Isopropyl Alcohol

Other names: 1-Methylethyl Alcohol

1-methylethanol2-Hydroxypropane2-PROPANOL2-Propyl alcohol

Alcojel Alcolo

Alcool isopropylique

Alcosolve 2 Alkolave

Arquad DMCB

Avantin Avantine

Combi-Schutz Dimethylcarbinol

Hartosol

IPA

IPS₁

Imsol A

Isohol

Isopropanol

Isopropyl alcohol, rubbing

Lavacol Lutosol

PRO

Petrohol

Propan-2-ol

Propane, 2-hydroxy-

Propanol-2

Propol

SEC-PROPYL ALCOHOL

Spectrar

Sterisol hand disinfectant

Takineocol

UN 1219

Virahol

Visco 1152

i-Propanol

i-Propylalkohol iso-C3H7OH iso-Propylalkohol n-Propan-2-ol

sec-Propanol

Inchi: InChl=1S/C3H8O/c1-3(2)4/h3-4H,1-2H3
InchiKey: KFZMGEQAYNKOFK-UHFFFAOYSA-N

 Formula:
 C3H8O

 SMILES:
 CC(C)O

 Mol. weight [g/mol]:
 60.09

 CAS:
 67-63-0

Physical Properties

Value	Unit	Source
0.6650		KDB
793.00	kJ/mol	NIST Webbook
796.00 ± 6.00	kJ/mol	NIST Webbook
672.04	K	KDB
762.60	kJ/mol	NIST Webbook
-2005.80 ± 0.40	kJ/mol	NIST Webbook
-2005.10	kJ/mol	NIST Webbook
-2006.90 ± 0.20	kJ/mol	NIST Webbook
1.70	debye	KDB
0.0020980	Paxs	Speeds of sound, isentropic compressibilities, viscosities and excess molar volumes of binary mixtures of methylcyclohexane + 2-alkanols or ethanol at T = 298.15 K
0.0020630	Paxs	Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures
0.0020443	Paxs	Densities and Viscosities of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
2.30	% in Air	KDB
12.70	% in Air	KDB
291.48	K	KDB
	0.6650 793.00 796.00 ± 6.00 672.04 762.60 -2005.80 ± 0.40 -2005.10 -2006.90 ± 0.20 1.70 0.0020980 0.0020443	0.6650 793.00

fpo	284.82	K	KDB
gf	-173.50	kJ/mol	KDB
gyrad	2.7260		KDB
hf	-272.80	kJ/mol	NIST Webbook
hf	-271.10	kJ/mol	NIST Webbook
hf	-272.30 ± 0.92	kJ/mol	NIST Webbook
hf	-272.80	kJ/mol	NIST Webbook
hf	-272.60	kJ/mol	KDB
hfl	-317.00 ± 0.30	kJ/mol	NIST Webbook
hfl	-318.70	kJ/mol	NIST Webbook
hfl	-318.20 ± 0.71	kJ/mol	NIST Webbook
hfus	4.09	kJ/mol	Joback Method
hvap	45.51	kJ/mol	NIST Webbook
hvap	44.00	kJ/mol	NIST Webbook
hvap	45.90 ± 0.20	kJ/mol	NIST Webbook
hvap	44.40	kJ/mol	NIST Webbook
hvap	45.48	kJ/mol	NIST Webbook
hvap	45.20 ± 0.10	kJ/mol	NIST Webbook
hvap	45.34 ± 0.02	kJ/mol	NIST Webbook
hvap	45.34 ± 0.02	kJ/mol	NIST Webbook
hvap	44.00	kJ/mol	NIST Webbook
hvap	45.20 ± 0.10	kJ/mol	NIST Webbook
hvap	40.00 ± 0.04	kJ/mol	NIST Webbook
ie	10.10 ± 0.02	eV	NIST Webbook
ie	10.15 ± 0.05	eV	NIST Webbook
ie	10.44	eV	NIST Webbook
ie	10.15 ± 0.07	eV	NIST Webbook
ie	10.17 ± 0.02	eV	NIST Webbook
ie	10.42	eV	NIST Webbook
ie	10.49 ± 0.03	eV	NIST Webbook
ie	10.42	eV	NIST Webbook
ie	10.36	eV	NIST Webbook
ie	10.29 ± 0.02	eV	NIST Webbook
ie	10.12 ± 0.03	eV	NIST Webbook
ie	10.18	eV	NIST Webbook
log10ws	0.43		Aqueous Solubility Prediction Method
log10ws	0.43		Estimated Solubility Method
logp	0.387		Crippen Method
mcvol	59.000	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	4760.00 ± 20.00	kPa	NIST Webbook
pc	4764.00	kPa	KDB
Pv	-17 0 1.00	in a	NOD.

pc	4761.00 ± 20.00	kPa	NIST Webbook
pc	4755.00	kPa	Isothermal Vapor-Liquid Equilibria for the 2-Propanol + n-Heptane System near the Critical Region
рс	5380.00	kPa	NIST Webbook
рс	5370.23 ± 101.32	kPa	NIST Webbook
рс	4764.00	kPa	NIST Webbook
pc	4762.00 ± 4.75	kPa	NIST Webbook
рс	4716.00 ± 8.00	kPa	NIST Webbook
рс	4762.00	kPa	NIST Webbook
рс	4761.00 ± 20.00	kPa	NIST Webbook
рс	4770.00	kPa	NIST Webbook
rhoc	271.03 ± 1.20	kg/m3	NIST Webbook
rhoc	272.83	kg/m3	NIST Webbook
rhoc	272.71	kg/m3	NIST Webbook
rinpol	508.00		NIST Webbook
rinpol	490.00		NIST Webbook
rinpol	508.00		NIST Webbook
rinpol	491.00		NIST Webbook
rinpol	453.00		NIST Webbook
rinpol	480.00		NIST Webbook
rinpol	491.00		NIST Webbook
rinpol	453.00		NIST Webbook
rinpol	508.00		NIST Webbook
rinpol	491.00		NIST Webbook
rinpol	453.00		NIST Webbook
rinpol	481.00		NIST Webbook
rinpol	508.00		NIST Webbook
rinpol	453.00		NIST Webbook
rinpol	514.00		NIST Webbook
rinpol	530.00		NIST Webbook
rinpol	491.00		NIST Webbook
rinpol	474.00		NIST Webbook
rinpol	477.00		NIST Webbook
rinpol	516.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	475.00		NIST Webbook
rinpol	503.00		NIST Webbook
rinpol	481.00		NIST Webbook
rinpol	491.00		NIST Webbook
rinpol	475.00		NIST Webbook
rinpol	530.00		NIST Webbook
rinpol	474.00		NIST Webbook
rinpol	486.00		NIST Webbook

rinpol	474.00	NIST Webbook
rinpol	486.00	NIST Webbook
rinpol	486.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	499.00	NIST Webbook
rinpol	498.00	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	516.00	NIST Webbook
rinpol	516.00	NIST Webbook
rinpol	502.00	NIST Webbook
rinpol	458.00	NIST Webbook
rinpol	488.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	514.00	NIST Webbook
rinpol	483.40	NIST Webbook
rinpol	506.00	NIST Webbook
rinpol	493.00	NIST Webbook
rinpol	496.00	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	456.00	NIST Webbook
rinpol	474.00	NIST Webbook
rinpol	472.00	NIST Webbook
rinpol	480.00	NIST Webbook
rinpol	483.00	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	515.80	NIST Webbook
rinpol	458.00	NIST Webbook
rinpol	446.00	NIST Webbook
rinpol	495.40	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	494.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	463.00	NIST Webbook
rinpol	486.00	NIST Webbook
rinpol	490.00	NIST Webbook
rinpol	476.00	NIST Webbook
rinpol	460.00	NIST Webbook

rinpol	456.00	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	446.00	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	444.00	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	447.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	500.00	NIST Webbook
ripol	940.00	NIST Webbook
ripol	922.00	NIST Webbook
ripol	962.00	NIST Webbook
ripol	935.00	NIST Webbook
ripol	917.00	NIST Webbook
ripol	923.00	NIST Webbook
ripol	927.00	NIST Webbook
ripol	908.00	NIST Webbook
ripol	962.00	NIST Webbook
ripol	884.00	NIST Webbook
ripol	921.00	NIST Webbook
ripol	942.00	NIST Webbook
ripol	931.00	NIST Webbook
ripol	931.00	NIST Webbook
ripol	906.00	NIST Webbook
ripol	884.00	NIST Webbook
ripol	933.00	NIST Webbook
ripol	910.00	NIST Webbook
ripol	975.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	947.00	NIST Webbook
ripol	938.00	NIST Webbook
ripol	925.00	NIST Webbook
ripol	912.00	NIST Webbook
ripol	921.00	NIST Webbook
ripol	885.00	NIST Webbook
ripol	917.00	NIST Webbook
ripol	884.00	NIST Webbook
ripol	926.00	NIST Webbook
ripol	925.00	NIST Webbook
ripol	884.00	NIST Webbook
ripol	923.00	NIST Webbook
ripol	948.00	NIST Webbook
ripol	922.00	NIST Webbook
ripol	928.00	NIST Webbook

ripol	917.00		NIST Webbook
ripol	924.00		NIST Webbook
ripol	935.00		NIST Webbook
ripol	970.00		NIST Webbook
ripol	975.00		NIST Webbook
ripol	909.00		NIST Webbook
ripol	938.00		NIST Webbook
ripol	932.00		NIST Webbook
ripol	888.00		NIST Webbook
ripol	884.00		NIST Webbook
ripol	912.00		NIST Webbook
ripol	921.00		NIST Webbook
ripol	950.00		NIST Webbook
ripol	941.40		NIST Webbook
ripol	935.00		NIST Webbook
ripol	920.00		NIST Webbook
ripol	884.00		NIST Webbook
ripol	891.00		NIST Webbook
ripol	927.00		NIST Webbook
ripol	940.00		NIST Webbook
ripol	910.00		NIST Webbook
ripol	920.00		NIST Webbook
ripol	932.00		NIST Webbook
ripol	912.00		NIST Webbook
ripol	922.00		NIST Webbook
ripol	928.00		NIST Webbook
ripol	935.00		NIST Webbook
ripol	963.00		NIST Webbook
ripol	885.00		NIST Webbook
ripol	962.00		NIST Webbook
ripol	957.00		NIST Webbook
ripol	949.00		NIST Webbook
ripol	957.00		NIST Webbook
ripol	949.00		NIST Webbook
ripol	935.00		NIST Webbook
ripol	903.00		NIST Webbook
sl	190.80	J/mol×K	NIST Webbook
sl	192.90	J/mol×K	NIST Webbook
sl	179.90	J/mol×K	NIST Webbook
sl	180.58	J/mol×K	NIST Webbook
tb	356.00 ± 0.50	K	NIST Webbook
tb	355.65 ± 1.50	K	NIST Webbook
tb	356.00 ± 0.50	K	NIST Webbook
tb	356.15 ± 1.00	K	NIST Webbook

tb	355.19 ± 0.20	K	NIST Webbook
tb	355.59 ± 0.20	K	NIST Webbook
tb	355.15 ± 1.50	K	NIST Webbook
tb	355.65 ± 1.00	K	NIST Webbook
tb	354.20 ± 0.50	K	NIST Webbook
tb	354.65 ± 1.50	K	NIST Webbook
tb	355.75 ± 0.30	K	NIST Webbook
tb	351.65 ± 3.00	K	NIST Webbook
tb	355.55 ± 0.20	K	NIST Webbook
tb	355.41 ± 0.05	K	NIST Webbook
tb	355.43 ± 0.05	K	NIST Webbook
tb	355.40 ± 0.05	K	NIST Webbook
tb	355.41 ± 0.05	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	355.40 ± 0.05	K	NIST Webbook
tb	355.15 ± 0.20	K	NIST Webbook
tb	355.50 ± 0.30	K	NIST Webbook
tb	355.55 ± 0.30	K	NIST Webbook
tb	353.85 ± 0.50	K	NIST Webbook
tb	355.60 ± 0.20	K	NIST Webbook
tb	355.15 ± 0.20	K	NIST Webbook
tb	355.60 ± 0.50	K	NIST Webbook
tb	355.60 ± 0.50	K	NIST Webbook
tb	82.21 ± 0.20	K	NIST Webbook
tb	355.40	K	KDB
tb	355.37	К	Physical properties and phase equilibria of the system isopropyl acetate + isopropanol + 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide
tb	355.15	К	Multiphase equilibria for mixtures containing water, isopropanol, propionic acid, and isopropyl propionate
tb	355.53	К	Isobaric VLE at 0.6 MPa for binary systems isobutyl acetate + ethanol, + 1-propanol or + 2-propanol
tb	355.35	К	Isobaric vapor-liquid equilibrium data for the binary system methyl acetate + isopropyl acetate and the quaternary system methyl acetate + methanol + isopropanol + isopropyl acetate at 101.3 kPa

