Acetonitrile

Other names: Acetonitril

CH3CN

Cyanomethane Cyanure de methyl ETHANENITIRILE

Ethanenitrile Ethanonitrile Ethyl nitrile

Methane, cyano-Methanecarbonitrile

Methyl cyanide Methylkyanid NA 1648 NCI-C60822

Rcra waste number U003

UN 1648

USAF EK-488

Inchi: InChl=1S/C2H3N/c1-2-3/h1H3

InchiKey: WEVYAHXRMPXWCK-UHFFFAOYSA-N

 Formula:
 C2H3N

 SMILES:
 CC#N

 Mol. weight [g/mol]:
 41.05

 CAS:
 75-05-8

Physical Properties

Property code	Value	Unit	Source
af	0.3270		KDB
affp	787.40 ± 5.90	kJ/mol	NIST Webbook
affp	779.20	kJ/mol	NIST Webbook
aigt	797.04	K	KDB
basg	748.00	kJ/mol	NIST Webbook
chl	-1256.33 ± 0.30	kJ/mol	NIST Webbook
chl	-1247.20 ± 7.20	kJ/mol	NIST Webbook
chl	-1270.00	kJ/mol	NIST Webbook

cpl	92.36	J/mol×K	Volumes, Heat Capacities, and Compressibilities of the Mixtures of Acetonitrile with N,N-Dimethylacetamide and Propylene Carbonate
cpl	90.93	J/mol×K	Heat capacities of the mixtures of ionic liquids with acetonitrile
dm	3.50	debye	KDB
ea	0.00 ± 0.01	eV	NIST Webbook
ea	0.01	eV	NIST Webbook
ea	0.01	eV	NIST Webbook
fII	4.40	% in Air	KDB
flu	16.00	% in Air	KDB
fpc	278.71	K	KDB
gf	105.70	kJ/mol	KDB
gyrad	1.8210		KDB
hf	87.92	kJ/mol	KDB
hf	65.86	kJ/mol	NIST Webbook
hf	74.04 ± 0.37	kJ/mol	NIST Webbook
hfl	31.40	kJ/mol	NIST Webbook
hfl	40.56 ± 0.40	kJ/mol	NIST Webbook
hfus	2.44	kJ/mol	Joback Method
hvap	33.00	kJ/mol	NIST Webbook
hvap	33.40	kJ/mol	NIST Webbook
hvap	33.45 ± 0.21	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
hvap	32.94 ± 0.06	kJ/mol	NIST Webbook
ie	12.21	eV	NIST Webbook
ie	15.11	eV	NIST Webbook
ie	12.20 ± 0.01	eV	NIST Webbook
ie	12.20 ± 0.00	eV	NIST Webbook
ie	12.12	eV	NIST Webbook
ie	12.46	eV	NIST Webbook
ie	13.11	eV	NIST Webbook
ie	15.12	eV	NIST Webbook
ie	16.98	eV	NIST Webbook
ie	12.19 ± 0.01	eV	NIST Webbook
ie	12.23 ± 0.05	eV	NIST Webbook
ie	12.38 ± 0.04	eV	NIST Webbook
ie	12.22 ± 0.01	eV	NIST Webbook
ie	12.30 ± 0.25	eV	NIST Webbook
ie	12.33 ± 0.08	eV	NIST Webbook
ie	12.19 ± 0.01	eV	NIST Webbook
ie	12.20	eV	NIST Webbook
ie	12.21 ± 0.00	eV	NIST Webbook

ie	13.14	eV	NIST Webbook
ie	12.20 ± 0.01	eV	NIST Webbook
log10ws	0.26		Aqueous Solubility Prediction Method
log10ws	0.26		Estimated Solubility Method
logp	0.530		Crippen Method
mcvol	40.420	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=2)		KDB
nfpas	%!d(float64=1)		KDB
рс	4830.00 ± 20.00	kPa	NIST Webbook
рс	4850.00	kPa	KDB
рс	4890.00 ± 10.00	kPa	NIST Webbook
рс	4830.00 ± 81.06	kPa	NIST Webbook
рс	4934.00 ± 3.00	kPa	NIST Webbook
рс	4934.00 ± 3.00	kPa	NIST Webbook
рс	4833.20 ± 81.06	kPa	NIST Webbook
рс	4833.20 ± 81.06	kPa	NIST Webbook
рс	4830.00 ± 20.00	kPa	NIST Webbook
рс	4934.00 ± 20.00	kPa	NIST Webbook
rinpol	457.67		NIST Webbook
rinpol	455.00		NIST Webbook
rinpol	447.00		NIST Webbook
rinpol	455.00		NIST Webbook
rinpol	464.00 N		NIST Webbook
rinpol	490.00	490.00 NIST V	
rinpol	455.00		NIST Webbook
rinpol	443.00		NIST Webbook
rinpol	452.00		NIST Webbook
rinpol	443.00		NIST Webbook
rinpol	447.00		NIST Webbook
rinpol	470.00		NIST Webbook
rinpol	456.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	467.00		NIST Webbook
rinpol	446.00		NIST Webbook
rinpol	439.00		NIST Webbook
rinpol	439.00		NIST Webbook
rinpol	447.00		NIST Webbook
rinpol	444.00		NIST Webbook
rinpol	460.00		NIST Webbook
rinpol	440.00		NIST Webbook
rinpol	425.00		NIST Webbook
rinpol	464.00		NIST Webbook

rinpol 450.00 NIST Webbook rinpol 442.00 NIST Webbook rinpol 432.00 NIST Webbook rinpol 456.90 NIST Webbook rinpol 452.35 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.92 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 455.74 NIST Webbook rinpol 455.74 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook <tr< th=""><th>rinpol</th><th>460.00</th><th></th><th>NIST Webbook</th></tr<>	rinpol	460.00		NIST Webbook
rinpol 442.00 NIST Webbook rinpol 432.00 NIST Webbook rinpol 456.90 NIST Webbook rinpol 456.90 NIST Webbook rinpol 452.35 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.53 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.53 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.92 NIST Webbook rinpol 453.90 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 454.52 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.70 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook rinpol 454.45 NIST Webbook rinpol 454.45 NIST Webbook rinpol 454.45 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST We	·	450.00		NIST Webbook
rinpol 432.00 NIST Webbook rinpol 456.90 NIST Webbook rinpol 452.35 NIST Webbook rinpol 452.35 NIST Webbook rinpol 452.53 NIST Webbook rinpol 452.53 NIST Webbook rinpol 452.53 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 453.90 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.71 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.16 NIST Webbook rinpol 455.25 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook rinpol 454.44 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1004.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1026.00 NIST We		442.00		NIST Webbook
rinpol 456.90 NIST Webbook rinpol 452.35 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.70 NIST Webbook rinpol 452.90 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.60 NIST Webbook rinpol 456.60 NIST Webbook rinpol 456.60 NIST Webbook rinpol 456.60 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST We		432.00		NIST Webbook
rinpol 452.35 NIST Webbook rinpol 452.50 NIST Webbook rinpol 452.53 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.71 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook <tr< td=""><td>•</td><td></td><td></td><td></td></tr<>	•			
rinpol 452.50 NIST Webbook rinpol 452.92 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.30 NIST Webbook rinpol 453.30 NIST Webbook rinpol 454.52 NIST Webbook rinpol 454.52 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.71 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook rinpol 454.45 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1026.00 NIST We				NIST Webbook
rinpol 452.53 NIST Webbook rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 455.74 NIST Webbook rinpol 439.00 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1010.00 NIST Webbook <tr< td=""><td></td><td>452.50</td><td></td><td>NIST Webbook</td></tr<>		452.50		NIST Webbook
rinpol 452.92 NIST Webbook rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.25 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 439.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1000.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
rinpol 453.32 NIST Webbook rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.74 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1010.00 NIST Webbook <tr< td=""><td></td><td>452.92</td><td></td><td>NIST Webbook</td></tr<>		452.92		NIST Webbook
rinpol 453.90 NIST Webbook rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 456.69 NIST Webbook rinpol 456.69 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td></td><td>453.32</td><td></td><td>NIST Webbook</td></tr<>		453.32		NIST Webbook
rinpol 454.52 NIST Webbook rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td></td><td>453.90</td><td></td><td>NIST Webbook</td></tr<>		453.90		NIST Webbook
rinpol 455.45 NIST Webbook rinpol 452.72 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td>·</td><td>454.52</td><td></td><td>NIST Webbook</td></tr<>	·	454.52		NIST Webbook
rinpol 452.72 NIST Webbook rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td></td><td>455.45</td><td></td><td>NIST Webbook</td></tr<>		455.45		NIST Webbook
rinpol 452.90 NIST Webbook rinpol 452.71 NIST Webbook rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 439.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1003.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td></td><td>452.72</td><td></td><td>NIST Webbook</td></tr<>		452.72		NIST Webbook
rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td></td><td>452.90</td><td></td><td>NIST Webbook</td></tr<>		452.90		NIST Webbook
rinpol 453.18 NIST Webbook rinpol 453.70 NIST Webbook rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook <tr< td=""><td>rinpol</td><td>452.71</td><td></td><td>NIST Webbook</td></tr<>	rinpol	452.71		NIST Webbook
rinpol 455.25 NIST Webbook rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook <tr< td=""><td></td><td>453.18</td><td></td><td>NIST Webbook</td></tr<>		453.18		NIST Webbook
rinpol 455.74 NIST Webbook rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook <tr< td=""><td>rinpol</td><td>453.70</td><td></td><td>NIST Webbook</td></tr<>	rinpol	453.70		NIST Webbook
rinpol 456.69 NIST Webbook rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook <tr< td=""><td>rinpol</td><td>455.25</td><td></td><td>NIST Webbook</td></tr<>	rinpol	455.25		NIST Webbook
rinpol 439.00 NIST Webbook rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook	rinpol	455.74		NIST Webbook
rinpol 454.45 NIST Webbook ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook	rinpol	456.69		NIST Webbook
ripol 1003.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook	rinpol	439.00		NIST Webbook
ripol 1002.00 NIST Webbook ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook	rinpol	454.45		NIST Webbook
ripol 1011.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook	ripol	1003.00		NIST Webbook
ripol 1045.00 NIST Webbook ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook	ripol	1002.00		NIST Webbook
ripol 1010.00 NIST Webbook ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook	ripol	1011.00		NIST Webbook
ripol 1012.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook	ripol	1045.00		NIST Webbook
ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1010.00		NIST Webbook
ripol 1045.00 NIST Webbook ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1012.00		NIST Webbook
ripol 988.00 NIST Webbook ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1026.00		NIST Webbook
ripol 1030.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook NIST Webbook NIST Webbook	ripol	1045.00		NIST Webbook
ripol 1026.00 NIST Webbook ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	988.00		NIST Webbook
ripol 1002.00 NIST Webbook ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1030.00		NIST Webbook
ripol 1026.00 NIST Webbook ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1026.00		NIST Webbook
ripol 1025.00 NIST Webbook ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1002.00		NIST Webbook
ripol 1045.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1026.00		NIST Webbook
ripol 1013.00 NIST Webbook ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1025.00		NIST Webbook
ripol 1013.00 NIST Webbook ripol 1012.00 NIST Webbook	ripol	1045.00		NIST Webbook
ripol 1012.00 NIST Webbook	ripol	1013.00		NIST Webbook
'	ripol	1013.00		NIST Webbook
sl 149.62 J/mol×K NIST Webbook	ripol	1012.00		NIST Webbook
	sl	149.62	J/mol×K	NIST Webbook

