gold

Other names: gold element Inchi: InChl=1S/Au

InchiKey: PCHJSUWPFVWCPO-UHFFFAOYSA-N

 Formula:
 Au

 SMILES:
 [Au]

 Mol. weight [g/mol]:
 196.97

 CAS:
 7440-57-5

Physical Properties

Property code	Value	Unit	Source
ea	2.31 ± 0.00	eV	NIST Webbook
ea	2.30 ± 0.10	eV	NIST Webbook
ea	2.31 ± 0.00	eV	NIST Webbook
ea	2.93 ± 0.05	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.00 ± 0.50	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.22	eV	NIST Webbook
ie	9.23 ± 0.00	eV	NIST Webbook
ie	8.50 ± 0.80	eV	NIST Webbook
ie	9.21 ± 0.05	eV	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
dvisc	0.0056250	Paxs	1373.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys

dvisc	0.0054700	Paxs	1423.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0049630	Paxs	1473.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0047640	Paxs	1523.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0044950	Paxs	1573.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0042760	Paxs	1623.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0039810	Paxs	1673.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	

Correlations

Information Value

Property code	pvap	
Equation	ln(Pvp) = A + B/(T + C)	
Coeff. A	1.67897e+01	
Coeff. B	-3.69640e+04	
Coeff. C	-9.21700e+01	
Temperature range (K), min.	1226.00	
Temperature range (K), max.	3129.15	

Sources

Thermodynamic properties of liquid Thermodynamic properties of liquid silver-gold-gallium alloys determined from the properties of liquid silver-gold-gallium alloys determined from the properties of liquid alloys at 973K:

Thermodynamic properties of liquid Au-Cu-Sn alloys determined from the properties of liquid ternary Au Cu Sn system:

A Novel Vibrating Finger Viscometer for High-Temperature Measurements in https://www.doi.org/10.1016/j.tca.2013.11.031 https://www.doi.org/10.1016/j.tca.2007.07.015 https://www.doi.org/10.1016/j.tca.2007.07.015 https://www.doi.org/10.1016/j.tca.2008.01.014 https://www.doi.org/10.1016/j.tca.2008.01.014 https://www.doi.org/10.1016/j.tca.2008.01.014 https://www.doi.org/10.1016/j.tca.2008.01.014 https://www.doi.org/10.1016/j.tca.2008.01.014

A Novel Vibrating Finger Viscometer for High-Temperature Measurements in branchembeathalpiesipy mation of Ce-Au congruent compounds (CeAu, โลสพรอุปภาษาตาย paograpties of liquid (antimony + tin) and (gold + antimony + tin) and Research (Branchembeathalpiesip).

Préssuréments: Enthalpies of mixing of liquid Ag-Ga, Au-Ga and Ag-Au-Ga alloys: Thermodynamic excess quantities of ternary Au Co Pd melts by

ternary Au-Fe-Pd alloys by computer-aided Knudsen cell mass https://www.doi.org/10.1016/j.tca.2018.02.012

https://www.doi.org/10.1007/s10765-016-2104-7

https://www.doi.org/10.1016/j.jct.2012.02.029

https://www.doi.org/10.1016/j.jct.2015.01.010

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.jct.2016.12.020

https://www.doi.org/10.1016/j.tca.2009.05.010

http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440575&Units=SI

spectrometry: Thermodynamic mixing effects of liquid https://www.doi.org/10.1016/j.tca.2012.02.012

Legend

spectrometry:

dvisc: Dynamic viscosity ea: Electron affinity ie: Ionization energy pvap: Vapor pressure

Latest version available from:

https://www.chemeo.com/cid/24-788-1/gold.pdf

Generated by Cheméo on 2025-12-05 22:43:46.306915466 +0000 UTC m=+4722823.836956120.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.