tb	355.60	K	Isobaric vapor-liquid equilibria of the binary mixtures propylene glycol methyl ether + propylene glycol methyl ether acetate, methyl acetate + propylene glycol methyl ether and methanol + propylene glycol methyl ether acetate at 101.3 kPa
tb	355.40	K	Experimental studies and thermodynamic analysis of isobaric vapor-liquid-liquid equilibria of 2-propanol + water system using n-propyl acetate and isopropyl acetate as entrainers
tb	355.61	К	VLE of the binary systems (dimethyl carbonate with 2-propanol or 2-butanol) and (diethyl carbonate with methylcyclohexane) at 101.3 kPa
tb	355.45	К	Isobaric (vapour + liquid) equilibrium for (2-propanol + water + ammonium thiocyanate): Fitting the data by an empirical equation
tb	355.25	К	Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa
tb	355.27	К	Vapour-liquid equilibrium and extractive distillation for separation of azeotrope isopropyl alcohol and diisopropyl ether
tb	355.33	K	Separation of the mixture (isopropyl alcohol + diisopropyl ether + n-propanol): Entrainer selection, interaction exploration and vapour-liquid equilibrium measurements
tb	355.71	K	A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC)
tb	355.33	К	Vapor Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa

tb	355.60	К	Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers
tb	355.37	K	Vapor Liquid Equilibria for Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene at 101 kPa
tb	355.35	К	Measurement and Correlation of Excess Molar Enthalpies for Ethylene Glycol + Alkanol Systems at the Temperatures (298.15, 308.15, and 323.15) K
tb	355.15	К	Vapor-Liquid Equilibria for the Binary Systems of Dimethoxymethane with Some Fuel Oxygenates
tb	355.41	К	Vapor-Liquid Equilibrium Behavior of Tolan in Alcohol
tb	355.39	К	Vapor-Liquid Equilibrium Behaviors of Coumarin and Vanillin in Ethanol, 1-Propanol, and 2-Propanol
tb	355.35	К	Isobaric Vapor-Liquid Equilibrium for Binary Systems of Toluene + Ethanol, Toluene + Isopropanol at (101.3, 121.3, 161.3 and 201.3) kPa
tb	355.40	К	Vapor-Liquid Equilibrium Behaviors of 3-Ethoxy-4-hydroxybenzaldehyde in Alcohol
tb	355.60 ± 0.50	K	NIST Webbook
tb	355.40	К	Vapor Liquid Equilibrium Behaviors of 5-Methyl-2-(1-methylethyl)phenol in Alcohol
tb	355.95 ± 1.00	K	NIST Webbook
tb	355.45 ± 1.00	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	355.50 ± 0.20	K	NIST Webbook
tb	355.46 ± 0.20	K	NIST Webbook
tb	355.55 ± 0.10	K	NIST Webbook
tb	355.44 ± 0.10	K	NIST Webbook
tb	355.54 ± 0.10	K	NIST Webbook

tb	355.65	К	Isobaric Vapor-Liquid Equilibrium for (Propan-2-ol + Water + 1-Butyl-3-methylimidazolium Tetrafluoroborate)
tb	355.42 ± 0.20	K	NIST Webbook
tb	355.42 ± 0.30	K	NIST Webbook
tb	355.42 ± 0.07	K	NIST Webbook
tb	355.65 ± 0.20	K	NIST Webbook
tb	355.45 ± 0.50	K	NIST Webbook
tb	354.55 ± 0.50	K	NIST Webbook
tb	354.95 ± 0.50	K	NIST Webbook
tb	355.45 ± 0.30	K	NIST Webbook
tb	355.51 ± 0.10	K	NIST Webbook
tb	355.15 ± 2.00	K	NIST Webbook
tb	355.90 ± 0.40	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	354.87 ± 0.30	K	NIST Webbook
tb	355.25 ± 0.30	K	NIST Webbook
tb	355.55 ± 0.30	K	NIST Webbook
tb	355.57 ± 0.10	K	NIST Webbook
tb	355.39 ± 0.20	K	NIST Webbook
tb	355.60 ± 0.40	K	NIST Webbook
tb	355.45 ± 0.50	K	NIST Webbook
tb	355.35 ± 0.30	K	NIST Webbook
tb	355.85 ± 0.50	K	NIST Webbook
tb	355.65 ± 1.00	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	355.15 ± 1.30	K	NIST Webbook
tb	355.65 ± 0.50	K	NIST Webbook
tb	364.85 ± 0.50	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	355.40 ± 0.10	K	NIST Webbook
tb	353.90 ± 2.00	K	NIST Webbook
tb	355.45 ± 0.40	K	NIST Webbook
tb	355.48 ± 0.44	K	NIST Webbook
tb	355.65 ± 0.30	K	NIST Webbook
tb	355.42 ± 0.20	K	NIST Webbook
tb	355.60	K	NIST Webbook
tb	385.20 ± 0.20	K	NIST Webbook
tb	355.60 ± 0.10	K	NIST Webbook
tb	355.40	K	NIST Webbook
tb	357.65 ± 1.00	K	NIST Webbook
tb	354.65 ± 1.00	K	NIST Webbook
tb	355.35 ± 0.30	K	NIST Webbook
tb	355.48 ± 0.33	K	NIST Webbook

tb	355.15 ± 1.00	K	NIST Webbook
tb	355.25 ± 0.50	K	NIST Webbook
tb	355.30 ± 0.50	K	NIST Webbook
tb	355.60 ± 0.25	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	355.45 ± 0.10	K	NIST Webbook
tb	354.70 ± 1.00	K	NIST Webbook
tb	3.50 ± 2.00	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tb	355.65 ± 1.00	K	NIST Webbook
tb	355.55 ± 0.30	K	NIST Webbook
tb	355.35 ± 0.50	K	NIST Webbook
tb	355.45	K	NIST Webbook
tb	355.35 ± 0.50	K	NIST Webbook
tb	355.48 ± 0.30	K	NIST Webbook
tb	355.16 ± 0.20	K	NIST Webbook
tb	355.37 ± 0.30	K	NIST Webbook
tb	355.54 ± 0.20	K	NIST Webbook
tb	355.55 ± 0.15	K	NIST Webbook
tb	355.45 ± 0.08	K	NIST Webbook
tb	355.45 ± 0.30	K	NIST Webbook
tb	355.45 ± 0.40	K	NIST Webbook
tb	353.60 ± 0.30	K	NIST Webbook
tb	355.45	K	NIST Webbook
tb	355.45 ± 0.25	K	NIST Webbook
tb	353.60 ± 0.50	K	NIST Webbook
tb	355.50 ± 0.50	K	NIST Webbook
tb	355.39 ± 0.30	K	NIST Webbook
tb	355.50 ± 0.40	K	NIST Webbook
tb	355.70 ± 0.30	K	NIST Webbook
tb	355.20 ± 0.60	K	NIST Webbook
tb	355.55 ± 0.30	K	NIST Webbook
tb	355.00 ± 0.30	K	NIST Webbook
tb	355.45 ± 0.30	K	NIST Webbook
tb	354.85 ± 0.30	K	NIST Webbook
tb	355.45 ± 0.10	K	NIST Webbook
tb	355.06 ± 0.25	K	NIST Webbook
tb	355.45 ± 0.30	K	NIST Webbook
tb	355.45 ± 0.20	K	NIST Webbook
tb	355.45 ± 0.40	K	NIST Webbook
tb	355.55 ± 0.50	K	NIST Webbook
tc	508.30 ± 0.30	K	NIST Webbook
tc	508.60	K	NIST Webbook
tc	508.00 ± 0.60	K	NIST Webbook

tc	508.00 ± 0.60	K	NIST Webbook
tc	508.00	K	NIST Webbook
tc	507.36 ± 0.20	K	NIST Webbook
tc	508.30	K	NIST Webbook
tc	508.30 ± 0.05	K	NIST Webbook
tc	508.30 ± 1.00	K	NIST Webbook
tc	508.30 ± 0.20	K	NIST Webbook
tc	508.30	K	KDB
tc	507.80	K	NIST Webbook
tc	511.20 ± 3.00	K	NIST Webbook
tc	516.60	K	NIST Webbook
tc	508.80	K	NIST Webbook
tc	508.40 ± 0.30	K	NIST Webbook
tc	508.15 ± 0.50	K	NIST Webbook
tc	511.50	K	NIST Webbook
tc	508.26	K	NIST Webbook
tc	508.30 ± 0.30	K	NIST Webbook
tc	508.72	K	One- and two-phase isochoric heat capacities and saturated densities of 2-propanol in the critical and supercritical regions
tc	508.30 ± 0.30	K	NIST Webbook
tf	183.60	K	KDB
tf	183.90	К	Aqueous Solubility Prediction Method
tf	184.65	K	NIST Webbook
tf	185.35	K	NIST Webbook
tf	185.75 ± 0.50	K	NIST Webbook
tt	185.26 ± 0.05	K	NIST Webbook
tt	185.25 ± 0.06	K	NIST Webbook
tt	185.20 ± 0.05	K	NIST Webbook
tt	184.67 ± 0.10	K	NIST Webbook
tt	184.60 ± 0.30	K	NIST Webbook
tt	184.60 ± 0.15	K	NIST Webbook
VC	0.223 ± 0.003	m3/kmol	NIST Webbook
VC	0.222	m3/kmol	NIST Webbook
VC	0.222	m3/kmol	KDB
ZC	0.2502460		KDB
zra	0.25		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	110.80 ± 1.60	J/mol×K	393.65	NIST Webbook	
cpg	109.20 ± 1.60	J/mol×K	384.95	NIST Webbook	
cpg	148.10 ± 1.60	J/mol×K	597.25	NIST Webbook	
cpg	142.60 ± 1.60	J/mol×K	567.05	NIST Webbook	
cpg	137.50 ± 1.60	J/mol×K	539.05	NIST Webbook	
cpg	132.90 ± 1.60	J/mol×K	513.95	NIST Webbook	
cpg	130.30 ± 1.60	J/mol×K	499.75	NIST Webbook	
cpg	127.01	J/mol×K	473.15	NIST Webbook	
cpg	124.20 ± 1.60	J/mol×K	466.75	NIST Webbook	
cpg	121.70 ± 1.60	J/mol×K	453.15	NIST Webbook	
cpg	122.80	J/mol×K	451.15	NIST Webbook	
cpg	108.10 ± 1.60	J/mol×K	378.85	NIST Webbook	
cpg	118.70	J/mol×K	431.15	NIST Webbook	
cpg	117.02	J/mol×K	423.15	NIST Webbook	
cpg	114.35	J/mol×K	411.15	NIST Webbook	
cpg	113.00 ± 1.60	J/mol×K	405.35	NIST Webbook	
cpg	106.29	J/mol×K	373.15	NIST Webbook	
cpg	105.77	J/mol×K	371.15	NIST Webbook	
cpg	105.70 ± 1.60	J/mol×K	365.75	NIST Webbook	
cpg	103.06	J/mol×K	358.72	NIST Webbook	
cpg	110.08	J/mol×K	391.15	NIST Webbook	
cpg	122.10	J/mol×K	448.15	NIST Webbook	
cpg	126.70 ± 1.60	J/mol×K	480.55	NIST Webbook	
cpg	111.65	J/mol×K	398.15	NIST Webbook	
cpl	173.13	J/mol×K	521.87	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	180.16	J/mol×K	509.45	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	178.84	J/mol×K	509.55	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	179.98	J/mol×K	509.64	Influence of nanofluid instability on thermodynamic properties near the critical point	