tb	354.25	K	Vapor Liquid Equilibria Measurement of (Methanol + Ethanenitrile + Bis(trifluoromethylsulfonyl) Imide)-Based Ionic Liquids at 101.3 kPa
tb	354.74	К	Isobaric Vapor-Liquid Equilibrium of the Acetonitrile + 1-Propanol + Ionic Liquids at an Atmospheric Pressure
tb	354.65	К	Vapor-Liquid Equilibria for the Ternary System Acetonitrile + 1-Propanol + Dimethyl Sulfoxide and the Corresponding Binary Systems at 101.3 kPa
tb	354.75	К	Isobaric Vapor Liquid Equilibrium for the Acetonitrile + Water System Containing Different Ionic Liquids at Atmospheric Pressure
tb	354.75 ± 0.20	K	NIST Webbook
tb	354.80	K	NIST Webbook
tb	354.25 ± 0.30	K	NIST Webbook
tb	355.00	K	NIST Webbook
tb	354.60 ± 0.30	K	NIST Webbook
tb	354.25 ± 0.50	K	NIST Webbook
tb	370.55 ± 0.10	K	NIST Webbook
tb	354.70	K	NIST Webbook
tb	354.75 ± 0.50	K	NIST Webbook
tb	354.70	K	NIST Webbook
tb	354.80 ± 0.40	K	NIST Webbook
tb	354.80 ± 0.50	K	NIST Webbook
tb	354.75 ± 0.20	K	NIST Webbook
tb	354.80 ± 0.30	K	NIST Webbook
tb	354.75	K	NIST Webbook
tb	354.45 ± 0.50	K	NIST Webbook
tb	354.65 ± 0.50	K	NIST Webbook
tb	354.80 ± 0.30	K	NIST Webbook
tb	355.00 ± 0.50	K	NIST Webbook
tb	351.00 ± 3.00	K	NIST Webbook
tb	354.71 ± 0.20	K	NIST Webbook
tb	354.35 ± 0.50	K	NIST Webbook
tb	354.70 ± 2.00	K	NIST Webbook
tb	355.00 ± 1.50	K	NIST Webbook
tb	354.72 ± 0.10	K	NIST Webbook
tb	355.00 ± 2.00	K	NIST Webbook
tb	355.00 ± 0.50	K	NIST Webbook
tb	354.90 ± 0.30	K	NIST Webbook

tb	354.70 ± 2.00	K	NIST Webbook
tb	355.15 ± 1.50	K	NIST Webbook
tb	354.80 ± 0.50	K	NIST Webbook
tb	354.00 ± 2.00	K	NIST Webbook
tb	355.00 ± 2.00	K	NIST Webbook
tb	354.90 ± 0.70	K	NIST Webbook
tb	353.00 ± 2.00	K	NIST Webbook
tb	354.70	К	Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers
tb	353.90 ± 1.50	K	NIST Webbook
tb	354.80 ± 0.30	K	NIST Webbook
tb	354.80 ± 0.30	K	NIST Webbook
tb	354.90 ± 0.20	K	NIST Webbook
tb	354.80 ± 0.30	K	NIST Webbook
tb	354.80 ± 0.60	K	NIST Webbook
tb	354.80 ± 0.40	K	NIST Webbook
tb	354.75 ± 0.30	K	NIST Webbook
tb	354.95 ± 1.50	K	NIST Webbook
tb	354.75 ± 0.30	K	NIST Webbook
tb	354.70 ± 0.40	K	NIST Webbook
tb	354.75 ± 0.20	K	NIST Webbook
tb	354.68	К	Measurement and correlation of isobaric vapour-liquid equilibrium for the (acetonitrile + water) system containing different ionic liquids at atmospheric pressure
tb	354.69 ± 0.30	K	NIST Webbook
tb	354.90 ± 0.60	K	NIST Webbook
tb	354.69 ± 0.50	K	NIST Webbook
tb	355.00 ± 1.50	K	NIST Webbook
tb	354.65	К	(Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa
tb	355.00 ± 2.00	K	NIST Webbook
tb	354.80	K	KDB
tb	354.65		The isobaric vapor liquid equilibria of ethyl acetate p acetonitrile p bis(trifluoromethylsulfonyl)imide-based ionic liquids at 101.3 kPa
tc	543.45 ± 1.00	K	NIST Webbook
tc	545.50	K	KDB
tc	544.99 ± 0.20	K	NIST Webbook

tc	544.99 ± 0.20	K	NIST Webbook
tc	544.99 ± 0.20	K	NIST Webbook
tc	543.20 ± 2.00	K	NIST Webbook
tc	543.15 ± 1.00	K	NIST Webbook
tc	545.50 ± 0.20	K	NIST Webbook
tc	545.50 ± 0.30	K	NIST Webbook
tc	545.50 ± 0.30	K	NIST Webbook
tf	227.45	K	Aqueous Solubility Prediction Method
tf	229.32	K	KDB
tf	229.07	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	230.42	К	Experimental (Solid + Liquid) and (Liquid + Liquid) Equilibria and Excess Molar Volume of Alkanol + Acetonitrile, Propanenitrile, and Butanenitrile Mixtures
tt	229.32 ± 0.02	K	NIST Webbook
VC	0.173	m3/kmol	KDB
ZC	0.1849930		KDB
zra	0.20		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	59.46	J/mol×K	379.59	Joback Method
cpg	62.33	J/mol×K	411.95	Joback Method
cpg	65.11	J/mol×K	444.30	Joback Method
cpg	67.79	J/mol×K	476.66	Joback Method
cpg	70.38	J/mol×K	509.01	Joback Method
cpg	72.87	J/mol×K	541.37	Joback Method
cpg	56.48	J/mol×K	347.24	Joback Method
cpl	92.21	J/mol×K	303.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents

cpl	92.40	J/mol×K	308.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	82.50	J/mol×K	297.00	NIST Webbook	
cpl	91.69	J/mol×K	298.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	91.70	J/mol×K	298.15	NIST Webbook	
cpl	91.70	J/mol×K	298.15	NIST Webbook	
cpl	91.70	J/mol×K	298.15	NIST Webbook	
cpl	81.80	J/mol×K	303.15	NIST Webbook	
cpl	77.40	J/mol×K	298.15	NIST Webbook	
cpl	92.82	J/mol×K	313.15	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents	
cpl	91.69	J/mol×K	298.15	NIST Webbook	
cpl	91.46	J/mol×K	298.15	NIST Webbook	
dvisc	0.0003270	Paxs	313.15 1-But	Properties of Pure yl-2,3-dimethylimidaz Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	zolium
dvisc	0.0003900	Pa×s	293.15 1-Не	Viscosities of exyl-3-methylimidazo Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	olium

dvisc	0.0003500	Paxs	303.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003300	Paxs	313.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003000	Paxs	323.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0002800	Paxs	333.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0002600	Paxs	343.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003443	Paxs	298.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques

dvisc	0.0003124	Paxs	308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0002890	Paxs	318.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0002891	Paxs	318.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0003125	Paxs	308.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa
dvisc	0.0003042	Paxs	313.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa

dvisc	0.0002903	Paxs	318.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa
dvisc	0.0003700	Paxs	298.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003540	Pa×s	303.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0003414	Paxs	308.15 Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures
dvisc	0.0003020	Paxs	323.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

dvisc	0.0002810	Paxs	333.15 1-Bu	Properties of Pure tyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	
dvisc	0.0002620	Paxs	343.15 1-Bu	Properties of Pure tyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	
dvisc	0.0003440	Paxs	298.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures	
dvisc	0.0003554	Paxs	303.15	Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures	
dvisc	0.0002890	Paxs	318.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures	

dvisc	0.0003417	Paxs	298.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003280	Paxs	303.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003129	Paxs	308.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003009	Paxs	313.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0002899	Paxs	318.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0003081	Paxs	293.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0002857	Paxs	298.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	

dvisc	0.0002642	Paxs	303.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0002444	Paxs	308.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0002374	Paxs	310.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0002267	Paxs	313.15	Thermodynamic Study of Phenyl Salicylate Solutions in Aprotic Solvents at Different Temperatures	
dvisc	0.0003696	Paxs	298.15	Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures	
dvisc	0.0002620	Paxs	343.15 1-eth	Viscosity of binary mixtures of nyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents	
dvisc	0.0002810	Pa×s	333.15 1-eth	Viscosity of binary mixtures of nyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents	

dvisc	0.0003020	Paxs	323.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003270	Paxs	313.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003540	Paxs	303.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003700	Paxs	298.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003860	Paxs	293.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0003009	Paxs	313.15 The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
dvisc	0.0003129	Paxs	308.15 The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes
dvisc	0.0003280	Paxs	303.15 The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes

