs.jced.9b0065

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1021/je200333p

https://www.doi.org/10.1021/je200333p
                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.5b00582
                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.8b00931
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2010.12.005
                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.9b00658
   Aniline or + N-Methylaniline Systems:
Solubility of CO2 in Alcohols, Glycols,
                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je101344v
   Ethers, and Ketones at High Pressures
Fturity285€tbeto;345cebpk; or
Cyanò-Functionalized Ionic Liquids
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900838a
```

Using Inverse Gas Chromatography:

```
Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium of the 2-Butanone + Activity confinence satisfinite dilution of organic solutes in the ionic liquid Activity confinence using gas liquid the signature of the second state of th
         Liquid-Liquid and Vapor-Liquid-Liquid
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je1004643
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2013.07.037
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              http://webbook.nist.gov/cgi/cbook.cgi?ID=C78933&Units=SI
       equilibrium data for the binary mixtures

Brenedias istipaloxida in Medical broad house in the binary mixtures

Brenedias istipaloxida in Medical broad house in the binary mixtures

Brenedias istipaloxida in Medical broad house in the binary mixtures

Brenedias istipaloxida in the binary mixtures

Brenedia
       Vapor-Liquid equilibrium behavior of Exantinon talkaptellogies Sequies on the Solubility of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.7b00288
   the Solubility of Solubility o
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2009.12.030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.9b00854
interpolation of the control of the 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1192
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1192
     Definition of the standards of the stand
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je3010535
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2007.02.026
```

formamide with some compounds at

95.1 kPa:

Solubility of methylphosphonic acid in

selected organic solvents: Solubility Modeling and Solvent Effect for Flubendazole in 12 Neat Solvents: Quaternary isothermal vapor-liquid equilibrium of the model biofuel
 វូបាន អំពីអាស៊ី មាន អាស៊ី មាន អំពីអាស៊ី មាន អាស៊ី មាន អំពីអាស៊ី មាន អំពីអាស Astronomy Astronomy Astronomy Page 1

Alcohol (Ethanol, 1-Propanol,

2-Propanol) Systems at 101.3 kPa:

Legend

https://www.doi.org/10.1016/j.fluid.2015.01.009 https://www.doi.org/10.1021/acs.jced.8b01126 https://www.doi.org/10.1016/j.fluid.2018.04.009 https://www.doi.org/10.1016/j.fluid.2005.06.024 https://www.doi.org/10.1016/j.jct.2012.02.033 https://www.doi.org/10.1016/j.jct.2016.06.033 https://www.doi.org/10.1016/j.jct.2016.12.028

https://www.doi.org/10.1021/je050544m

https://www.doi.org/10.1021/acs.jced.6b00725

af: Acentric Factor affp: Proton affinity

aigt: Autoignition Temperature

Gas basicity basq:

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity ea: Electron affinity

fII: Lower Flammability Limit flu: **Upper Flammability Limit**

fpc: Flash Point (Closed Cup Method) Flash Point (Open Cup Method) fpo:

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating nfpah: NFPA Health Rating Critical Pressure pc: Vapor pressure pvap:

rfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/23-903-3/2-Butanone.pdf

Generated by Cheméo on 2025-12-20 10:35:16.257771438 +0000 UTC m=+5975113.787812133.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.