cpl	177.46	J/mol×K	509.79	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	177.28	J/mol×K	509.99	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	178.12	J/mol×K	510.14	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	177.94	J/mol×K	510.23	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	176.68	J/mol×K	510.33	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	178.60	J/mol×K	510.48	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	176.74	J/mol×K	516.90	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	176.80	J/mol×K	516.99	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	176.80	J/mol×K	517.08	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	172.17	J/mol×K	517.27	Influence of nanofluid instability on thermodynamic properties near the critical point	

cpl	179.56	J/mol×K	509.35	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	168.57	J/mol×K	521.96	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	186.90	J/mol×K	508.76	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	168.63	J/mol×K	522.33	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	171.63	J/mol×K	522.42	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	173.85	J/mol×K	522.51	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	192.91	J/mol×K	508.67	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	168.39	J/mol×K	530.01	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	168.27	J/mol×K	532.04	Influence of nanofluid instability on thermodynamic properties near the critical point	
срІ	168.33	J/mol×K	535.11	Influence of nanofluid instability on thermodynamic properties near the critical point	

cpl	168.39	J/mol×K	540.06	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	168.63	J/mol×K	545.13	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	169.77	J/mol×K	560.04	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	173.85	J/mol×K	570.09	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	174.22	J/mol×K	580.16	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	176.38	J/mol×K	590.07	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	178.60	J/mol×K	600.10	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	161.20	J/mol×K	298.15	NIST Webbook	
cpl	154.75	J/mol×K	298.15	NIST Webbook	
cpl	165.60	J/mol×K	311.60	NIST Webbook	
cpl	154.43	J/mol×K	298.15	NIST Webbook	
cpl	162.80	J/mol×K	298.20	NIST Webbook	
cpl	180.30	J/mol×K	324.00	NIST Webbook	
cpl	154.00	J/mol×K	298.00	NIST Webbook	
cpl	159.99	J/mol×K	298.04	NIST Webbook	
cpl	186.90	J/mol×K	508.57	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	163.60	J/mol×K	298.00	NIST Webbook	
cpl	149.75	J/mol×K	292.84	NIST Webbook	

cpl	180.30	J/mol×K	298.10	NIST Webbook	
cpl	185.69	J/mol×K	508.47	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	152.30	J/mol×K	293.10	NIST Webbook	
cpl	169.90	J/mol×K	303.00	NIST Webbook	
cpl	187.80	J/mol×K	508.37	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	195.91	J/mol×K	508.28	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	208.53	J/mol×K	508.18	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	218.14	J/mol×K	508.16	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	172.40	J/mol×K	303.20	NIST Webbook	
cpl	175.18	J/mol×K	522.60	Influence of nanofluid instability on thermodynamic properties near the critical point	
cpl	151.00	J/mol×K	293.10	NIST Webbook	
cpl	173.19	J/mol×K	522.14	Influence of nanofluid instability on thermodynamic properties near the critical point	
dvisc	0.0015630	Paxs	308.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	

dvisc	0.0023820	Paxs	293.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0020450	Paxs	298.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0017630	Paxs	303.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0020550	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0017880	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0015630	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0013780	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	

dvisc	0.0023840	Paxs	293.15	Viscosities and Densities of Binary Mixtures
				of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0017520	Paxs	303.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0010145	Paxs	323.15	Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory
dvisc	0.0013350	Paxs	313.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0010380	Paxs	323.15	Viscosities and Densities of Binary Mixtures of (N-Acetylmorpholine + Alkanols) from (293.15 to 323.15) K
dvisc	0.0022256	Paxs	293.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K

dvisc	0.0019102	Paxs	298.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0017370	Paxs	303.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0010020	Paxs	323.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0012880	Paxs	313.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0017430	Paxs	303.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0020690	Paxs	298.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0023820	Paxs	293.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	

dvisc	0.0013790	Paxs	313.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS
dvisc	0.0015242	Paxs	308.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K
dvisc	0.0017880	Paxs	303.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS
dvisc	0.0020550	Paxs	298.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS
dvisc	0.0006241	Pa×s	333.15	Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory
dvisc	0.0007890	Pa×s	333.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K

dvisc	0.0013297	Paxs	313.15	Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory
dvisc	0.0017694	Paxs	303.15	Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory
dvisc	0.0023621	Paxs	293.15	Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory
dvisc	0.0015730	Paxs	308.15	Studies of mixing properties of binary systems of 2-propanol with hexadecane and squalane at T = (298.15, 303.15, and 308.15) K
dvisc	0.0017580	Paxs	303.15	Studies of mixing properties of binary systems of 2-propanol with hexadecane and squalane at T = (298.15, 303.15, and 308.15) K

dvisc	0.0020610	Paxs	298.15	Studies of mixing properties of binary systems of 2-propanol with hexadecane and squalane at T = (298.15, 303.15, and 308.15) K	
dvisc	0.0024050	Paxs	293.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	
dvisc	0.0010411	Paxs	323.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0011822	Paxs	318.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0013554	Paxs	313.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0015529	Paxs	308.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	

	dvisc	0.0017630	Paxs	303.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
	dvisc	0.0020450	Paxs	298.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
	dvisc	0.0023820	Paxs	293.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
-	dvisc	0.0011300	Paxs	313.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
	dvisc	0.0013472	Paxs	313.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
	dvisc	0.0014900	Paxs	303.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
	dvisc	0.0006260	Paxs	343.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	

dvisc	0.0021000	Paxs	293.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
dvisc	0.0017820	Paxs	303.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	
dvisc	0.0020620	Paxs	298.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	
dvisc	0.0017919	Paxs	303.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
econd	8.08e-05	S/m	313.15	Electrical Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic Liquids in Aqueous and Alcohol Binary Systems	
econd	7.50e-05	S/m	308.15	Electrical Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic Liquids in Aqueous and Alcohol Binary Systems	

econd	7.00e-05	S/m	303.15	Electrical Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic Liquids in Aqueous and Alcohol Binary Systems
econd	5.20e-05	S/m	298.15	Electrical Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic Liquids in Aqueous and Alcohol Binary Systems
econd	8.43e-05	S/m	318.15	Electrical Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic Liquids in Aqueous and Alcohol Binary Systems
hfust	5.41	kJ/mol	185.20	NIST Webbook
hfust	5.30	kJ/mol	184.60	NIST Webbook
hfust	5.30	kJ/mol	184.60	NIST Webbook
hfust	5.41	kJ/mol	185.20	NIST Webbook
hfust	5.37	kJ/mol	184.67	NIST Webbook
hfust	5.41	kJ/mol	185.20	NIST Webbook
hfust	5.37	kJ/mol	184.70	NIST Webbook
hvapt	45.70	kJ/mol	323.50	NIST Webbook
hvapt	39.10	kJ/mol	451.50	NIST Webbook
hvapt	38.90 ± 0.10	kJ/mol	363.00	NIST Webbook
hvapt	39.80 ± 0.10	kJ/mol	355.00	NIST Webbook
hvapt	41.00 ± 0.10	kJ/mol	346.00	NIST Webbook
hvapt	42.80	kJ/mol	346.00	NIST Webbook
hvapt	42.70 ± 0.10	kJ/mol	330.00	NIST Webbook
hvapt	45.50	kJ/mol	318.00	NIST Webbook
hvapt	43.20	kJ/mol	324.00	NIST Webbook
hvapt	43.10	kJ/mol	343.50	NIST Webbook
hvapt	39.20	kJ/mol	420.00	NIST Webbook
hvapt	41.30	kJ/mol	366.50	NIST Webbook
hvapt	42.00	kJ/mol	357.50	NIST Webbook
hvapt	50.30	kJ/mol	211.50	NIST Webbook
hvapt	44.80	kJ/mol	327.50	NIST Webbook
hvapt	10.50	kJ/mol	503.00	NIST Webbook
hvapt	16.50	kJ/mol	483.00	NIST Webbook
hvapt	23.70	kJ/mol	453.00	NIST Webbook

	00.70	1.1/	400.00	NUCTACC	
hvapt	29.70	kJ/mol	423.00	NIST Webbook	
hvapt	39.80	kJ/mol	355.00	NIST Webbook	
hvapt	43.20	kJ/mol	338.50	NIST Webbook	
hvapt	39.85	kJ/mol	355.40	NIST Webbook	
hvapt	39.83	kJ/mol	355.50	KDB	
hvapt	39.80	kJ/mol	355.00	NIST Webbook	
hvapt	43.40 ± 0.08	kJ/mol	324.11	NIST Webbook	
hvapt	41.10	kJ/mol	387.00	NIST Webbook	
hvapt	41.70	kJ/mol	339.00	NIST Webbook	
hvapt	35.30	kJ/mol	480.50	NIST Webbook	
pvap	3677.00	kPa	493.15	Measurement and correlation of vapor-liquid equilibria for the 2-propanol + n-hexane system near the critical	
pvap	177.97	kPa	370.40	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	152.55	kPa	366.10	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	203.40	kPa	374.20	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	228.82	kPa	377.60	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	254.25	kPa	380.80	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	

pvap	101.30	kPa	355.33	Vapor Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa	
pvap	96.15	kPa	354.17	Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa	
pvap	101.06	kPa	355.40		
ρναρ	101.00	NIα	000.40	Ammonium-Based Ionic Liquid as an Entrainer for the Separation of n-Propanol + Water and Isopropanol + Water Mixtures	
pvap	1610.00	kPa	450.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	1640.00	kPa	451.50	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	2030.00	kPa	462.50	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	

pvap	2040.00	kPa	461.50	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	2420.00	kPa	469.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	2460.00	kPa	469.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	2740.00	kPa	477.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	2780.00	kPa	477.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	3060.00	kPa	482.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	
pvap	3090.00	kPa	482.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K	

pvap	3460.00	kPa	489.50	Pressure-Drop Method for Detecting Bubble and Dew Points
				of Multicomponent Mixtures at Temperatures of up to 573 K
pvap	3500.00	kPa	489.00	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K
pvap	3970.00	kPa	494.50	Pressure-Drop Method for Detecting Bubble and Dew Points of Multicomponent Mixtures at Temperatures of up to 573 K
pvap	101.32	kPa	355.60	Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers
pvap	39.54	kPa	333.72	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	55.03	kPa	340.98	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene

pvap	60.66	kPa	343.19	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	61.30	kPa	343.44	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	65.23	kPa	344.86	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	69.47	kPa	346.33	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	75.27	kPa	348.21	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene

pvap	79.34	kPa	349.48	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	90.34	kPa	352.63	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	93.41	kPa	353.46	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	101.07	kPa	355.42	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	3081.00	kPa	483.15	Measurement and correlation of vapor-liquid equilibria for the 2-propanol + n-hexane system near the critical
pvap	4362.00	kPa	503.15	Measurement and correlation of vapor-liquid equilibria for the 2-propanol + n-hexane system near the critical

pvap	36.47	kPa	332.03	Vapor Liquid Equilibrium for the Trans-2-Butene + Methanol, + Ethanol, + 2-Propanol, + 2-Butanol and + 2-Methyl-2-Propanol Systems at 332 K
pvap	23.47	kPa	323.16	Isothermal Vapor Liquid Equilibrium for Binary 2-Methylpropene - C1-C4 Alcohol-Systems
pvap	5.80	kPa	298.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	7.86	kPa	303.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	10.52	kPa	308.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	13.94	kPa	313.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data

pvap	127.12	kPa	361.21	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	101.54	kPa	355.41	Vapor-Liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa	
pvap	63.92	kPa	344.70	An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles	
pvap	36.06	kPa	332.10	An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles	
pvap	16.22	kPa	315.80	An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles	
pvap	8.00	kPa	303.10	An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles	
pvap	5.78	kPa	297.80	An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles	

pvap	101.30	kPa	355.71 A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC)
pvap	133.65	kPa	362.52 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	132.35	kPa	362.26 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	130.93	kPa	361.98 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	129.08	kPa	361.62 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	127.36	kPa	361.26 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	125.62	kPa	360.90 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	18.24	kPa	318.15 Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	122.11	kPa	360.16 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	120.24	kPa	359.77 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	118.64	kPa	359.43 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide
pvap	116.64	kPa	ionic liquid 358.98 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	115.10	kPa	358.65 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	113.79	kPa	358.35 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	111.88	kPa	357.93 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