dvis	c (0.0003417	Paxs	298.15	The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes	
dvis	c (0.0002680	Paxs	328.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolic methyl sulfate + molecular solvents at T = (298.15 - 328.15)	um
dvis	c (0.0002918	Paxs	318.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolii methyl sulfate + molecular solvents at T = (298.15 - 328.15)	um
dvis	c (0.0003171	Paxs	308.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolii methyl sulfate + molecular solvents at T = (298.15 - 328.15) K	um
dvis	c (0.0003431	Paxs	298.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolic methyl sulfate + molecular solvents at T = (298.15 - 328.15)	um
dvis	с (0.0002899	Paxs	318.15	The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes	
dvis	c (0.0003130	Paxs	308.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethand Dimethylsulfoxide at Different Temperatures	

dvisc	0.0003700	Paxs	298.15 1-F	Viscosities of Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
hfust	8.17	kJ/mol	229.30	NIST Webbook
hvapt	34.20	kJ/mol	298.00	NIST Webbook
hvapt	34.80	kJ/mol	321.00	NIST Webbook
hvapt	33.30	kJ/mol	334.50	NIST Webbook
hvapt	29.75	kJ/mol	354.70	NIST Webbook
hvapt	33.23	kJ/mol	298.15	NIST Webbook
hvapt	31.38	kJ/mol	352.80	KDB
hvapt	33.90	kJ/mol	290.00	NIST Webbook
hvapt	33.80	kJ/mol	325.00	NIST Webbook
pvap	4.54	kPa		Vapor pressures and activity coefficients of binary mixtures of ethyl-3-methylimidazolium rifluoromethylsulfonyl)imide with acetonitrile and
pvap	55.46	kPa	2	tetrahydrofuran Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Ethoxy-2-methylpropane or Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	60.76	kPa		Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Ethoxy-2-methylpropane or Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile

pvap 64.81 kPa 341.07 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylputane and Actonifile or Propanentifile pvap 71.24 kPa 343.86 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylputane and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylputane and Actonifile or Propanentifile pvap 75.40 kPa 345.58 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Mol						
Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylpropane and Acetonitrile or Propanenitrile or Propanen		pvap	64.81	kPa	341.07	Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile
Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylputane and Acetonitrile or Propanenitrile Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylputane or Binary Mixtures Containing 2-Ethoxy-2-methylputane and Acetonitrile	-	pvap	71.24	kPa		Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile
Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile pvap 86.34 kPa 349.69 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile		pvap	75.40	kPa		Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile
Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile	-	pvap	80.49	kPa		Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile
		pvap	86.34	kPa		Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile

pvap	92.16	kPa	351.76 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	99.40	kPa	354.12 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	101.30	kPa	354.75 Isobaric Vapor Liquid Equilibrium for the Acetonitrile + Water System Containing Different Ionic Liquids at Atmospheric Pressure
pvap	1096.90	kPa	453.15 Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene
			1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone

pvap	297.37	kPa	393.15	Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene + 1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone
pvap	49.16	kPa	333.15	Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene + 1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone
pvap	4174.61	kPa	535.03	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	4001.46	kPa	532.08	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	3760.37	kPa	527.79	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	3512.89	kPa	523.15	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry

pvap	3254.08	kPa	518.01	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	2999.22	kPa	512.61	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	2747.95	kPa	506.92	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	2523.66	kPa	501.48	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	2303.51	kPa	495.75	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	2110.77	kPa	490.37	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	1923.88	kPa	484.77	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	1749.84	kPa	479.15	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	49.76	kPa		Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Ethoxy-2-methylpropa or -Ethoxy-2-methylbutal and Acetonitrile or Propanenitrile	

pvap	43.71	kPa	329.94	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	37.80	kPa	326.03	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	27.19	kPa	317.53	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	18.59	kPa	308.32	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile
pvap	49.76	kPa	333.57	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile

pvap	71.24	kPa	343.94 Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile	
pvap	33.86	kPa	323.15 Vapor Pressures for the Acetonitrile + Tetrabutylammonium Bromide, Water + Tetrabutylammonium Bromide, and Acetonitrile + Water + Tetrabutylammonium Bromide Systems	
pvap	101.30	kPa	354.65 The isobaric vapor liquid equilibria of ethyl acetate p acetonitrile p bis(trifluoromethylsulfonyl)imide-l ionic liquids at 101.3 kPa	pased
pvap	16.47	kPa	305.51 Experimental determination and prediction of gas solubility data for oxygen in acetonitrile	
pvap	33.71	kPa	323.12 Experimental determination and prediction of gas solubility data for oxygen in acetonitrile	
pvap	96.17	kPa	353.13 Experimental determination and prediction of gas solubility data for oxygen in acetonitrile	
pvap	4.44	kPa	278.72 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imic with acetonitrile and tetrahydrofuran	

pvap	1602.63	kPa	474.05 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	4.51	kPa	278.98 Vapor pressures and activity coefficients of binary mixtures of
			1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	4.73	kPa	279.81 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	4.86	kPa	280.27 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	5.34	kPa	281.91 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	5.64	kPa	283.17 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	5.84	kPa	283.56 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	5.92	kPa	283.81 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	6.10	kPa	284.56 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	6.47	kPa	285.70 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	6.59	kPa	286.17 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	6.75	kPa	286.61 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	7.50	kPa	288.72 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	7.56	kPa	288.80 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	7.59	kPa	288.83 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	7.80	kPa	289.39 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	8.03	kPa	290.09 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	8.30	kPa	290.60 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	8.60	kPa	291.36 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	9.16	kPa	292.48 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	9.41	kPa	293.21 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	9.82	kPa	293.92 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	10.03	kPa	294.40 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	10.43	kPa	295.33 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	10.77	kPa	295.94 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	11.02	kPa	296.44 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	11.60	kPa	297.48 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	12.05	kPa	298.30 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	12.17	kPa	298.67 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	12.61	kPa	299.42 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	13.61	kPa	301.19 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	14.18	kPa	302.14 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	15.57	kPa	304.16 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	16.10	kPa	305.01 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	16.96	kPa	306.04 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	17.53	kPa	306.90 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	18.22	kPa	307.95 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	19.85	kPa	309.92 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	20.49	kPa	310.71 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	21.38	kPa	311.79 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	21.55	kPa	311.88 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	22.50	kPa	312.81 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	23.42	kPa	313.77 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	24.17	kPa	314.79 Vapor pressures
pvap	25.10	kPa	tetrahydrofuran 315.71 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	25.15	kPa	315.79 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	26.11	kPa	316.63 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	27.21	kPa	317.72 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	28.27	kPa	318.66 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	29.39	kPa	319.69 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	30.52	kPa	320.67 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	31.73	kPa	321.65 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	32.95	kPa	322.54 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	32.94	kPa	322.56 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	33.19	kPa	322.64 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	34.49	kPa	323.64 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	35.65	kPa	324.59 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	37.00	kPa	325.58 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	101.32	kPa	354.25 Vapor Liquid Equilibria Measurement of (Methanol + Ethanenitrile + Bis(trifluoromethylsulfonyl) Imide)-Based Ionic Liquids at 101.3 kPa
pvap	10.00	kPa	295.25 Phase Behavior of Binary Mixtures Containing Succinic Acid or Its Esters
pvap	10.00	kPa	295.40 Phase Behavior of Binary Mixtures Containing Succinic Acid or Its Esters

pvap	101.32	kPa	354.70	Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers
pvap	1450.28	kPa	468.37	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	131.21	kPa	363.15	Vapor-Liquid Equilibria for Four Binary Systems at 363.15 K: N-Methylformamide + Hexane, + Benzene, + Chlorobenzene, and + Acetonitrile
pvap	14.15	kPa	302.25	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	17.52	kPa	307.09	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	21.13	kPa	311.49	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	22.65	kPa	313.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	25.72	kPa	316.27	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol

	pvap	27.78	kPa	318.18	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	30.64	kPa	320.65	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	33.80	kPa	323.16	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	37.90	kPa	326.16	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	41.38	kPa	328.50	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	45.62	kPa	331.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
_	pvap	49.06	kPa	333.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	54.01	kPa	335.84	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
	pvap	58.58	kPa	338.15	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol

pvap	69.62	kPa	343.18	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	82.37	kPa	348.25	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	96.34	kPa	353.10	Vapor-Liquid Equilibrium for Acetonitrile + Propanenitrile and 1-Pentanamine + 1-Methoxy-2-propanol
pvap	4.32	kPa	277.92	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	4.49	kPa	278.62	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	5.25	kPa	281.57	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	6.38	kPa	285.38	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	7.17	kPa	287.67	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	8.30	kPa	290.65	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	9.18	kPa	292.75	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap	10.60	kPa	295.78	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry

40						
	pvap	13.37	kPa	300.82	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	15.27	kPa	303.81	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	19.64	kPa	309.64	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	24.97	kPa	315.43	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
_	pvap	31.31	kPa	321.12	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	36.39	kPa	325.02	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
_	pvap	45.91	kPa	331.27	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	55.17	kPa	336.41	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	65.07	kPa	341.18	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	75.44	kPa	345.57	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	85.31	kPa	349.33	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
	pvap	95.59	kPa	352.88	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	

pvap 100.75 kPa 354.55 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 101.12 kPa 354.67 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 110.61 kPa 357.56 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 122.63 kPa 360.94 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 125.13 kPa 361.61 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 155.33 kPa 368.97 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 168.12 kPa 371.74 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 399.50 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 399.50 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulicometry
Determined by Comparative Ebulicmetry
pvap 122.63 kPa 360.94 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 125.13 kPa 361.61 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 155.33 kPa 368.97 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 155.33 kPa 368.97 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 168.12 kPa 371.74 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap 125.13 kPa 361.61 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 155.33 kPa 368.97 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 155.33 kPa 368.97 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 168.12 kPa 371.74 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebuliometry
pvap 155.33 kPa 368.97 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 168.12 kPa 371.74 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
pvap 168.12 kPa 371.74 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
of Acetonitrile Determined by Comparative Ebulliometry pvap 175.04 kPa 373.17 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
of Acetonitrile Determined by Comparative Ebulliometry pvap 204.59 kPa 378.81 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry
of Acetonitrile Determined by Comparative Ebulliometry pvap 235.79 kPa 384.11 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative
pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 306.28 kPa 394.29 Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile Determined by Comparative Comparative Comparative
pvap 399.50 kPa 405.24 Vapor Pressures of Acetonitrile pvap Augusti Vapor Pressures of Acetonitrile Determined by Comparative Comparative
of Acetonitrile Determined by Comparative