рvар	110.13	kPa	357.52 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	108.63	kPa	357.16 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	106.91	kPa	356.76 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	105.38	kPa	356.40 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	103.44	kPa	355.93 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	101.28	kPa	355.38 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	100.03	kPa	355.09 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	100.00	kPa	355.09 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	98.05	kPa	354.59 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	96.49	kPa	354.20 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	94.46	kPa	353.66 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	92.57	kPa	353.16 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	90.24	kPa	352.54 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	88.63	kPa	352.09 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	87.17	kPa	351.69 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	85.47	kPa	351.21 Isobaric
F T			vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	83.94	kPa	350.75 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	81.58	kPa	350.08 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	79.96	kPa	349.61 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	77.81	kPa	348.95 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	75.96	kPa	348.37 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	74.18	kPa	347.79 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	72.04	kPa	347.11 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	70.12	kPa	346.46 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	69.14	kPa	346.13 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	68.03	kPa	345.75 Isobaric
			vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using
			1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	66.84	kPa	345.35 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	65.97	kPa	345.05 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	64.96	kPa	344.68 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	63.92	kPa	344.32 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	62.98	kPa	343.96 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	61.94	kPa	Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	60.91	kPa	343.20 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	59.93	kPa	342.82 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
рvар	59.04	kPa	342.48 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	58.05	kPa	342.09 Isobaric
			vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using
			1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	56.96	kPa	341.69 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	55.92	kPa	341.25 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	55.03	kPa	Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	53.94	kPa	340.43 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	53.01	kPa	340.04 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	52.33	kPa	339.72 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	51.26	kPa	339.30 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	50.25	kPa	338.86 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	49.34	kPa	338.45 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	48.35	kPa	337.98 Isobaric
			vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using
			1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	47.28	kPa	337.50 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	46.34	kPa	337.07 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	45.32	kPa	336.55 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	44.38	kPa	336.11 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	43.46	kPa	335.64 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	42.44	kPa	335.12 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	41.44	kPa	334.60 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	40.41	kPa	334.10 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	39.33	kPa	333.50 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	38.41	kPa	332.99 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium
pvap	37.45	kPa	dicyanamide ionic liquid 332.44 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	36.37	kPa	331.83 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	35.48	kPa	331.32 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	34.52	kPa	330.73 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	33.77	kPa	330.26 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	32.76	kPa	329.64 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	31.86	kPa	329.06 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	30.96	kPa	328.47 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	30.08	kPa	327.86 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	29.45	kPa	327.46 Isobaric vapor-liquid equilibria for the extractive
			distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide
pvap	28.83	kPa	ionic liquid 326.99 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	28.19	kPa	326.53 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	27.69	kPa	326.18 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	27.08	kPa	Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	26.52	kPa	325.30 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	26.04	kPa	324.94 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	25.48	kPa	324.49 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	25.03	kPa	324.13 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	24.51	kPa	323.71 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	24.02	kPa	323.32 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide
pvap	23.52	kPa	ionic liquid 322.91 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	23.03	kPa	322.47 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	22.55	kPa	322.07 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
рvар	22.03	kPa	321.58 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	21.49	kPa	321.11 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	21.00	kPa	320.65 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	20.52	kPa	Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	20.03	kPa	319.72 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	19.48	kPa	319.19 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

pvap	19.01	kPa	318.73 Isobaric
1 17			vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	18.39	kPa	318.10 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	17.98	kPa	317.65 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	17.46	kPa	317.07 Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
pvap	101.30	kPa	355.45 Isobaric (vapour

pvap	101.00	kPa	355.40	Experimental studies and thermodynamic analysis of isobaric vapor-liquid-liquid equilibria of 2-propanol + water system using n-propyl acetate and isopropyl acetate as entrainers	
pvap	593.80	kPa	408.30	Isothermal vapor liquid equilibrium for binary mixtures containing furfural and its derivatives	
pvap	200.10	kPa	373.50	Isothermal vapor liquid equilibrium for binary mixtures containing furfural and its derivatives	
pvap	93.80	kPa	353.30	Isothermal vapor liquid equilibrium for binary mixtures containing furfural and its derivatives	
pvap	101.30	kPa	355.15	Multiphase equilibria for mixtures containing water, isopropanol, propionic acid, and isopropyl propionate	
pvap	144.10	kPa	364.50	Vapour liquid equilibrium for the systems butane + methanol, +2-propanol, +1-butanol, +2-butanol, +2-methyl-2-propanol at 364.5K	
pvap	13.77	kPa	313.11	Vapour liquid equilibrium for the 2-methylpropane + methanol, +ethanol, +2-propanol, +2-butanol and +2-methyl-2-propanol systems at 313.15K	

pvap	23.64	kPa	323.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	30.35	kPa	328.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	38.59	kPa	333.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	48.66	kPa	338.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	60.66	kPa	343.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	

pvap	75.22	kPa	348.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	92.44	kPa	353.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	144.50	kPa	364.50	Isothermal Vapor Liquid Equilibrium for 2-Methylpropene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol Binary Systems at 364.5 K	
pvap	7.93	kPa	303.15	Solubility of Carbonyl Sulfide in Aqueous Solutions of Ethylene Glycol at Temperatures from (308.15 K to 323.15) K	
pvap	10.72	kPa	308.15	Solubility of Carbonyl Sulfide in Aqueous Solutions of Ethylene Glycol at Temperatures from (308.15 K to 323.15) K	
pvap	101.30	kPa	355.35	Isobaric Vapor-Liquid Equilibrium for Binary Systems of Toluene + Ethanol, Toluene + Isopropanol at (101.3, 121.3, 161.3 and 201.3) kPa	

pvap	121.30	kPa	359.95	Isobaric Vapor-Liquid Equilibrium for Binary Systems of Toluene + Ethanol, Toluene + Isopropanol at (101.3, 121.3, 161.3 and 201.3) kPa	
pvap	161.30	kPa	367.65	Isobaric Vapor-Liquid Equilibrium for Binary Systems of Toluene + Ethanol, Toluene + Isopropanol at (101.3, 121.3, 161.3 and 201.3) kPa	
pvap	201.30	kPa	373.65	Isobaric Vapor-Liquid Equilibrium for Binary Systems of Toluene + Ethanol, Toluene + Isopropanol at (101.3, 121.3, 161.3 and 201.3) kPa	
pvap	60.00	kPa	342.87	Isobaric Vapor Liquid Equilibria for the 2-Propanol + Ethylene Glycol Monopropyl Ether and 2-Butanol + Ethylene Glycol Monopropyl Ether Systems at 60 kPa, 80 kPa, and 100 kPa	
pvap	80.00	kPa	349.60	Isobaric Vapor Liquid Equilibria for the 2-Propanol + Ethylene Glycol Monopropyl Ether and 2-Butanol + Ethylene Glycol Monopropyl Ether Systems at 60 kPa, 80 kPa, and 100 kPa	

pvap	100.00	kPa	355.06	Isobaric Vapor Liquid Equilibria for the 2-Propanol + Ethylene Glycol Monopropyl Ether and 2-Butanol + Ethylene Glycol Monopropyl Ether Systems at 60 kPa, 80 kPa, and 100 kPa
pvap	23.60	kPa	323.19	Vapor Liquid Equilibrium for Butane + Methanol, + Ethanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-Propanol (TBA) at 323 K
pvap	144.10	kPa	364.51	Vapor Liquid Equilibrium for the Systems trans-2-Butene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol at 364.5 K
pvap	144.20	kPa	364.51	Vapor Liquid Equilibrium for the Systems 2-Methylpropane + Methanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol at 364.5 K
pvap	143.90	kPa	364.52	Vapor-Liquid Equilibrium for the cis-2-Butene + Methanol, + 2-Propanol, + 2-Butanol, + 2-Methyl-2-propanol Systems at 364.5 K
рvар	40.00	kPa	333.94	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	53.33	kPa	340.18	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems

pvap	66.66	kPa	345.25	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	79.99	kPa	349.55	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	93.32	kPa	353.30	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	98.66	kPa	354.67	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	101.32	kPa	355.65	Isobaric Vapor-Liquid Equilibrium for (Propan-2-ol + Water + 1-Butyl-3-methylimidazolium Tetrafluoroborate)
pvap	85.15	kPa	351.19	Vapor-Liquid Equilibrium Data at 343 K and Excess Molar Enthalpy Data at 298 K for the Binary Systems of Ethanol + 2,4,4-Trimethyl-1-pentene and 2-Propanol + 2,4,4-Trimethyl-1-pentene
pvap	124.03	kPa	360.57	Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid
rfi	1.37450		298.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Acetophenone and 2-Alkanols

rfi	1.37740	293.15 Vapor liquid equilibria and excess volumes of the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate at 101.325 kPa
rfi	1.37520	298.15 Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether
rfi	1.37520	298.15 Coefficients of the binary mixtures of a-cresol or p-cresol with C I-C4 aliphatic alcohols near ambient pressure
rfi	1.37500	298.15 Excess volumes and excess enthalpies of N-methyl-2-pyrrolidone with branched alcohols
rfi	1.37540	298.15 Effect of pressure and the capability of 2-methoxyethanol as a solvent in the behaviour of a diisopropyl ether isopropyl alcohol azeotropic mixture
rfi	1.37504	298.15 Isothermal vapour liquid equilibria in the binary and ternary systems composed of 2-propanol, 3-methyl-2-butanone and 2,2,4-trimethylpentane
rfi	1.37497	298.15 Isobaric vapour liquid equilibria for binary systems of 2-butanone with ethanol, 1-propanol, and 2-propanol at 20 and 101.3 kPa

rfi	1.37502	298.15 Isobaric vapour liquid equilibria and physical properties for isopropyl acetate + isopropanol + 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide mixtures
rfi	1.37760	298.15 Investigation on vapor liquid equilibrium for 2-propanol + 1-butanol + 1-pentanol at 101.3 kPa
rfi	1.37740	293.15 Vapour-liquid equilibrium of carboxylic acid alcohol binary systems:2-Propanol + butyric acid, 2-butanol + butyric acid and 2-methyl-1-propanol + butyric acid
rfi	1.37480	298.15 Excess molar volumes and partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and p = 0.1 MPa
rfi	1.37650	298.15 Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at T = (298.15, 303.15, and 308.15) K

rfi	1.37410	303.15	Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at T = (298.15, 303.15, and 308.15) K
rfi	1.37160	308.15	Physico-chemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at T = (298.15, 303.15, and 308.15) K
rfi	1.37450	298.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K
rfi	1.37210	303.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K
rfi	1.37020	308.15	Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K

rfi	1.37520	298.15	(Vapor + liquid) equilibria of the binary mixtures of m-cresol with C1 C4 aliphatic alcohols at 95.5 kPa	
rfi	1.37450	298.15	Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K	
rfi	1.37210	303.15	Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K	
rfi	1.37020	308.15	Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K	
rfi	1.37707	293.15	Mixing properties of binary mixtures presenting azeotropes at several temperatures	
rfi	1.37496	298.15	Mixing properties of binary mixtures presenting azeotropes at several temperatures	

rfi	1.37278	303.15 Mixing properties of binary mixtures presenting azeotropes at several temperatures
rfi	1.37510	298.15 (Vapor + liquid) equilibrium of the binary mixtures formed by acetonitrile with selected compounds at 95.5 kPa
rfi	1.37496	298.15 Ternary (liquid + liquid) equilibria of the azeotrope (ethyl acetate + 2-propanol) with different ionic liquids at T = 298.15 K
rfi	1.37500	298.15 Isobaric (vapour + liquid) equilibrium for N-methyl-2-pyrrolidone with branched alcohols
rfi	1.37410	298.15 Application of the ERAS model to volumetric properties of binary mixtures of banana oil with primary and secondary alcohols (C1- C4) at different temperatures
rfi	1.37500	298.15 Effect of the temperature on the physical properties of pure 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixtures with alcohols
rfi	1.37504	298.15 Isothermal (vapour + liquid) equilibria in the binary and ternary systems composed of 2-propanol, 2,2,4-trimethylpentane, and 2,4-dimethyl-3-pentanone

rfi	1.37518	298.15 (Vapour + liquid) equilibria for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane at P = 101.3 kPa
rfi	1.37410	303.15 Experimental study on the calorimetric data of cyclohexanol with alkanols (C1-C4) and correlation with Wilson, NRTL and UNIQUAC models at 300 K
rfi	1.37527	298.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.37314	303.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.37093	308.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K