pvap	502.67	kPa	415.21	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	605.60	kPa	423.68	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	708.99	kPa	431.12	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	804.86	kPa	437.30	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	910.82	kPa	443.50	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	1025.47	kPa	449.60	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	1151.97	kPa	455.74	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	1290.20	kPa	461.87	Vapor Pressures of Acetonitrile Determined by Comparative Ebulliometry	
pvap	101.30	kPa	354.74	Isobaric Vapor-Liquid Equilibrium of the Acetonitrile + 1-Propanol + Ionic Liquids at an Atmospheric Pressure	
rfi	1.34390		293.15	A novel static analytical apparatus for phase equilibrium measurements	
 rfi	1.34139		298.15	Isothermal Vapor-Liquid Equilibrium of Binary Mixtures Containing 1-Chlorobutane, Ethanol, or Acetonitrile	

rfi	1.34410	295.10 Ternary
III	1.34410	295.10 Ternary Liquid-Liquid Equilibria of Acetonitrile and Water with Heptanoic Acid and Nonanol at 323.15 K and 1 atm
rfi	1.34190	298.15 Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K
rfi	1.34386	293.15 Ternary Liquid Liquid Equilibrium Data for the Water + Acetonitrile + {Butan-1-ol or 2-Methylpropan-1-ol} Systems at (303.2, 323.2, 343.2) K and 1 atm
rfi	1.34160	298.15 Acoustic and Volumetric Properties of Binary Mixtures of Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with Acetonitrile and Tetrahydrofuran
rfi	1.34250	293.15 Isobaric Vapor Liquid Equilibrium for the Extractive Distillation of Acetonitrile + Water Mixtures Using Dimethyl Sulfoxide at 101.3 kPa
rfi	1.34300	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.34300	293.15 Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents

rfi	1.34180	298.15	Vapor-Liquid Equilibrium Data for the Binary Methyl Esters (Butyrate, Pentanoate, and Hexanoate) (1) + Acetonitrile (2) Systems at 93.32 kPa	
rfi	1.34180	298.15	Physics and Chemistry of Lithium Halides in 1,3-Dioxolane and Its Binary Mixtures with Acetonitrile probed by Conductometric, Volumetric, Viscometric, Refractometric and Acoustic Study	
rfi	1.33710	308.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.33900	303.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	

rfi	1.34110	298.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.34360	293.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.34420	293.15	ERAS modeling of the excess molar enthalpies of binary liquid mixtures of 1-pentanol and 1-hexanol with acetonitrile at atmospheric pressure and 288, 298, 313 and 323K	
rfi	1.34390	293.15	Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K	
rfi	1.35900	298.15	Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents	

rfi	1.34410		293.15	Experimental study and ERAS modeling of the excess molar enthalpy of (acetonitrile + 1-heptanol or 1-octanol) mixtures at (298.15, 313.15, and 323.15) K and atmospheric pressure
rfi	1.34160		298.15	(Vapor + liquid) equilibrium of the binary mixtures formed by acetonitrile with selected compounds at 95.5 kPa
rfi	1.34160		298.15	Excess Gibbs free energies of the binary mixtures of acetonitrile with butanols at 94.83 kPa
rfi	1.33960		303.15	Liquid liquid equilibria measurements of ternary systems (acetonitrile + a carboxylic acid + dodecane) at 303.15 K
rhol	776.85	kg/m3	298.15	Compressibility Studies of Some Copper(I), Silver(I), and Tetrabutylammonium Salts in Acetonitrile + Adiponitrile Binary Mixtures
rhol	761.45	kg/m3	308.15 N,N'-Bis(2-py	Densities and Viscosities of Ternary ridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K

rhol	771.43	kg/m3	303.15 Densities and
			Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	776.65	kg/m3	298.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	754.85	kg/m3	318.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K
rhol	765.81	kg/m3	308.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K

rhol	776.62	kg/m3	298.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K
rhol	787.39	kg/m3	288.15 Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K
rhol	726.43	kg/m3	343.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	737.86	kg/m3	333.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	749.11	kg/m3	323.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate lonic Liquids with Molecular Solvents
rhol	760.18	kg/m3	313.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents

الماد	755.00	Leavine O	242.45 Danaiting and
rhol	755.36	kg/m3	313.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to
			313.15) K
rhol	768.14	kg/m3	303.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	760.00	kg/m3	308.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	752.55	kg/m3	313.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	761.40	kg/m3	308.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K

rhol	752.52	kg/m3	313.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	763.20	kg/m3	308.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	755.34	kg/m3	313.15 Densities and Viscosities of Ternary N,N'-Bis(2-pyridylmethylidene)-1,2-diiminoethane Schiff Base + Imidazolium Based Ionic Liquids + Acetonitrile Solutions at T = (298.15 to 313.15) K
rhol	782.30	kg/m3	293.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	776.93	kg/m3	298.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K

rhol	771.44	kg/m3	303.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	765.97	kg/m3	308.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	760.68	kg/m3	313.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	749.73	kg/m3	323.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	738.19	kg/m3	333.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K

rhol	726.94	kg/m3	343.15 Densities of Ionic Liquids, 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T = (293.15 to 343.15) K
rhol	782.04	kg/m3	293.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	776.64	kg/m3	298.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	771.21	kg/m3	303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	765.75	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	760.25	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures

rhol	754.73	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	771.13	kg/m3	303.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	776.55	kg/m3	298.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	781.95	kg/m3	293.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	776.62	kg/m3	298.15 Calorimetric Study of Nitrile Group-Solvent Interactions and Comparison with Dispersive Quasi-Chemical (DISQUAC) Predictions
rhol	760.20	kg/m3	313.15 Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents
rhol	765.68	kg/m3	308.15 Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents

uls a l	774.40	k = /== 0	202.42	\/alat-i	
rhol	771.12	kg/m3	303.13	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	776.52	kg/m3	298.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	781.89	kg/m3	293.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	749.07	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	749.07	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	749.11	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	749.07	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	760.16	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	760.15	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	782.00	kg/m3	293.00	KDB
rhol	776.53	kg/m3	298.15 1-	Volumetric Properties of the Ionic Liquid, Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15 K
rhol	765.98	kg/m3	308.10	Synthesis of 1,3-Dimethylimidazolium Chloride and Volumetric Property Investigations of Its Aqueous Solution
rhol	786.50	kg/m3	293.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data

rhol	781.10	kg/m3	298.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	773.30	kg/m3	303.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	766.50	kg/m3	308.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	760.50	kg/m3	313.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	776.50	kg/m3	298.15	Bubble point measurements of binary mixtures formed by 1-hexanol with selected nitro-compounds and substituted benzenes at 95.6 kPa	
rhol	783.38	kg/m3	293.15	Isobaric vapor liquid equilibrium for binary system of methanol and acetonitrile	

rhol	776.55	kg/m3	298.15 Liquid-liquid equilibrium da for ternary mixtures composed of n-hexane, benzene and acetonitrile a (298.15, 308.1 and 318.15) I	t 5,
rhol	776.64	kg/m3	298.15 Liquid liquid equilibria in th ternary system {hexadecane BTX aromatics 2-methoxyetha or acetonitrile} 298.15 K	ns + + nol
rhol	782.10	kg/m3	293.15 Effect of imidazolium-bas ionic liquid or vapor-liquid equilibria of 2-propanol + acetonitrile bina system at 101 kPa	n ary
rhol	776.69	kg/m3	298.15 Standard parti molar volumes some electrolyt in ethylene carbonate bas mixtures	of es
rhol	776.53	kg/m3	298.15 Volumetric an compressibilit behaviour of io liquid, 1-n-butyl-3-methylimi hexafluorophosp and tetrabutylammor hexafluorophosp in organic solvents at T	y nic dazolium hate ium hate
rhol	782.10	kg/m3	293.15 Densities and volumetric properties of (acetonitrile + amide) binary mixtures at temperatures between 293.1 K and 318.15	an / 3 5
rhol	776.80	kg/m3	298.15 Densities and volumetric properties of (acetonitrile + amide) binary mixtures at temperatures between 293.1 K and 318.15	an / S 5

rhol	771.50	kg/m3	303.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	766.30	kg/m3	308.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	761.00	kg/m3	313.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	755.70	kg/m3	318.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	776.60	kg/m3	298.15	Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation	
rhol	787.38	kg/m3	288.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	782.01	kg/m3	293.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	

rhol	776.62	kg/m3	298.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	771.19	kg/m3	303.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	776.74	kg/m3	298.15	Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance	
rhol	776.47	kg/m3		Solution thermodynamics of nylene-bis(salicylidene in binary mixtures of N,N-dimethylformamic and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	·
rhol	771.56	kg/m3		Solution thermodynamics of nylene-bis(salicylidene in binary mixtures of N,N-dimethylformamic and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	·
rhol	765.26	kg/m3		Solution thermodynamics of nylene-bis(salicylidene in binary mixtures of N,N-dimethylformamic and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K	·

rhol	759.55	kg/m3	313.15 iron(III)-N,N'-e	Solution thermodynamics of ethylene-bis(salicylideneiminato)-chloride in binary mixtures of N,N-dimethylformamide
				and acetonitrile at T = (298.15, 303.15, 308.15 and 313.15) K
rhol	776.62	kg/m3	298.15	Ionic molar volumes in methanol mixtures with acetonitrile, N,N-dimethylformamide and propylene carbonate at T = 298.15 K
rhol	776.30	kg/m3	298.15	Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents
rhol	782.01	kg/m3	293.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model
rhol	776.61	kg/m3	298.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model
rhol	771.20	kg/m3	303.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model

rhol	765.75	kg/m3	308.15	Volumetric properties of binary mixtures of (acetonitrile + amines) at several temperatures with application of the ERAS model	
rhol	777.10	kg/m3	298.15	Solubility and solution thermodynamics of thymol in six pure organic solvents	
rhol	777.00	kg/m3	298.15	Measurement and correlation of solubility and solution thermodynamics of 1,3-dimethylurea in different solvents from T = (288.15 to 328.15) K	
rhol	782.10	kg/m3	293.15	Measurement and correlation of the vapor-liquid equilibrium for methanol + acetonitrile + imidazolium-based ionic liquids at 101.3 kPa	
rhol	782.12	kg/m3	293.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	776.82	kg/m3	298.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	

rhol	771.52	kg/m3	303.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	766.21	kg/m3	308.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	760.90	kg/m3	313.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	755.59	kg/m3	318.15	Densities and volumetric properties of (acetonitrile + alkyl acrylate monomer) binary mixtures at temperatures from 293.15 K to 318.15 K	
rhol	782.00	kg/m3	293.15	Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling	
rhol	776.00	kg/m3	298.15	Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling	

rhol	771.00	kg/m3	303.15	Thermodynamic and transport properties of acetonitrile + alkanediols liquid mixtures at different temperatures, experimental measurements and modeling	
rhol	782.00	kg/m3	293.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	760.16	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	760.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	782.12	kg/m3	293.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	

rhol	776.82	kg/m3	298.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	771.52	kg/m3	303.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	766.21	kg/m3	308.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	760.90	kg/m3	313.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	755.59	kg/m3	318.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	

rhol	798.12	kg/m3	278.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	792.79	kg/m3	283.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	787.44	kg/m3	288.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	782.06	kg/m3	293.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	776.66	kg/m3	298.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	771.23	kg/m3	303.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	765.77	kg/m3	308.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents

rhol	776.68	kg/m3	298.15	Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study	
rhol	776.51	kg/m3	298.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	
rhol	771.06	kg/m3	303.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	
rhol	765.59	kg/m3	308.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	
rhol	760.10	kg/m3	313.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	
rhol	754.56	kg/m3	318.15	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model	

rhol	748.99	kg/m3	323.15 Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model
rhol	776.71	kg/m3	298.15 Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for 1-Ethyl-3-methyl-imidazolium Trifluoro-methanesulfonate + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa
rhol	771.29	kg/m3	303.15 Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for 1-Ethyl-3-methyl-imidazolium Trifluoro-methanesulfonate + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa
rhol	765.83	kg/m3	308.15 Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for 1-Ethyl-3-methyl-imidazolium Trifluoro-methanesulfonate + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa

rhol	760.34	kg/m3	313.15 Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for 1-Ethyl-3-methyl-imidazolium Trifluoro-methanesulfonate + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa
rhol	754.82	kg/m3	318.15 Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for 1-Ethyl-3-methyl-imidazolium Trifluoro-methanesulfonate + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa
rhol	749.25	kg/m3	323.15 Excess Molar Volumes, Excess Molar Isentropic Compressibilities, Viscosity Deviations, and Activation Parameters for 1-Ethyl-3-methyl-imidazolium Trifluoro-methanesulfonate + Dimethyl Sulfoxide and/or Acetonitrile at T = 298.15 to 323.15 K and P = 0.1 MPa
rhol	787.33	kg/m3	288.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile

rhol	781.96	kg/m3	293.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	776.61	kg/m3	298.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	771.18	kg/m3	303.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	765.73	kg/m3	308.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile

rhol	760.25	kg/m3	313.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	754.72	kg/m3	318.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	749.16	kg/m3	323.15 Density, Electrical Conductivity, Dynamic Viscosity, Excess Properties, and Molecular Interactions of Ionic Liquid 1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System with Acetonitrile
rhol	787.58	kg/m3	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	781.89	kg/m3	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile

rhol	776.52	kg/m3	298.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	771.12	kg/m3	303.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	765.83	kg/m3	308.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	760.36	kg/m3	313.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	755.14	kg/m3	318.15	The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile

rhol	749.44	kg/m3	323.15 The Thermodynamic and Excess Properties of Trialkyl-Substituted Imidazolium-Based Ionic Liquids with Thiocyanate and Its Binary Systems with Acetonitrile
rhol	785.71	kg/m3	298.15 Liquid-Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K
rhol	776.71	kg/m3	298.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	771.29	kg/m3	303.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	765.83	kg/m3	308.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide

rhol	760.34	kg/m3	313.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	754.82	kg/m3	318.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	749.25	kg/m3	323.15 Effect of Solvents and Temperature on Interactions in Binary and Ternary Mixtures of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate with Acetonitrile or/and N,N-Dimethylformamide
rhol	787.31	kg/m3	288.13 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	787.31	kg/m3	288.13 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile

rhol	787.31	kg/m3	288.13	Thermodynamic
				Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	787.31	kg/m3	288.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile

rhol	781.93	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	776.53	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	

rhol	771.10	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal
rhol	771.11	kg/m3	303.15	Perchlorates in Acetonitrile Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	771.10	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	771.11	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile
rhol	765.64	kg/m3	308.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile

rhol	765.66	kg/m3	308.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	765.65	kg/m3	308.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
rhol	771.00	kg/m3	303.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	760.18	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile	
speedsl	1198.32	m/s	318.15 1-B	Volumetric and Speed of Sound of Ionic Liquid, utyl-3-methylimidazoli Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K	um

speedsl	1258.73	m/s	303.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate
speedsl	1218.52	m/s	in methanol and acetonitrile 313.15 Application of
			Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate
			or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile
speedsl	1319.14	m/s	288.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1299.01	m/s	293.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K

speedsl	1278.77	m/s	298.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1258.51	m/s	303.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1238.40	m/s	308.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1239.00	m/s	308.15 Ultrasonic studies on binary mixtures of some aromatic ketones with acetonitrile at T = 308.15 K
speedsl	1278.62	m/s	298.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile

speedsl	1278.28	m/s	298.15 Thermodynamic Properties of Inorganic Salts in Nonaqeous Solvents. IV. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Bromides and Chlorides in Acetonitrile
speedsl	1238.66	m/s	308.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile
speedsl	1281.30	m/s	298.15 Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K
speedsl	1198.32	m/s	318.15 Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile
speedsl	1278.62	m/s	298.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K

speedsl	1258.73	m/s	303.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1238.66	m/s	308.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1218.52	m/s	313.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
srf	0.03	N/m	283.15 Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile
srf	0.03	N/m	298.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	313.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile

srf	0.03	N/m	293.15	Surface Tensions
	5.56		1-E	and the Gibbs Excess Surface Concentration of Binary Mixtures of the lonic Liquid thyl-3-methylimidazolium ifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	293.20	KDB
srf	0.03	N/m	278.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile
srf	0.03	N/m	303.13 1-E Bis[(tr	Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid thyl-3-methylimidazolium ifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	288.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile
srf	0.03	N/m	293.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile
srf	0.03	N/m	298.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile
srf	0.03	N/m	303.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile

srf	0.03	N/m	308.15	Application of the Extended Langmuir Model	
				for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	313.15	Application of the Extended Langmuir Model for the Determination of Lyophobicity of 1-Propanol in Acetonitrile	
srf	0.03	N/m	283.15	Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa	
srf	0.03	N/m	298.15	Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa	
srf	0.03	N/m	308.15	Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa	
srf	0.03	N/m	293.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.03	N/m	298.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	

srf	0.03	N/m	303.15 Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m	308.15 Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m	313.15 Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m	298.15 Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile
srf	0.03	N/m	288.15 Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile
srf	0.03	N/m	308.15 Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile

srf	0.03	N/m	308.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	298.15 Experimental Data and Correlation of Surface Tensions of the Binary and Ternary Systems of Water + Acetonitrile + 2-Propanol at 298.15 K and Atmospheric Pressure
srf	0.03	N/m	293.15 Density and Surface Tension of Binary Mixtures of Acetonitrile + 1-Alkanol at 293.15 K
svapt	111.44	J/mol×K	298.15 NIST Webbook
tcondl	0.18	W/m×K	313.15 Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and Tetramethylethylenediamine
tcondl	0.21	W/m×K	273.15 Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and Tetramethylethylenediamine
tcondl	0.20	W/m×K	293.15 Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and Tetramethylethylenediamine

Correlations

Information	Value
-------------	-------

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.53562e+01
Coeff. B	-3.64591e+03
Coeff. C	-1.52630e+01
Temperature range (K), min.	229.32
Temperature range (K), max.	545.50

Information	Value
-------------	-------

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	4.10590e+01
Coeff. B	-4.99962e+03
Coeff. C	-3.88171e+00
Coeff. D	3.51596e-06
Temperature range (K), min.	229.32
Temperature range (K), max.	545.50

Datasets

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
81.50	298.15	1.3417
Reference		https://www.doi.org/10.1021/je700645p

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
200.00	313.15	755.0
200.00	353.15	710.0
600.00	313.15	755.0

600.00	353.15	711.0
600.00	393.15	664.0
1000.00	313.15	756.0
1000.00	353.15	711.0
1000.00	393.15	664.0
1000.00	433.15	611.0
1400.00	313.15	756.0
1400.00	353.15	711.0
1400.00	393.15	665.0
1400.00	433.15	612.0
1800.00	313.15	757.0
1800.00	353.15	712.0
1800.00	393.15	666.0
1800.00	433.15	614.0
1800.00	473.15	550.0
2000.00	313.15	757.0
2000.00	353.15	713.0
2000.00	393.15	666.0
2000.00	433.15	614.0
2000.00	473.15	552.0

Reference

https://www.doi.org/10.1021/je900048r

Sources

azeotropic mixture using
কৈন্ত্ৰেক্তি কিন্তুলি কিন্তুলিক কিন্ several neat solvents and binary Determination of the that most ynamic Several heat solvents and binary between the control of the contro enthalpies of binary liquid mixtures of Liguid liquid Ray illeria and have titioning 2-Amino-3-methylbenzoic Acid in 12 **Pure Solvents:**