rfi	1.36870	313.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.37523	298.15 Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols
rfi	1.37560	298.15 Ternary (liquid + liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1'-oxybis(butane) at different temperatures
rfi	1.37660	293.15 Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory
rfi	1.37450	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory

rfi	1.37240	303.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory
rfi	1.37030	308.15	Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory
rfi	1.37360	303.15	Solute-Solvent and Solvent-Solvent Interactions of Menthol in Isopropyl Alcohol and its Binary Mixtures with Methyl Salicylate by Volumetric, Viscometric, Interferometric and Refractive Index Techniques.
rfi	1.37530	298.15	Molar excess enthalpies and molar excess volumes of formamide + 1-propanol or 2-propanol and thermodynamic modeling by Prigogine-Flory-Patterson theory and Treszczanowicz-Benson association model

rfi	1.37710	293.20	Isobaric Vapor Liquid Equilibria for Binary Mixtures of .gammaValerolactone + Methanol, Ethanol, and 2-Propanol
rfi	1.37510	298.20	Isobaric Vapor Liquid Equilibria for Binary Mixtures of .gammaValerolactone + Methanol, Ethanol, and 2-Propanol
rfi	1.37718	293.15	Vapor Liquid Equilibrium for Methyl Isobutyl Ketone (MIBK) + (1-Propanol or 2-Propanol) Binary Mixtures
rfi	1.37740	293.15	Excess Properties and Phase Equilibria for the Potential Biofuel System of Propan-2-ol and 2-Methyl-propan-1-ol at 333.15, 343.15, and 353.15 K
rfi	1.37580	298.00	Determination of Physicochemical Parameters of Sodium Dodecyl Sulfate in Aqueous Micellar Solutions Containing Short-Chain Alcohols
rfi	1.37740	293.15	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis

rfi	1.38000	298.15	Bubble Temperatures of the Binary Mixtures of Dimethylcarbonate with Some Alcohols at 95.8 kPa	
rfi	1.37500	298.15	Vapor-Liquid Equilibria Data for Methanol + 2-Propanol+ 2-Methyl-2-butanol and Constituent Binary Systems at 101.3 kPa	
rfi	1.37707	293.15	Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K	
rfi	1.37496	298.15	Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K	
rfi	1.37278	303.15	Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K	
rfi	1.37500	298.15	Densities, Excess Molar Volumes, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K	
rfi	1.37400	303.15	Densities, Excess Molar Volumes, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K	

rfi	1.37300	308.15 Densities, Excess Molar Volumes, and Refractive Properties of the Binary Mixtures of the Amino Acid lonic Liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K
rfi	1.37200	313.15 Densities, Excess Molar Volumes, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K
rfi	1.37709	293.15 Liquid Liquid Equilibria of Methanol, Ethanol, and Propan-2-ol with Water and Dodecane
rfi	1.37510	298.15 Physical Properties of Binary and Ternary Mixtures of 2-Propanol, Water, and 1-Butyl-3-methylimidazolium Tetrafluoroborate lonic Liquid
rfi	1.36040	323.15 Physical Properties of Binary and Ternary Mixtures of 2-Propanol, Water, and 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid
rfi	1.37710	293.20 Vapor Liquid Equilibrium Data for Binary Systems of 1-Methyl-4-(1-methylethenyl)-cyclohexene + {Ethanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, Pentan-1-ol, or Hexan-1-ol} at 40 kPa

rfi	1.37880	295.15 Isobaric Vapor Liquid Equilibrium Data for Binary Mixtures of 1-Phenylethanone with a Few Alcohols at 95.2 kPa
rfi	1.35540	298.15 Vapor Liquid Equilibrium for Ternary and Binary Mixtures of 2-Isopropoxypropane, 2-Propanol, and N,N-Dimethylacetamide at 101.3 kPa
rfi	1.37495	298.15 Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure
rfi	1.37496	298.15 Ternary Liquid-Liquid Equilibria Ethanol + 2-Butanone + 1-Butyl-3-methylimidazolium Hexafluorophosphate, 2-Propanol + 2-Butanone + 1-Butyl-3-methylimidazolium Hexafluorophosphate, and 2-Butanone + 2-Propanol + 1,3-Dimethylimidazolium Methyl Sulfate at 298.15 K
rfi	1.37520	298.15 Vapor-Liquid Equilibrium and Excess Gibbs Energies of Hexane + N,N-Dimethyl Formamide, 2-Methylpropan-2-ol + 2-Aminophenol, N,N-Dimethyl Formamide, and 2-Propanol + Diisopropyl Amine at 94.4 kPa

rfi	1.37500	298.15	Density and Viscosity Experimental Data of the Ternary Mixtures 1-Propanol or 2-Propanol + Water + I-Ethyl-3-methylimidazolium Ethylsulfate. Correlation and Prediction of Physical Properties of the Ternary Systems
rfi	1.37063	308.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Ternary Mixtures of 2-Propanol + Benzyl Alcohol + 2-Phenylethanol at T = 308.15 K
rfi	1.37540	298.15	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Diisopropyl Ether, 2-Propyl Alcohol, and 3-Methyl-1-Butanol
rfi	1.37800	293.15	Measurement and Correlation of the Solubilities of m-Phthalic Acid in Monobasic Alcohols
rfi	1.37540	298.15	sobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Diisopropyl Ether, 2-Propyl Alcohol, and n-Butyl Propionate at 101.3 kPa
rfi	1.37509	298.15	Vapor-Liquid Equilibria for Binary and Ternary Mixtures of 1,3-Dioxolane, 2-Propanol, and 2,2,4-Trimethylpentane at 101.3 kPa

rfi	1.37540		298.15	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Ethanol and 2-Propanol with 2-Butanone and Butyl Propionate at 101.3 kPa
rhol	780.99	kg/m3	298.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure
rhol	758.60	kg/m3	323.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures
rhol	753.80	kg/m3	328.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures
rhol	748.90	kg/m3	333.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures

rhol	789.34	kg/m3	288.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K	
rhol	780.99	kg/m3	298.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K	
rhol	767.92	kg/m3	313.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K	
rhol	754.00	kg/m3	328.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K	
rhol	781.05	kg/m3	298.15	Densities, Viscosities, and Speeds of Sound of Binary Liquid Mixtures of Ethylenediamine with Alcohols at T = (293.15 to 313.15) K	

rhol	781.23	kg/m3	298.15	ACSExcess Molar Enthalpies of Mixtures of (+-)-Linalool with Several Alkanols	
rhol	781.60	kg/m3	298.15 1-Bi	Thermophysical Properties of the Pure Ionic Liquid utyl-1-methylpyrrolidin Dicyanamide and Its Binary Mixtures with Alcohols	iium
rhol	785.35	kg/m3	293.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	
rhol	776.86	kg/m3	303.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	
rhol	768.07	kg/m3	313.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	
rhol	758.89	kg/m3	323.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	
rhol	749.25	kg/m3	333.15	Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure	

rhol	794.00	kg/m3	283.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	785.76	kg/m3	293.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	777.28	kg/m3	303.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	768.48	kg/m3	313.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	759.31	kg/m3	323.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	749.68	kg/m3	333.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	739.53	kg/m3	343.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	786.00	kg/m3	293.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propan	ol

rhol	781.00	kg/m3	298.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	777.00	kg/m3	303.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	768.00	kg/m3	313.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model

rhol	759.00	kg/m3	323.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	750.00	kg/m3	333.15	Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban Acree Model
rhol	779.36	kg/m3	298.15	Vapor Liquid Equilibrium of Mixtures Containing the Following Higher Alcohols: 2-Propanol, 2-Methyl-1-propanol, and 3-Methyl-1-butanol
rhol	781.10	kg/m3	298.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling
rhol	776.80	kg/m3	303.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling

rhol	772.40	kg/m3	308.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling
rhol	767.80	kg/m3	313.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling
rhol	785.24	kg/m3	293.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures
rhol	776.76	kg/m3	303.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures
rhol	767.96	kg/m3	313.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures
rhol	758.79	kg/m3	323.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures

rhol	749.16	kg/m3	333.15	Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21-Propanol + x32-Propanol} at Different Temperatures
rhol	785.30	kg/m3	293.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	781.09	kg/m3	298.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	776.80	kg/m3	303.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	772.43	kg/m3	308.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	767.99	kg/m3	313.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	763.47	kg/m3	318.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	758.85	kg/m3	323.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols

rhol	777.50	kg/m3	303.15	Density,	
				Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures	
rhol	768.80	kg/m3	313.15	Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures	
rhol	759.70	kg/m3	323.15	Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures	
rhol	750.00	kg/m3	333.15	Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures	
rhol	739.50	kg/m3	343.15	Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures	
rhol	785.40	kg/m3	293.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	

	rhol	781.10	kg/m3	298.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
	rhol	776.80	kg/m3	303.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
	rhol	772.40	kg/m3	308.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
	rhol	768.00	kg/m3	313.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
	rhol	763.40	kg/m3	318.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
_	rhol	758.80	kg/m3	323.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	

rhol	781.32	kg/m3	298.15	Liquid Liquid Equilibrium for Ternary Systems of Propyl Vinyl Ether + C3 or C4 Alcohols + Water at 298.15 K and Excess Molar Enthalpies for Ternary and Constituent Binary Systems of Propyl Vinyl Ether + Ethanol + Isooctane at 303.15 K
rhol	781.40	kg/m3	298.15	Liquid-Liquid Equilibrium for 2,2,2-Trifluoroethanol + Ethanol + Cyclohexane from (288.15 to 308.15) K
rhol	785.10	kg/m3	293.15	Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)
rhol	776.63	kg/m3	303.15	Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)
rhol	767.84	kg/m3	313.15	Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)

rhol	758.68	kg/m3	323.15	Volumetric Properties of Binary and Ternary Liquid Mixtures of 1-Propanol (1) + 2-Propanol (2) + Water (3) at Different Temperatures and Ambient Pressure (81.5 kPa)
rhol	781.40	kg/m3	298.15	Liquid-Liquid Equilibrium of (Cyclohexane + 2,2,2-Trifluoroethanol) and (Cyclohexane + Methanol) from (278.15 to 318.15) K
rhol	781.40	kg/m3	298.15	Effect of Temperature on Phase Equilibrium of the Mixed-Solvent System of (2,2,2-Trifluoroethanol + Methanol + Cyclohexane)
rhol	781.35	kg/m3	298.15	Binary Liquid-Liquid Equilibrium (LLE) for Dibutyl Ether (DBE) + Water from (288.15 to 318.15) K and Ternary LLE for Systems of DBE + C1 !less thanless than C4 Alcohols + Water at 298.15 K
rhol	781.34	kg/m3	298.15	Binary Liquid-Liquid Equilibrium (LLE) for Methyl tert-Amyl Ether (TAME) + Water from (288.15 to 313.15) K and Ternary LLE for Systems of TAME + C1-C4 Alcohols + Water at 298.15 K

rhol	781.50	kg/m3	298.15 Solubility and Liquid-Liquid Equilibrium of Aqueous Systems of lodoethane with Methanol, Ethanol, or 1-Propanol at Temperature 298.15 K and Pressure 101.2 kPa
rhol	780.90	kg/m3	298.15 Apparent Molal Volumes and Viscosity B-Coefficients of Acetyl Salicylic Acid (2-Acetoxy Benzoic Acid) Solutions in Higher Alcohols at Different Temperatures
rhol	780.89	kg/m3	298.15 Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Methanol, Ethanol, 1-Propanol, and 2-Propanol at Several Temperatures
rhol	780.98	kg/m3	298.15 Topological investigations of the molecular species and molecular interactions that characterize pyrrolidin-2-one + lower alkanol mixtures
rhol	780.35	kg/m3	298.15 Excess enthalpies of binary mixtures of some propylamines + some propanols at 298.15K

rhol	749.39	kg/m3	333.15 1-(3-(trimethylan	Properties of pure nmonio)prop-1-yl)-3-methylimidazoliu bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	754.26	kg/m3	328.15 1-(3-(trimethylan	Properties of pure nmonio)prop-1-yl)-3-methylimidazoliu bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	759.01	kg/m3	323.15 1-(3-(trimethylan	Properties of pure nmonio)prop-1-yl)-3-methylimidazoliu bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	763.65	kg/m3	318.15 1-(3-(trimethylan	Properties of pure nmonio)prop-1-yl)-3-methylimidazoliu bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	768.18	kg/m3	313.15 1-(3-(trimethylan	Properties of pure nmonio)prop-1-yl)-3-methylimidazoliu bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K