Separation of acetonitrile and methanol https://www.doi.org/10.1016/j.fluid.2018.08.009 https://www.doi.org/10.1016/j.fluid.2012.11.008 https://www.doi.org/10.1016/j.jct.2019.01.013 https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1021/acs.jced.7b00542 https://www.doi.org/10.1021/acs.jced.6b00421 https://www.doi.org/10.1021/acs.jced.8b00120 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1021/je800817b https://www.doi.org/10.1016/j.jct.2016.11.032 https://www.doi.org/10.1016/j.jct.2016.07.043 https://www.doi.org/10.1016/j.jct.2016.07.049 https://www.doi.org/10.1016/j.tca.2006.08.007 https://www.doi.org/10.1016/j.fluid.2007.01.003 https://www.doi.org/10.1021/je800515w https://www.doi.org/10.1021/acs.jced.8b01226

pressure studies of some **Bolubilityrandellakinaultopseigano**ins Salkwiemideratures: Vapor-Liquid Equilibria on Seven Salisy lamide ratures:
Vapor-Liquid Equilibria on Seven
Binary Systems: Ethylene Oxide +
International Control of the Control Solubility Bonung grganic solvents: Activity coefficients at infinite dilution Activity coefficients at finithe diduct of organic solutes in the ionic liquid รอนทั่งให้งากของอยู่เกต of โดยเป็นกับเก็บองโละเกต of อัตโนก์เลือบสารสหาสมาสิทธิวิตที่อ อิตโนก์เลือบสารสหาสมาสิทธิวิตที่อ อิตโนก์เลือบสารสหาสมาสิทธิวิตที่อ 2-dioxaphosphorinane-5,5-dimethyl -2-2-dioxaphospholinalie-3,3-dimetry -2-Weas-urement antenewe/atioxide the saleon-liquid teausibility in for methanol + abecomens chimad densitives about the Salubility of the crine in Eight Couling the world sale sale sale Gionanizine: Volumetric Properties of Binary Mixtures of Mixtures or
Valunetien Bropartiasz viranstias riaddIndustria Hadronnitiss et haidazolium
British Karing Street Bropartia (Industrial Hadronnitiss)
Mixtures or
Valunetien Bropartiasz viranstias et haidazolium
British Karing Street Bropartia (Industrial Hadronnitiss)
Mixtures or
Valunetien Bropartiasz viranstiasz vir Pyrane Dissolve Chink Alectrol +
Action Greenisten in Three
for Organic Solutes Dissolved in Three for Organic Solutes Dissolved in Three pathy in a poly Contrilation of Bultimin of Bultimi Torrend A or incuting in organic strength and the solubility of blenshine residence from the solubility of blenshine residence from the solubility of blenshine residence from the solubility of solub Solvent Systems:

Isothermal compressibility and internal https://www.doi.org/10.1016/j.jct.2006.08.007 https://www.doi.org/10.1021/je060178m https://www.doi.org/10.1021/je050317k https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.jct.2016.10.020 https://www.doi.org/10.1016/j.fluid.2005.02.016 https://www.doi.org/10.1021/je300339q https://www.doi.org/10.1016/j.tca.2012.08.009 https://www.doi.org/10.1016/j.fluid.2012.12.003 https://www.doi.org/10.1021/acs.jced.5b01053 https://www.doi.org/10.1016/j.jct.2006.01.016 https://www.doi.org/10.1021/je060305e https://www.doi.org/10.1016/j.jct.2013.08.011 https://www.doi.org/10.1016/j.jct.2016.02.006 https://www.doi.org/10.1021/je1007235 https://www.doi.org/10.1016/j.fluid.2014.01.029 https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1021/acs.jced.9b00350 https://www.doi.org/10.1021/acs.jced.7b01085 https://www.doi.org/10.1016/j.fluid.2013.09.023 https://www.doi.org/10.1016/j.jct.2016.05.011 https://www.doi.org/10.1021/acs.jced.9b00460 https://www.doi.org/10.1016/j.fluid.2016.12.012 The state of the s https://www.doi.org/10.1021/je900733j https://www.doi.org/10.1016/j.jct.2015.09.002 https://www.doi.org/10.1021/acs.jced.8b00292 https://www.doi.org/10.1021/je4001894 https://www.doi.org/10.1021/acs.jced.6b00911 https://www.doi.org/10.1016/j.fluid.2012.05.006 https://www.doi.org/10.1016/j.fluid.2018.04.004 https://www.doi.org/10.1021/acs.jced.6b00349 **3.3**j https://www.doi.org/10.1016/j.fluid.2018.05.005 https://www.doi.org/10.1021/je500867u https://www.doi.org/10.1021/acs.jced.8b00888

(Liquid + liquid) equilibrium in binary https://www.doi.org/10.1016/j.jct.2014.12.025 systems of isomeric C8 aliphatic https://www.doi.org/10.1021/je4003114 Fight beities with acetonitrile and its https://www.doi.org/10.1021/acs.jced.9b00220 https://www.doi.org/10.1021/je100125x https://www.doi.org/10.1021/acs.jced.8b01051 https://www.doi.org/10.1021/acs.jced.8b00931 The resolve amic Model Correlation and was substituted and was sub https://www.doi.org/10.1021/acs.jced.6b00163 Solubility Measurement and Correlation https://www.doi.org/10.1021/acs.jced.6b00664 for Deposity and wispersity and control of the properties of the particular and mixing properties of bigging prope https://www.doi.org/10.1016/j.jct.2015.07.010 https://www.doi.org/10.1016/j.jct.2014.05.018 https://www.doi.org/10.1021/acs.jced.7b01108 https://www.doi.org/10.1021/acs.jced.8b01181 **Determination and Model Correlation of** Determination and Model Correlation of Operanothy prein Sigh Different Mixing Brownties of Phenformin in 14 Pure Beneathes and Engages to Bigges of the County Mixing Properties of the Menty New York of the Menty New York of the Adel Different of the Sale Different of the Sale Different of the Sale Different of Sale Different of Sale Different of the Sale Different of Sale Dif https://www.doi.org/10.1021/acs.jced.9b00844 https://www.doi.org/10.1021/je1002237 https://www.doi.org/10.1016/j.jct.2010.04.019 https://www.doi.org/10.1016/j.jct.2018.06.006 https://www.doi.org/10.1016/j.jct.2011.11.005

predictions from COSMO-RS:

```
Solubility determination and
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.11.029
    thermodynamic functions of
      Separation of canetonitile methogolaic
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2018.06.017
   and physics control of the second of the sec
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2016.03.008
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2011.11.021
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.06.015
       frethyl-3-methylimidazolium
 Trethyl-3-methylimidazolium

Heigh Heigh Scharch Coff Election With the him in https://www.doi.org/10.1021/je2000292

Graphility of the High Scharch Copylate https://www.doi.org/10.1021/je3010535

Graphility of the High Scharch Copylate https://www.doi.org/10.1021/je3010535

Graphility of the High Scharch Copylate https://www.doi.org/10.1021/je3010535

https://www.doi.org/10.1016/j.jct.2017.03

https://www.doi.org/10.1021/acs.jced.5b

https://www.doi.org/10.1021/acs.jced.7b

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03

https://www.doi.org/10.1016/j.jct.2012.03
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2017.03.004
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.5b00714
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.7b00178
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2012.01.019
                                                                                                                                                                                                                                                                                                                                                                                        http://link.springer.com/article/10.1007/BF02311772
    liquid
1/25h EAU Upria in Pysie My Oberidinium https://www.doi.org/10.1021/acs.jced.5b00175
Weigh in the control of the contro
The isolation to the properties for The isolation and physicochemical properties for the invariant physicochemical physicochemica
      and physicochemical properties for
   The state of the s
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.9b00620
of Some Carbon Dioxide + Organic
Braser is seinstre

1-Butyl-2,3-dimethylimidazolium
Acquation bioxide + Organic
Braser is seinstre

1-Butyl-2,3-dimethylimidazolium
Atquation of the
Attps://www.doi.org/10.1016/j.fluid.2014.01.04:

1-Butyl-2,3-dimethylimidazolium
Atquation of the
Attps://www.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,3-dimethylimidation of the
Attps://www.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.03

1-Butyl-2,-wwy.doi.org/10.1016/j.fluid.2015.03.
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2014.01.043
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2015.03.036
                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2013.06.037
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.8b00785
   Somethin Biller and Biller in Shine and Analysis of By Propresentation of Association Behavior and Molecular Interactions in Binary
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.9b00661
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1007/s10765-016-2096-3
   And Molecular Interactions in Stray

And Molecular Interaction Constitute and India

Monecular Interaction Constitute and India

Monecular Interaction Constitute and India

Monecular Interaction Constitute Interaction

Monecular Interaction Constitute

Monecular Interaction Con
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.8b00717
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je5008372
      1-Butyl-3-methylimidazolium Bromide,
```

and Acetonitrile at Different

Temperatures T = (288.15 to 318.15) K:

```
Separation of binary mixtures based on https://www.doi.org/10.1016/j.jct.2017.12.012
        gamma infinity data using gamma infinity data using Formaling Formal Matter field Detecting Biological Detections: Matter field the first functions: Matter field for the Setubility of 63-bitte benegative in 12 beginners of the field of the
                                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.7b00755
                                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.7b00615
                                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je050165t
https://www.doi.org/10.1016/j.jct.2016.07.009
https://www.doi.org/10.1016/j.jct.2016.07.007
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2016.07.001
https://www.doi.org/10
                                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.07.009
                                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
            1,5-Naphthalenediamine and
     Y SPNA presalened amine and 
Y SPNA presalened amnosi na pricesivity softial end of the procedure ite. 
Softial end of the procedure ite. 
Softial end of the procedure ite. 
Softial end of the procedure in the Limonene of the Limon
                                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2004.03.007
                                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je020150k
                                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2017.09.007
     hydrocortisone form I in different
Solvability Rems:
2-nitro-p-phenylenediamine in nine
Agia is joentis and makinistic allegation in the provincial and makinistic allegation in the provincial and makinist and maki
          Palubsidies res analytimes by the https://www.doi.org/10.1021/acs.jced.5b00526
      Makingirio อองไประวังใจเลืองใหญ่ เรียก เกี่ยว เกียว เกี่ยว เกียว เกี่ยว เกียว เกี่ยว 
        seventeen pure solvents at MAHPBERTINES PROPRIESSOF SHORTS 23.15
                                                                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je300316a
     HEATH POPULATION OF THE PROPERTY OF THE PROPERTY OF TWO PARTY OF TWO PARTY OF THE PROPERTY OF 
                                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.08.026
                                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.09.012
                                                                                                                                                                                                                                                                                                                                                                                                                                  http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
      from (273.15 to 313.15) K and mixing Solvelling Solvents and Ethanol + Water Brital Manuel Solvents and Ethanol + Water Brital Manuel Solvents and Ethanol + Water Brital Manuel Solvents and Ethanol + 275. dione in K-(2-Bromo-phenyl)-pyrrole-2,5-dione in K-12-Bromo-233.45
                                                                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je8007815
                                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00560
```