l I	770.00	1/- 0	200.45
rhol	772.62	kg/m3	308.15 Properties of pure 1-(3-(trimethylammonio)prop-1-yl)-3-methylimidazolium bis(dicyanamide)
rhol	776.97	kg/m3	303.15 Properties of pure 1-(3-(trimethylammonio)prop-1-yl)-3-methylimidazolium bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	781.24	kg/m3	298.15 Properties of pure 1-(3-(trimethylammonio)prop-1-yl)-3-methylimidazolium bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	785.44	kg/m3	293.15 Properties of pure 1-(3-(trimethylammonio)prop-1-yl)-3-methylimidazolium bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K
rhol	789.58	kg/m3	288.15 Properties of pure 1-(3-(trimethylammonio)prop-1-yl)-3-methylimidazolium bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K

rhol	793.67	kg/m3	283.15 1-(3-(trimethylar	Properties of pure mmonio)prop-1-yl)-3-n bis(dicyanamide) asymmetrical gemini ionic liquid and its binary mixture with isopropanol at T = (283.15 333.15) K	nethylimidazolium
rhol	780.95	kg/m3	298.15	Excess volumes and partial molar volumes of binary liquid mixtures of furfural or 2-methylfuran with alcohols at 298.15 K	
rhol	758.55	kg/m3	323.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	763.19	kg/m3	318.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	767.82	kg/m3	313.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	772.24	kg/m3	308.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	
rhol	776.57	kg/m3	303.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa	

rhol	780.91	kg/m3	298.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa
rhol	785.10	kg/m3	293.15	Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa
rhol	753.91	kg/m3	328.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol
rhol	763.30	kg/m3	318.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol
rhol	772.26	kg/m3	308.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol

rhol	780.86	kg/m3	298.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +1-propanol, +2-propanol	
rhol	789.18	kg/m3	288.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	780.69	kg/m3	298.15	Liquid-liquid equilibria and density data for pseudoternary systems of refined soybean oil + (hexanal, or heptanal, or butyric acid, or valeric acid, or caproic acid, or caprylic acid) + dimethyl sulfoxide at 298.15 K	
rhol	781.00	kg/m3	298.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures	

rhol	759.00	kg/m3	323.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures	
rhol	768.00	kg/m3	313.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures	
rhol	777.00	kg/m3	303.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures	
rhol	785.00	kg/m3	293.15	Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures	
rhol	754.10	kg/m3		Thermophysical properties of binary mixtures of utyl-1-methylpyrrolidinium fluoromethanesulfonate ionic liquid with alcohols at several temperatures	
rhol	763.40	kg/m3	318.15 1-bu trif	Thermophysical properties of binary mixtures of utyl-1-methylpyrrolidinium iluoromethanesulfonate ionic liquid with alcohols at several temperatures	

rhol	772.40	kg/m3	308.15 Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	781.00	kg/m3	298.15 Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	789.40	kg/m3	288.15 Thermophysical properties of binary mixtures of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	797.50	kg/m3	278.15 Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	763.48	kg/m3	318.15 Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols
rhol	768.02	kg/m3	313.15 Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols

rhol	772.46	kg/m3	308.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	776.81	kg/m3	303.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	781.08	kg/m3	298.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	785.29	kg/m3	293.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	
rhol	789.41	kg/m3	288.15	Excess molar volume and excess Gibbs energy of activation for viscous flow for the binary mixtures of N-ethylpyridinium dicyanamide [C2py][DCA] with alcohols	

rhol	753.12	kg/m3	328.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15)
rhol	763.41	kg/m3	318.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15) K
rhol	772.41	kg/m3	308.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15)
rhol	781.05	kg/m3	298.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15)
rhol	780.85	kg/m3	298.20	A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies
rhol	769.70	kg/m3	313.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures

rhol	772.02	kg/m3	308.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	777.06	kg/m3	303.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	781.34	kg/m3	298.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	785.81	kg/m3	293.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	781.11	kg/m3	298.15	Experimental study on the calorimetric data of 2-butoxyethanol with aliphatic alcohols (C1-C4) and correlation with the Wilson, NRTL and UNIQUAC models at T = 298 K	
rhol	781.20	kg/m3	298.15	Measurement and correlation of solubility and solution thermodynamics of 1,3-dimethylurea in different solvents from T = (288.15 to 328.15) K	

rhol	781.10	kg/m3	298.15	Solubility and solution thermodynamics of thymol in six pure organic solvents	
rhol	781.20	kg/m3	298.15	Excess molar enthalpies of R-fenchone + propan-1-ol or +propan-2-ol. Modeling with COSMO-RS and UNIFAC	
rhol	758.80	kg/m3	323.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	
rhol	763.40	kg/m3	318.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	
rhol	768.00	kg/m3	313.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	
rhol	772.40	kg/m3	308.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	
rhol	776.80	kg/m3	303.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	
rhol	781.10	kg/m3	298.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	
rhol	785.40	kg/m3	293.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model	

rhol	780.60	kg/m3	298.15	Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents	
rhol	780.80	kg/m3		Measurements and modeling of LLE and HE for (methanol + ,4,4-trimethyl-1-pentene), and LLE for (water + methanol + 2,4,4-trimethyl-1-pentene)	
rhol	780.90	kg/m3	298.15	(Liquid + liquid) equilibria for mixtures of dodecane and ethanol with alkylsulfate-based ionic liquids	
rhol	780.90	kg/m3	298.15	A combined experimental and computational investigation of excess molar enthalpies of (nitrobenzene + alkanol) mixtures	
rhol	768.45	kg/m3	313.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach	
rhol	773.15	kg/m3	308.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach	

rhol	777.47	kg/m3	303.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	781.59	kg/m3	298.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	785.74	kg/m3	293.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	767.76	kg/m3	313.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches
rhol	772.39	kg/m3	308.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches
rhol	776.79	kg/m3	303.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches

rhol	780.95	kg/m3	298.15 Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches
rhol	758.63	kg/m3	323.15 Coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols
rhol	758.70	kg/m3	323.15 Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid
rhol	772.31	kg/m3	308.15 Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid
rhol	785.10	kg/m3	293.15 Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid
rhol	781.40	kg/m3	298.15 Phase diagrams of (hexane + methanol + 2,2,2-trifluoroethanol) at three temperatures: Measurement and correlation
rhol	758.71	kg/m3	323.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K

rhol	767.83	kg/m3	313.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	776.66	kg/m3	303.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	781.31	kg/m3	298.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	785.18	kg/m3	293.15 Densities and volumetric properties of (N-(2-hydroxyethyl)morpholine + ethanol, + 1-propanol, + 2-propanol, + 1-butanol, and + 2-butanol) at (293.15, 298.15, 303.15, 313.15, and 323.15) K
rhol	780.80	kg/m3	298.15 Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation

rhol	738.91	kg/m3	343.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	749.06	kg/m3	333.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	758.68	kg/m3	323.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	767.85	kg/m3	313.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K
rhol	776.63	kg/m3	303.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K

rhol	785.10	kg/m3	293.15	Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T = (293.15 to 343.15) K	
rhol	781.30	kg/m3	298.15	Bubble point temperatures of the binary mixtures of nitrobenzene with C1 C4 aliphatic alcohols at 94.95 kPa	
rhol	780.79	kg/m3	298.15	Solid-liquid equilibria for selected binary systems containing diphenyl carbonate	
rhol	786.00	kg/m3	293.15	Effect of imidazolium-based ionic liquid on vapor-liquid equilibria of 2-propanol + acetonitrile binary system at 101.3 kPa	
rhol	782.45	kg/m3	298.15	Experimental vapour - liquid equilibrium data of the quaternary system Methanol (1) + Isopropyl Alcohol (2) + Water (3) + Glycerol (4) along with Isopropyl Alcohol (2) + Glycerol (4) and Isopropyl Alcohol (2) + Water (3) binary data at atmospheric and sub-atmospheric pressures.	

rhol	786.91	kg/m3	293.15	Experimental vapour - liquid equilibrium data of the quaternary system Methanol (1) + Isopropyl Alcohol (2) + Water (3) + Glycerol (4) along with Isopropyl Alcohol (2) + Glycerol (4) and Isopropyl Alcohol (2) + Water (3) binary data at atmospheric and sub-atmospheric pressures.	
rhol	780.80	kg/m3	298.15	Determination and prediction of solubilities of active pharmaceutical ingredients in selected organic solvents	
rhol	782.45	kg/m3	298.15	Isobaric ternary vapour-liquid equilibrium of methanol(1) + diisopropyl ether(2) + isopropyl alcohol(3) along with methanol + isopropyl alcohol binary data at atmospheric and sub-atmospheric pressures	
rhol	754.84	kg/m3	328.15	Densities, surface tensions, and isobaric vapor-liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol	
rhol	763.61	kg/m3	318.15	Densities, surface tensions, and isobaric vapor-liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol	

rhol	772.32	kg/m3	308.15	Densities, surface tensions, and isobaric vapor-liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol	
rhol	781.18	kg/m3	298.15	Densities, surface tensions, and isobaric vapor-liquid equilibria for the mixtures of 2-propanol, water, and 1,2-propanediol	
rhol	782.45	kg/m3	298.15	isobaric vapor-liquid equilibrium at atmospheric and sub-atmospheric pressures, excess molar volumes and deviations in molar refractivity from 293.15 K to 318.15 K of diisopropyl ether with methanol and isopropyl alcohol.	
rhol	758.84	kg/m3	323.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	763.49	kg/m3	318.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	

rhol	768.02	kg/m3	313.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	772.45	kg/m3	308.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	776.80	kg/m3	303.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	
rhol	781.08	kg/m3	298.15	Measurement and modeling of volumetric properties and speeds of sound of several mixtures of alcohol liquids containing 1-propanol and 2-propanol at T= (298.15 - 323.15) K and ambient pressure	

rhol	781.18	kg/m3	298.15	Isobaric vapor-liquid equilibria for the binary and ternary mixtures of 2-propanol, water, and 1,3-propanediol at p = 101.3 kPa: Effect of the 1,3-propanediol addition
rhol	782.70	kg/m3	298.15	Solubility of androstenedione in lower alcohols
rhol	782.70	kg/m3	298.15	Liquid liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: Measurements and correlation at different temperatures
rhol	781.59	kg/m3	298.15	Thermodynamic and spectral investigations of binary liquid mixturesof 2-butoxy ethanol with alcohols at temperature range of 293.15-313.15 K
rhol	785.90	kg/m3	293.15	Measurement and correlation of liquid liquid equilibrium data for 2-methyl-1-propanol + 2-propanol + water at several temperatures
rhol	781.21	kg/m3	298.15	Liquid liquid equilibria for the binary system of di-isopropyl ether (DIPE) +water in between 288.15 and 323.15K and the ternary systems of DIPE +water + C1 C4 alcohols at 298.15K

rhol	749.01	kg/m3	333.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	753.88	kg/m3	328.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	758.64	kg/m3	323.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	763.28	kg/m3	318.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	767.81	kg/m3	313.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	

rhol	772.25	kg/m3	308.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	776.60	kg/m3	303.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	780.87	kg/m3	298.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	785.08	kg/m3	293.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	789.22	kg/m3	288.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	

rhol	793.31	kg/m3	283.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine
rhol	777.30	kg/m3	303.15	Viscous synergy and antagonism and isentropic compressibility of ternary mixtures containing 1,3-dioxolane, water and monoalkanols at 303.15K
rhol	780.91	kg/m3	298.15	Isothermal vapour liquid equilibria in the binary and ternary systems composed of 2-propanol, diisopropyl ether and 4-methyl-2-pentanone
rhol	741.00	kg/m3	343.30	Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol
rhol	760.10	kg/m3	323.40	Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol
rhol	777.50	kg/m3	303.60	Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

rhol	784.30	kg/m3	295.30	Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol
rhol	795.30	kg/m3	283.10	Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol
rhol	810.90	kg/m3	263.10	Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol
rhol	763.90	kg/m3	318.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	768.11	kg/m3	313.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K

rhol	772.32	kg/m3	308.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	776.54	kg/m3	303.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	780.75	kg/m3	298.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	784.96	kg/m3	293.15	Densities and Volumetric Properties of Binary Mixtures of Aniline with 1-Propanol, 2-Propanol, 2-Methyl-1-Propanol, and 2-Methyl-2-Propanol at Temperatures from 293.15 to 318.15 K
rhol	781.91	kg/m3	298.15	Speeds of Sound and Isentropic Compressibilities in Binary Mixtures of 2-Propanol with Several 1-Alkanols at 298.15K
rhol	786.00	kg/m3	293.00	KDB
<u> </u>	·			

rhol	763.30	kg/m3	318.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	767.90	kg/m3	313.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	772.30	kg/m3	308.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	776.60	kg/m3	303.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	
rhol	780.60	kg/m3	298.15	Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at Different Temperatures	

rhol	780.90	kg/m3	298.15	Dynamic Viscosities of Diethyl Carbonate with Linear and Secondary Alcohols at Several Temperatures
rhol	759.00	kg/m3	323.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure
rhol	768.20	kg/m3	313.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure
rhol	777.00	kg/m3	303.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure
rhol	791.50	kg/m3	293.15	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15-323.15 K) and Atmospheric Pressure

rhol	758.50	kg/m3	323.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	763.10	kg/m3	318.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	767.60	kg/m3	313.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	772.10	kg/m3	308.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	776.40	kg/m3	303.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model

rhol	780.70	kg/m3	298.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	784.90	kg/m3	293.15	Density and Viscosity of 2-Butanol + (1-Propanol, 2-Propanol, or 3-Amino-1-propanol) Mixtures at Temperatures of (293.15 to 323.15) K: Application of the ERAS Model
rhol	781.40	kg/m3	298.15	Determination and Correlation of Liquid-Liquid Equilibria Data for Ternary System Isopropyl Acetate + Isopropanol + Water at Different Temperatures
rhol	768.00	kg/m3	313.15	Total Pressure Phase Equilibrium Measurements for the Binary Systems of n-Pentane + Cyclohexane and 1-Hexene + 2-Propanol
rhol	743.66	kg/m3	338.15	Density, Speed of Sound, and Refractive Index Measurements for Binary Mixtures of Pentan-2-one with Propan-2-ol and Butan-2-ol
rhol	754.19	kg/m3	328.15	Density, Speed of Sound, and Refractive Index Measurements for Binary Mixtures of Pentan-2-one with Propan-2-ol and Butan-2-ol

rhol	763.51	kg/m3	318.15	Density, Speed of Sound, and Refractive Index Measurements for Binary Mixtures of Pentan-2-one with Propan-2-ol and Butan-2-ol
rhol	772.51	kg/m3	308.15	Density, Speed of Sound, and Refractive Index Measurements for Binary Mixtures of Pentan-2-one with Propan-2-ol and Butan-2-ol
rhol	781.10	kg/m3	298.15	Density, Speed of Sound, and Refractive Index Measurements for Binary Mixtures of Pentan-2-one with Propan-2-ol and Butan-2-ol
rhol	763.88	kg/m3	318.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	772.48	kg/m3	308.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling

rhol	781.08	ka/m2	298.15	Densities and	
IIIOI	761.00	kg/m3	290.13	Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling	
rhol	789.68	kg/m3	288.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling	
rhol	781.10	kg/m3	298.15	Isobaric Vapor-Liquid Phase Equilibrium Measurements, Correlation, and Prediction for Separation of the Mixtures of Cyclohexanone and Alcohols	
rhol	768.00	kg/m3	313.15	Experimental Phase Equilibrium for the Binary System of n-Pentane +2-Propanol Using a New Equilibrium Cell and the Static Total Pressure Method	
rhol	782.00	kg/m3	298.15	Isobaric Vapor-Liquid Equilibrium for the Binary Systems of Sec-butyl Acetate and Ethanol, 1-Propanol, or 2-Propanol at 101.3 kPa	

rhol	758.80	kg/m3	323.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	763.40	kg/m3	318.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	768.00	kg/m3	313.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	772.40	kg/m3	308.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	776.80	kg/m3	303.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	781.10	kg/m3	298.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	785.40	kg/m3	293.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	758.80	kg/m3	323.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline

rhol	763.40	kg/m3	318.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	768.00	kg/m3	313.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	772.40	kg/m3	308.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	776.80	kg/m3	303.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	781.10	kg/m3	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	789.34	kg/m3	288.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	

rhol	781.18	kg/m3	298.15 Liquid Liquid Equilibria, Equilibrium Phase Densities, and Refractive Indices for the Quaternary Mixtures Containing 2-Propanol or 2-Methyl-2-Propanol of Fuel Oxygenate at T = 298.15 and 318.15 K
rhol	744.02	kg/m3	338.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	753.89	kg/m3	328.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	763.27	kg/m3	318.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	772.23	kg/m3	308.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	780.84	kg/m3	298.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol
rhol	789.18	kg/m3	288.15 Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol

rhol	798.00	kg/m3	298.15	Liquid Liquid Equilibrium data for the ternary systems of Water, Isopropyl alcohol, and selected entrainers	
rhol	767.99	kg/m3	313.15	Density, Speed of Sound, Viscosity, Excess Properties, and Prigogine Flory Patterson (PFP) Theory of Binary Mixtures of Amine and Alcohols	
rhol	772.42	kg/m3	308.15	Density, Speed of Sound, Viscosity, Excess Properties, and Prigogine Flory Patterson (PFP) Theory of Binary Mixtures of Amine and Alcohols	
rhol	776.78	kg/m3	303.15	Density, Speed of Sound, Viscosity, Excess Properties, and Prigogine Flory Patterson (PFP) Theory of Binary Mixtures of Amine and Alcohols	
rhol	781.05	kg/m3	298.15	Density, Speed of Sound, Viscosity, Excess Properties, and Prigogine Flory Patterson (PFP) Theory of Binary Mixtures of Amine and Alcohols	
rhol	785.25	kg/m3	293.15	Density, Speed of Sound, Viscosity, Excess Properties, and Prigogine Flory Patterson (PFP) Theory of Binary Mixtures of Amine and Alcohols	

rhol	781.21	kg/m3	298.15	Modified Method for Measuring the Solubility of Pharmaceutical Compounds in Organic Solvents by Visual Camera
rhol	763.29	kg/m3	318.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	767.83	kg/m3	313.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	772.27	kg/m3	308.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K
rhol	776.62	kg/m3	303.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K

rhol	780.89	kg/m3	298.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K	
rhol	785.09	kg/m3	293.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K	
rhol	789.22	kg/m3	288.15	The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15-318.15) K	
rhol	758.80	kg/m3	323.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	763.40	kg/m3	318.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	768.00	kg/m3	313.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	772.40	kg/m3	308.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	

rhol	785.20	kg/m3	293.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	781.10	kg/m3	298.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	785.40	kg/m3	293.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	767.93	kg/m3	313.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	772.37	kg/m3	308.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	776.72	kg/m3	303.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	776.80	kg/m3	303.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	785.40	kg/m3	293.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	

sfust	29.21	J/mol×K	185.20	NIST Webbook	
sfust	28.72	J/mol×K	184.60	NIST Webbook	
sfust	29.09	J/mol×K	184.67	NIST Webbook	
sfust	28.70	J/mol×K	184.60	NIST Webbook	
speedsl	1138.16	m/s		Ultrasonic and Volumetric Properties of Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures	
speedsl	1086.62	m/s	313.15	Thermophysical study of the binary mixtures of N,N-dimethylacetamide with 2-propanol and 2-butanol	
speedsl	1139.17	m/s	298.15	Thermophysical study of the binary mixtures of N,N-dimethylacetamide with 2-propanol and 2-butanol	
speedsl	1173.07	m/s		Ultrasonic and Volumetric Properties of Ethyl-3-methylimidazolium rifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures	
speedsl	1191.88	m/s	283.15	Thermophysical study of the binary mixtures of N,N-dimethylacetamide with 2-propanol and 2-butanol	
speedsl	1103.25	m/s	308.15 1- T	Ultrasonic and Volumetric Properties of Ethyl-3-methylimidazolium rifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures	

speedsl	1068.09	m/s	318.15 Ultrasonic and Volumetric Properties of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures
speedsl	1032.57	m/s	328.15 Ultrasonic and Volumetric Properties of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures
speedsl	1157.30	m/s	293.15 Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolim dicyanamide mixed with primary and secondary alcohols
speedsl	1051.60	m/s	323.15 Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolim dicyanamide mixed with primary and secondary alcohols
speedsl	1104.80	m/s	308.15 Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolim dicyanamide mixed with primary and secondary alcohols

speedsl	1208.50	m/s	278.15 1-E Tri	Ultrasonic and Volumetric Properties of thyl-3-methylimidazol ifluoromethanesulfona Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures	ium ate
srf	0.02	N/m	303.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	333.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures	
srf	0.02	N/m	323.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures	
srf	0.02	N/m	313.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures	
srf	0.02	N/m	303.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures	
srf	0.02	N/m	293.20	Surface tension and interfacial compositions of binary glycerol/alcohol mixtures	
srf	0.02	N/m	318.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	

srf	0.02	N/m	313.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	308.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	293.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	298.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	293.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	
srf	0.02	N/m	288.15	The molar surface Gibbs energy and its application to the binary mixtures of N-butylpyridinium dicyanamide [C4py][DCA] with alcohols	

srf	0.02	N/m	328.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.02	N/m	318.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.02	N/m	308.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.02	N/m	298.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.02	N/m	293.20	KDB	
srf	0.02	N/m	298.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	303.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	308.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	

srf	0.02	N/m	313.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	318.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	323.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol
srf	0.02	N/m	298.15	Experimental Data and Correlation of Surface Tensions of the Binary and Ternary Systems of Water + Acetonitrile + 2-Propanol at 298.15 K and Atmospheric Pressure
srf	0.02	N/m	298.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary Mixtures of 2-Propanol + Benzyl Alcohol, + 2-Phenylethanol and Benzyl Alcohol + 2-Phenylethanol at T) (298.15, 308.15, and 318.15) K
srf	0.02	N/m	308.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary Mixtures of 2-Propanol + Benzyl Alcohol, + 2-Phenylethanol and Benzyl Alcohol + 2-Phenylethanol at T) (298.15, 308.15, and 318.15) K

srf	0.02	N/m	318.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary Mixtures of 2-Propanol + Benzyl Alcohol, + 2-Phenylethanol and Benzyl Alcohol + 2-Phenylethanol at T) (298.15, 308.15, and 318.15) K
srf	0.02	N/m	288.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentane
srf	0.02	N/m	298.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentane
srf	0.02	N/m	308.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentane
srf	0.02	N/m	288.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentane at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentane at 298.15 K

srf	0.02	N/m	298.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentane at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentane at 298.15 K
srf	0.02	N/m	308.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentane at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentane at 298.15 K

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	355.01	К	100.00 1-But	Isobaric Vapor-Liquid Equilibria for Water + 2-Propanol + yl-3-methylimidazo Tetrafluoroborate

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.60031e+01

Coeff. B	-3.41274e+03
Coeff. C	-5.57370e+01
Temperature range (K), min.	272.89
Temperature range (K), max.	508.31

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.13411e+01
Coeff. B	-7.69090e+03
Coeff. C	-7.69405e+00
Coeff. D	7.65635e-07
Temperature range (K), min.	185.28
Temperature range (K), max.	508.31

Datasets

Speed of sound, m/s

Temperature, K - Liquid	Pressure, kPa - Liquid	Speed of sound, m/s - Liquid
253.15	99.00	1300.967
253.15	5138.00	1328.819
253.15	10106.00	1354.875
253.15	15136.00	1380.021
253.15	20143.00	1404.015
253.15	25229.00	1427.462
253.15	30036.00	1448.868
273.15	100.00	1227.88
273.15	5275.00	1258.803
273.15	10173.00	1286.447
273.15	15164.00	1313.265
273.15	20289.00	1339.577
273.15	25102.00	1363.26
273.15	30264.00	1387.65
293.15	100.00	1157.361
293.15	5085.00	1189.739
293.15	10183.00	1220.822
293.15	15273.00	1250.197