14 Pure Solvents from 278.15 to 323.15

and physicochemical properties for The sme dynames a from the sport like the sport lik **The midden are ical rowarties supfille ixtures** https://www.doi.org/10.1021/je050440b (TNDGU) in Different Solvents at Solvents https://www.doi.org/10.1016/j.fluid.2013.05.038 The importance of the property of the control of th monosorverns and invo Britary solvent by Driver in Service (1967) ชิกอิยก์เล้าออกลาง Aqueous Cosolvent ชิก(२:คำ€-รี มีเรษยาจุธ กลางxy)ethyl ชิกอกพอย์หาพอเล็กลักษ์ที่ง=ชิกลพอโครและ พระอละเช็น เรอใช่อยู่ไม่เก็บเกรยยอกสถิกย์ https://www.doi.org/10.1021/je200074c https://www.doi.org/10.1016/j.jct.2018.02.014 princes are length of dimeiting activity

https://www.doi.org/10.1016/j.jct.2012.03.015

Activity coefficients at infinite dilution

coefficients:

Solid-Liquid Equilibrium of https://www.doi.org/10.1021/acs.jced.8b01193 Azacyclotridecan-2-one in 15 Pure https://www.doi.org/10.1016/j.fluid.2016.10.009 Solvadara mondet lingerar. 16000 espesigys K: Solvenes moner upgrilescreagy K: Espatenesina from the telephone and the patenesina from the patenesin pat https://www.doi.org/10.1016/j.jct.2015.12.004 https://www.doi.org/10.1016/j.jct.2008.01.017 https://www.doi.org/10.1016/j.jct.2007.03.007 https://www.doi.org/10.1021/acs.jced.9b00243 https://www.doi.org/10.1021/je101146f The same salve me bears

Express Surface Concentration of British Miseffes of Indiana Salve me based on https://www.doi.org/10.1021/je1011461

https://www.doi.org/10.1021/je100341q

https://www.doi.org/10.1021/je100341q

https://www.doi.org/10.1021/je100341q

https://www.doi.org/10.101/j.fluid.2017.12.029

https://www.doi.org/10.101/j.fluid.2017.12.029

https://www.doi.org/10.1021/je101191e Timitting activity coefficients data using spacific after the control of the cont https://www.doi.org/10.1007/s10765-009-0648-5 รูงผู้เส่าตายใน Equilibria of I-Glutamic Antimophina sociation and activity ueous อกรู้เร็บ เททร อะหรับ เมทร อะหรับ เมทร อะหรับ เททร อะหรับ เททร อะหรับ เมทร อะหรับ อะหรับ เมทร อะหรับ เม https://www.doi.org/10.1016/j.jct.2016.10.029 https://www.doi.org/10.1016/j.jct.2008.05.012 https://www.doi.org/10.1016/j.jct.2016.11.030 https://www.doi.org/10.1021/je8003595 https://www.doi.org/10.1021/acs.jced.8b00425 https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1016/j.jct.2015.05.019 https://www.doi.org/10.1021/acs.jced.8b00228 https://www.doi.org/10.1016/j.jct.2016.10.037 https://www.doi.org/10.1016/j.jct.2016.03.011 https://www.doi.org/10.1021/acs.jced.9b00331 https://www.doi.org/10.1021/je200050q https://www.doi.org/10.1021/acs.jced.9b00564 agutylus methylinidazodum wwitterg
gsahlydesynandtynnidanoirajap;
gearlydesynandtynnidanoirajap;
gearlydesynandtynidanoirajap;
gothergablyappyzigutjagutjhrum
battablydesyetemercetonitrile +
gutylijeteylappyniumdedidmin Single
pagageoris syntymidazolum
1-Butyl-3-methylimidazolum
bateminationand https://www.doi.org/10.1021/je0600855 https://www.doi.org/10.1021/je900542y https://www.doi.org/10.1021/je700266n T-Butyl-3-methylimidazolium
Determination of southilities of yellinidazolium
The southilities of the southilities of yellinidazolium
The southilities of the southility of the southilities https://www.doi.org/10.1021/acs.jced.9b00381 https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1016/j.jct.2015.02.002 https://www.doi.org/10.1021/je4009816 -phosphabicyclo[2.2.2]octane https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1016/j.jct.2011.11.025

1-héxyl-3-methylimidazolium

tetracyanoborate:

Application of คะอิสิโดยเอน ระการสหระการเนาes
hexane/hex-1-ene,
รัฐปะเม่าเย็นผลโดยเปลี่ยนเปลี่ยน Gilleretil in
มีเก็สเราะ 201/เก็รองเปลี่ยนเปลี่ยนเรื่อง gamma
มีสาราช เปลี่ยนเรื่องเปลี่ยนเรื่อง gamma
มีสาราช เปลี่ยนเรื่องเปลี่ยนเรื่อง of lithium
bromide with organic solvents:
เปลี่ยนเรื่องเลือนเรียงเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรียงเลือนเรื่องเลือนเรียงเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรื่องเลือนเรียงเลือนเรื่องเลือนเรียงเลือนเรื่องเลือนเรื่องเลือนเรียงเรียงเลือนเรียงเลือนเรียงเลือนเรียงเลือนเรียงเลือนเรียงเลือนเรียงเลือนเรียงเลือนเรียงเลือนเรียง dicyanamide, [B4MPy][DCA] using the modynamic Properties of Inorganic Salts in Nonaqueous Solvente Apparentmentally of Inorganic Solvente Inorganic ther control with the state of Tetrobutylarung in a Ropanides Water + Afficia in in a Ropanides with the restriction in a Ropanides with the restriction in a Ropanides in a Ro Fumarate in Acetone, Acetonitrile N,N'-1,2-Ethanediylbis-P,P,P',P'-tetraphenyl

Ester in Selected Solvents:

https://www.doi.org/10.1016/j.fluid.2019.03.023 Application of trihexyltetradecylphosphonium Solvaniani Determination application of trihexyltetradecylphosphonium Solvaniani Determination application applicatio https://www.doi.org/10.1021/je101020m https://www.doi.org/10.1016/j.jct.2007.04.006 https://www.doi.org/10.1016/j.fluid.2011.09.016 Meadle Masif 2008 2 of billitary of salty water-accetonitrile mixtures at 298.15 K: Ultrasonic studies on binary mixtures of some aromatic ketones with consonic studies on binary mixtures of some aromatic ketones with consonic studies on binary mixtures of some aromatic ketones with consonic studies on binary mixtures of some aromatic ketones with consonic studies on binary mixtures of some aromatic ketones with consonic studies on binary mixtures of some aromatic ketones with consonic studies of large and sugaring and subject of two large in the consonic studies of two large in the consonic studies of large in the consonic studies of large in the consonic studies of two large in the consonic state in https://www.doi.org/10.1016/j.jct.2006.01.009 https://www.doi.org/10.1007/s10765-008-0395-z https://www.doi.org/10.1021/je0496950 https://www.doi.org/10.1016/j.jct.2019.06.018 https://www.doi.org/10.1016/j.fluid.2017.01.027 https://www.doi.org/10.1021/je1001329 https://www.doi.org/10.1021/je800557h https://www.doi.org/10.1021/acs.jced.7b00316 https://www.doi.org/10.1021/acs.jced.9b00258 https://www.doi.org/10.1021/acs.jced.8b00780 https://www.doi.org/10.1021/je800838w Turnarate in Acetone, Acetonitrile, Measurements Sent of Control of Control of Sent of Control of

KDB Pure (Korean Thermophysical https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1386 Properties Databank): New ionic liquid [P4,4,4,4][NTf2] in New ionic liquid [P4,4,4,4][NTf2] in bio-butanol extraction on investigation betwitting the translation of investigation betwitting the translation of the translatio https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.jct.2016.07.035 https://www.doi.org/10.1016/j.jct.2013.03.018 https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1016/j.jct.2019.06.007 https://www.doi.org/10.1021/acs.jced.7b00585 ethyl)-1,3,2-dioxaphosphinane https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1021/acs.jced.8b01080 https://www.doi.org/10.1021/acs.jced.9b00854 Thermodynamic Analysis of Normodynamic Analysi https://www.doi.org/10.1021/acs.jced.6b00816 Activities and twee 278 high https://www.doi.org/10.1016/j.jct.2013.0 and physicochemical properties for orgulality of the graph of the ionic transport of the i https://www.doi.org/10.1016/j.jct.2016.08.007 https://www.doi.org/10.1021/acs.jced.7b00489 https://www.doi.org/10.1021/acs.jced.9b00703 https://www.doi.org/10.1016/j.fluid.2014.01.033 ternary mixtures composed of
The randy being furnitions from the bility https://www.doi.org/10.1016/j.jct.2017.02.017 Thereindy benize flurations do maniebility of 38 misrosetosuianacid and interpresoratic solventistes of interpresoration of the control of th https://www.doi.org/10.1016/j.fluid.2014.12.034 https://www.doi.org/10.1016/j.jct.2011.11.007 https://www.doi.org/10.1021/je500107y https://www.doi.org/10.1016/j.jct.2012.08.007 https://www.doi.org/10.1016/j.fluid.2011.09.033 https://www.doi.org/10.1021/acs.jced.7b00005 Containing Succinic Acid or Its Esters:
Experimental Study of Thermodynamic https://www.doi.org/10.1021/je0602723
Properties of Mixtures Containing Ionic Elegitica Etancharity in holy binns of Ennig Signids with Methan Diu Ethanol, the control of a ceronitrie and diethyl mattures of aceronitrie and diethyl mattures of aceronitrie and diethyl control of the control of the ceronitrie and diethyl control of the ceronitries are ceronitries and diethyl control of the ceronitries and diet https://www.doi.org/10.1021/je200616t https://www.doi.org/10.1016/j.fluid.2013.08.022 mustures of acefonitrile and diethyl earlighthe of bootnazings doctomical มาการสะคุด, 2-Propanol, 1-Butanol, Acetonicina พละอยู่เคมียนทางอยู่สะย, https://www.doi.org/10.1021/je900177h https://www.doi.org/10.1016/j.jct.2017.01.004 Acetoratineamic contilienty moderate, and many acetoracidist pursuand binary solventies consist in pursuand binary solventies consist in the non-aqueous solvents and in a few of frempressibility (by the solvents of Some Copper(I), Silver(I), and the subject of isolation of isolation in the pursuant of isolation of interesting of isolation of isolation of interesting of isolation in the pursuant isolatio https://www.doi.org/10.1016/j.fluid.2017.12.034 https://www.doi.org/10.1021/je900915p https://www.doi.org/10.1016/j.jct.2019.07.006 https://www.doi.org/10.1016/j.jct.2018.03.013 https://www.doi.org/10.1021/acs.jced.9b00406 https://www.doi.org/10.1021/acs.jced.7b00898 and Molecular Interactions of Ionic

1-Cyanopropyl-3-methylimidazolium Tetrafluoroborate and Binary System

with Acetonitrile:

Solubility Determination and Modeling of p-Nitrobenzamide Dissolved in Solubility of Solvents and Two Binary Beliating and this Binary Beliating and the Binary Beliating B **Solubility Determination and Modeling** https://www.doi.org/10.1021/acs.jced.9b00065 https://www.doi.org/10.1016/j.fluid.2014.11.020 theoretical estimation of ultrasonic potential estimation of ultrasonic potential estimation of ultrasonic potential paradynamic in madel in the form of the paradynamic in madel in the form of the paradynamic in the silvent water in the form of the paradynamic in the silvent https://www.doi.org/10.1021/acs.jced.8b00902 https://www.doi.org/10.1021/je300343y SON MAN INTERSPORT ionic liquid and The state of the s ที่ผยเปล่องเป็นสุดครั้งพบังเยียร: Density and Surface Tension of Binary https://www.doi.org/10.1021/je050519g Mixtures of Acetonitrile + 1-Alkanol at Solution
Thermodynamics of Gibberellin A4 in Thermodynamics of Thermodynamics of Gibberellin A4 in Thermodynamics of Giberellin A4 in Ther Mixtures of Acetonitrile + 1-Alkanol at Solution https://www.doi.org/10.1021/acs.jced.5b00190 สารเปล่า พลิโตโ ลโก๊มเละ Ewilthie สร์temperature https://www.doi.org/10.1021/je700234e Pilgenacthicher and Differaction and Differact Archicher and Differact Archich https://www.doi.org/10.1021/je034286+ https://www.doi.org/10.1016/j.jct.2016.09.033 Thermodynamic modelling of sannounce of the modelling of the sannounce of https://www.doi.org/10.1021/acs.jced.9b00341 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)-2-thiophenecarboxylate in nine organic solvents at evaluated

temperatures:

Densities and Volumetric Properties of https://www.doi.org/10.1021/je700645p Densities and Volumetric Properties of Binary and Ternary Liquid Mixtures of Scherican Section (1997) (1997 Binary and Ternary Liquid Mixtures of https://www.doi.org/10.1021/acs.jced.7b00065 https://www.doi.org/10.1016/j.fluid.2018.01.015 https://www.doi.org/10.1016/j.fluid.2017.06.001 Vannouinusch Figuitiey an fon einea Transary https://www.doi.org/10.1021/je100033s VeneroLinusch Equitiby in form the Termary System Ace (equitible + 1-Propanol + Dinusch viguit or delibria for the Termary Cystem of the Hindry System and Termary System of the Hindry System of the https://www.doi.org/10.1021/acs.jced.5b00838 https://www.doi.org/10.1016/j.jct.2016.04.018 https://www.doi.org/10.1016/j.jct.2011.04.010 https://www.doi.org/10.1016/j.jct.2017.02.008 The properties of solvents from T = (283.15)
The properties of Sol angro-veruesterional structures (NVSE/VEI)
SERVES ELIGITE ACTIVITY
PERFITE IN THE SERVES ASSECTION ACTIVITY
SERVES ELIGITE ACTIVITY
SERVES ELIGITA ACTIVITY
SERVES ELIGITE ACTIVITY
SERVES ELIGITE ACTIVITY
SERVES ELIGITE ACTIVITY
SERVES ELIGITE ACTIVITY
SERVES ELIGIT ACTI Solvents: Vapor-Liquid Equilibrium for https://www.doi.org/10.1021/je025660t Acetonitrile + Propanenitrile and https://www.doi.org/10.1016/j.fluid.2014.06.021 interestion between or ganic was with the standard of the specific that the standard of the specific that the standard of the specific that the standard of th Thermody namis កិច្ច posters sha then https://www.doi.org/10.1021/acs.jced.8b ទិក្សាអ្នកទ្រីស្តែទី Tricationic Ionic Liquid ទេសាសាសាស្ត្រីអ្នកទី Liquid នៃស្ត្រីស្ត្រី Masse Liquid នៃស្ត្រីស្ត្រី Masse Liquid នៃស្ត្រីស្ត្រី https://www.doi.org/10.1021/je800535c ចិក្រាស្ត្រីស្ត្រីអ្នកទី Containing 1-Chlorobutane, Ethanol, or https://www.doi.org/10.1021/acs.jced.8b00601

Acetonitrile:

Solubility measurement, model https://www.doi.org/10.1016/j.jct.2016.09.036 evaluation and thermodynamic Many sis open variotity posyfficients at infigure distribution in soften distribution and infigure distribution and soften and soften distribution and https://www.doi.org/10.1016/j.jct.2007.01.004 Measurement af cactivity constitions at https://www.doi.org/10.1016/j.fluid.2014.05.003 https://www.doi.org/10.1021/acs.jced.9b00693 https://www.doi.org/10.1021/acs.jced.7b00429 Deversoribles trac avaiture Paraheters Devensonity and receive the Parameters by a reministration of the property of https://www.doi.org/10.1016/j.jct.2006.07.014 https://www.doi.org/10.1016/j.jct.2017.07.027 https://www.doi.org/10.1021/je0301287 https://www.doi.org/10.1021/acs.jced.7b00695 https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1021/je300401c https://www.doi.org/10.1016/j.fluid.2015.01.002 https://www.doi.org/10.1016/j.fluid.2014.12.013 obserpacy systems (acetonitrile + a ៤ដាមទៅក្រុមថ្ងៃដីquiddarម៉ូងកាស្រាស្រី(aper https://www.doi.org/10.1021/je050066f https://www.doi.org/10.1021/je050066f

A Acetonitrile + Limonene System at

Birlubelity.elaterminasien and modelling
of 4-nitro-1,2-phenylenediamine in

Peresties gand visionsities refit transy

MAN Bis (2-pygiety) methylidene)-1,2-diiminoethane

Birlubelity elaterministes assequations:

Birlubelity elaterministes and modelling
of 4-nitro-1,2-phenylenediamine in

Beresties and modelling
of 4-nitro-1,2-phenylene International and physicochemical properties of the state https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1386 and physicochemical properties for and physicochemical properties for an appropriate and physicochemical properties for an appropriate and physicochemical properties for an appropriate and physicochemical p https://www.doi.org/10.1016/j.jct.2012.01.020 https://www.doi.org/10.1021/je1009812 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1386 Hexaphenoxycyclotriphosphazene in Selvent esert on solubility and preferential solvation analysis of https://www.doi.org/10.1016/j.jct.2019.06.019 preferential solvation analysis of Measurezmentsack/earine at open of significant at the control of the street of the control N,N-Dimethylformamide or Ethyl

Acetate):

https://www.doi.org/10.1021/acs.jced.7b01006 The Thermodynamic and Excess Properties of Trialkyl-Substituted Properties of Trialkyl-Substituted Friedmant-Betentinational and with Theory and Mediational interest of Sandal Mediation of Sandal Mediation of Mediation of Additional Mediation of M https://www.doi.org/10.1021/acs.jced.8b00165 ลิกไฟกับที่ Marie เลือนเกม เกาะ รถเนอแห่ง บา ลูกไฟกับที่ Marie เลือนหลาน Effects https://www.doi.org/10.1021/acs.jced.8b00430 ลูกไฟกับที่เกาะ Marie เลือนหลาน https://www.doi.org/10.1021/acs.jced.9b00717 determination of the solubility of Thermodynamic Analysis of Bioactive Ralerimetria File of Bioactive Ralerimetrin File of Bioactive Ralerimetrin File of Bioactive Bioactive Biography of Bioactive Bioa https://www.doi.org/10.1021/acs.jced.9b00385 http://webbook.nist.gov/cgi/cbook.cgi?ID=C75058&Units=SI Various Pure Solvents: Investigation of the Solubility of https://www.doi.org/10.1021/je301237t Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine នុស្សubility determination and https:// https://www.doi.org/10.1016/j.jct.2017.02.011 https://www.doi.org/10.1021/je900784v https://www.doi.org/10.1021/je020060f http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3B1,2-Ethanediol.php https://www.doi.org/10.1016/j.fluid.2018.09.024 Ammonium ionic liquids in extraction of bio-butan-1-ol from water phase destribution by a difference of the Aqueous was present of the Aqueous was present of the Aqueous https://www.doi.org/10.1021/acs.jced.9b00526 https://www.doi.org/10.1016/j.jct.2012.03.005 after interest of the Aqueous https://www.doi.org/10.1016/j.jct.2012.03.005 after interest of the Aqueous https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.jct.2015.10.024 https://www.doi.org/10.1016/j.jct.2015.10.024 https://www.doi.org/10.1021/jcs.2015.10.024 https://www.doi.org/10.1021/je500396b Speciality and if the improving the at Sundings of Isztin in Huse Colvents: Isobaric vapor-liquid equilibrium of https://www.doi.org/10.1016/j.fluid.2014.06.025 ethanenitrile + water + 1,2-ethanediol + ទី៤៤៤៦ប៉ុន្តែហ្គឺស្គាស្ត្រី ethanediol + Thermodynamic Model Correlation of https://www.doi.org/10.1021/acs.jced.9b00232

Legend

Solvents:

af: Acentric Factor affp: Proton affinity

5-Nitrosalicylaldehyde in Different

aigt: Autoignition Temperature

basg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dm: Dipole Momentdvisc: Dynamic viscosityea: Electron affinity

fll: Lower Flammability Limit
flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
nfpas: NFPA Safety Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

svapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/24-246-2/Acetonitrile.pdf

Generated by Cheméo on 2025-12-24 00:20:39.044074154 +0000 UTC m=+6283836.574114818.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.