293.15	20239.00	1277.428
293.15	25220.00	1303.56
293.15	30278.00	1328.856
313.15	100.00	1087.156
313.15	5177.00	1123.06
313.15	10104.00	1155.744
313.15	15187.00	1187.465
313.15	20126.00	1216.587
313.15	25138.00	1244.664
313.15	30110.00	1271.13
333.15	100.00	1015.957
333.15	5048.00	1054.493
333.15	10038.00	1090.587
333.15	15065.00	1124.563
333.15	20102.00	1156.534
333.15	25093.00	1186.433
333.15	30014.00	1214.42
353.15	100.00	940.503
353.15	5080.00	983.885
353.15	10091.00	1023.857
353.15	15114.00	1060.82
353.15	20132.00	1095.253
353.15	25164.00	1127.605
353.15	30380.00	1159.239

Reference

https://www.doi.org/10.1016/j.jct.2016.06.001

Temperature, K	Pressure, kPa	Speed of sound, m/s
299.79	86.00	1132.8
349.93	138.00	950.4
217.77	143.00	1445.1
249.84	159.00	1317.8
399.64	492.00	745.0
299.80	865.00	1138.2
249.86	992.00	1322.3
217.84	1031.00	1449.0
399.63	1090.00	752.7
349.94	1099.00	958.9
450.06	1639.00	499.2
349.97	1915.00	966.0
399.63	1986.00	764.1
249.87	2039.00	1328.0
299.81	2097.00	1146.6

450.04	2190.00	512.0
217.84	2256.00	1454.8
249.85	4937.00	1343.6
349.97	5044.00	992.5
299.81	5133.00	1166.5
399.62	5275.00	802.7
217.88	6084.00	1472.2
500.17	7568.00	371.1
217.00	8951.00	1489.1
249.85	9128.00	1365.3
500.15	9582.00	424.0
299.79	9677.00	1195.1
349.97	9682.00	1029.2
399.62	9782.00	850.0
249.86	10803.00	1373.6
249.85	19905.00	1417.6
299.80	20194.00	1256.1
399.61	20985.00	948.9
349.98	21490.00	1111.7
450.02	22115.00	792.1
500.11	22653.00	636.6
216.95	24689.00	1556.1
399.63	38384.00	1071.2
299.80	39488.00	1353.7
500.25	40483.00	812.4
216.87	41140.00	1619.7
249.85	41768.00	1512.2
349.98	42396.00	1232.7
449.97	42419.00	957.3
249.85	59235.00	1579.4
216.89	60566.00	1688.1
299.81	60935.00	1447.1
349.97	61179.00	1324.0
449.98	61580.00	1076.2
500.27	61769.00	961.8
399.63	61965.00	1203.3
216.90	78557.00	1746.2
249.85	80375.00	1653.1
500.27	80461.00	1067.0
399.61	80647.00	1291.3
349.97	81377.00	1409.9
299.89	81993.00	1527.9
449.99	82381.00	1183.6
249.85	96644.00	1705.5

96752.00	1469.0
97237.00	1581.4
97607.00	1362.4
97646.00	1252.6
98305.00	1153.8
98400.00	1805.5
121241.00	1868.7
122092.00	1454.2
122429.00	1352.4
123509.00	1665.9
123510.00	1562.0
123715.00	1261.3
124462.00	1787.6
	97237.00 97607.00 97646.00 98305.00 98400.00 121241.00 122092.00 122429.00 123509.00 123510.00 123715.00

Reference

https://www.doi.org/10.1021/acs.jced.8b00938

Molar volume, m3/mol

Temperature, K - Liquid	Pressure, kPa - Liquid	Molar volume, m3/mol - Liquid
298.15	100.00	0.0001
298.15	10000.00	0.0001
313.15	100.00	0.0001
313.15	10000.00	0.0001
328.15	100.00	0.0001
328.15	10000.00	0.0001
· ·		•

Reference

https://www.doi.org/10.1021/je800334m

Molar heat capacity at constant pressure, J/K/mol

Temperature, K - Liquid	Pressure, kPa - Liquid	Molar heat capacity at constant pressure, J/K/mol - Liquid
253.15	100.00	129.40
253.15	20000.00	126.10
253.15	40000.00	125.80
258.15	100.00	130.60
258.15	20000.00	128.30
258.15	40000.00	127.30
263.15	100.00	132.60

263.15	20000.00	130.70
263.15	40000.00	129.20
268.15	100.00	135.00
268.15	20000.00	133.40
268.15	40000.00	131.50
273.15	100.00	138.00
273.15	20000.00	136.30
273.15	40000.00	134.00
278.15	100.00	141.40
278.15	20000.00	139.40
278.15	40000.00	136.80
283.15	100.00	145.10
283.15	20000.00	142.60
283.15	40000.00	140.00
288.15	100.00	148.90
288.15	20000.00	146.00
288.15	40000.00	143.30
293.15	100.00	152.90
293.15	20000.00	149.60
293.15	40000.00	146.90
298.15	100.00	157.00
298.15	20000.00	153.30
298.15	40000.00	150.70
303.15	100.00	161.10
303.15	20000.00	157.10
303.15	40000.00	154.70
308.15	100.00	165.00
308.15	20000.00	161.10
308.15	40000.00	159.00
313.15	100.00	168.60
313.15	20000.00	165.00
313.15	40000.00	163.30
318.15	100.00	171.90
318.15	20000.00	169.10
318.15	40000.00	167.80
323.15	100.00	174.90
323.15	20000.00	173.20
323.15	40000.00	172.40
Reference	https:	://www.doi.org/10.1016/j.tca.2010.05.012

Reference

https://www.doi.org/10.1016/j.tca.2010.05.012

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
298.15	81.50	0.0020670
Reference		https://www.doi.org/10.1016/j.jct.2016.12.036

Refractive index (Na D-line)

Temperature, K - Liquid	Pressure, kPa - Liquid	Refractive index (Na D-line) - Liquid
298.15	101.33	1.3752
293.15	101.00	1.37724
303.15	101.00	1.37286
313.15	101.00	1.36852
323.15	101.00	1.36363

Reference https://www.doi.org/10.1016/j.jct.2010.08.019

Temperature, K	Pressure, kPa	Refractive index (Na D-line)
298.15	100.00	1.37503
Reference		https://www.doi.org/10.1016/j.jct.2018.02.005

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	313.15	767.67
5000.00	313.15	772.3
10000.00	313.15	776.83
15000.00	313.15	781.04
20000.00	313.15	785.09
25000.00	313.15	788.94
30000.00	313.15	792.51
35000.00	313.15	796.05

40000.00	313.15	799.39
50000.00	313.15	805.89
60000.00	313.15	811.8
70000.00	313.15	817.44
80000.00	313.15	822.71
90000.00	313.15	827.67
100000.00	313.15	832.64
110000.00	313.15	837.15
120000.00	313.15	841.57
130000.00	313.15	845.79
140000.00	313.15	849.83
100.00	323.15	758.87
5000.00	323.15	763.96
10000.00	323.15	768.84
15000.00	323.15	773.34
20000.00	323.15	777.63
25000.00	323.15	781.69
30000.00	323.15	785.6
35000.00	323.15	789.17
40000.00	323.15	792.74
50000.00	323.15	799.4
60000.00	323.15	805.57
70000.00	323.15	811.34
80000.00	323.15	816.78
90000.00	323.15	822.03
100000.00	323.15	826.88
110000.00	323.15	831.63
120000.00	323.15	836.11
130000.00	323.15	840.39
140000.00	323.15	844.6
100.00	333.15	749.24
5000.00	333.15	754.45
10000.00	333.15	759.66
15000.00	333.15	764.42
20000.00	333.15	768.95
25000.00	333.15	773.18
30000.00	333.15	777.21
35000.00	333.15	781.18
40000.00	333.15	784.88
50000.00	333.15	791.92
60000.00	333.15	798.25
70000.00	333.15	804.32
80000.00	333.15	810.15
90000.00	333.15	815.49

400000 00	200.45	000.0
100000.00 110000.00	333.15 333.15	820.8 825.59
120000.00	333.15	830.23
130000.00	333.15	834.5
140000.00	333.15	838.74
100.00	343.15	738.88
5000.00	343.15	744.75
1000.00	343.15	750.17
15000.00	343.15	755.4
2000.00	343.15	760.17
25000.00	343.15	764.81
3000.00	343.15	769.03
35000.00	343.15	773.28
4000.00	343.15	777.23
5000.00	343.15	784.53
6000.00	343.15	791.22
70000.00	343.15	797.48
8000.00	343.15	803.44
9000.00	343.15	808.87
10000.00	343.15	814.1
110000.00	343.15	819.16
120000.00	343.15	823.87
130000.00	343.15	828.44
14000.00	343.15	832.84
100.00	353.15	728.44
5000.00	353.15	734.66
10000.00	353.15	740.52
15000.00	353.15	745.99
20000.00	353.15	751.21
25000.00	353.15	756.02
30000.00	353.15	760.43
35000.00	353.15	764.79
40000.00	353.15	768.87
50000.00	353.15	777.01
60000.00	353.15	783.94
70000.00	353.15	790.65
80000.00	353.15	796.56
90000.00	353.15	802.3
100000.00	353.15	807.6
110000.00	353.15	812.87
120000.00	353.15	817.76
130000.00	353.15	822.37
140000.00	353.15	826.85
5000.00	363.15	723.93

10000.00	363.15	730.44
15000.00	363.15	736.42
20000.00	363.15	741.95
25000.00	363.15	747.05
30000.00	363.15	751.95
35000.00	363.15	756.37
40000.00	363.15	760.76
50000.00	363.15	769.06
60000.00	363.15	776.43
70000.00	363.15	783.33
80000.00	363.15	789.52
90000.00	363.15	795.58
100000.00	363.15	801.38
110000.00	363.15	806.5
120000.00	363.15	811.57
130000.00	363.15	816.39
140000.00	363.15	820.9
5000.00	373.15	712.57
10000.00	373.15	719.75
15000.00	373.15	726.13
20000.00	373.15	732.08
25000.00	373.15	737.65
30000.00	373.15	742.73
35000.00	373.15	747.59
40000.00	373.15	752.29
50000.00	373.15	760.75
60000.00	373.15	768.5
70000.00	373.15	775.82
80000.00	373.15	782.24
90000.00	373.15	788.49
100000.00	373.15	794.34
110000.00	373.15	799.85
120000.00	373.15	805.17
130000.00	373.15	810.06
140000.00	373.15	814.94
5000.00	383.15	700.32
10000.00	383.15	708.06
15000.00	383.15	715.03
20000.00	383.15	721.43
25000.00	383.15	727.35
30000.00	383.15	732.77
35000.00	383.15	737.95
40000.00	383.15	742.76
50000.00	383.15	751.85

60000.00	383.15	760.06
70000.00	383.15	767.53
80000.00	383.15	774.49
90000.00	383.15	780.94
100000.00	383.15	786.9
110000.00	383.15	792.77
120000.00	383.15	798.27
130000.00	383.15	803.3
140000.00	383.15	808.26
5000.00	393.15	687.82
10000.00	393.15	696.15
15000.00	393.15	703.77
20000.00	393.15	710.73
25000.00	393.15	717.07
30000.00	393.15	722.91
35000.00	393.15	728.4
40000.00	393.15	733.66
50000.00	393.15	743.39
60000.00	393.15	751.87
70000.00	393.15	759.71
80000.00	393.15	766.86
90000.00	393.15	773.67
100000.00	393.15	779.96
110000.00	393.15	785.9
120000.00	393.15	791.54
130000.00	393.15	796.8
140000.00	393.15	801.97
5000.00	403.15	674.03
10000.00	403.15	683.54
15000.00	403.15	691.9
20000.00	403.15	699.4
25000.00	403.15	706.26
30000.00	403.15	712.66
35000.00	403.15	718.38
40000.00	403.15	724.01
50000.00	403.15	734.72
60000.00	403.15	743.58
70000.00	403.15	751.89
80000.00	403.15	759.17
90000.00	403.15	766.2
100000.00	403.15	772.7
110000.00	403.15	778.85
120000.00	403.15	784.7
130000.00	403.15	790.2

Pressure, kPa	Temperature, K	Mass density, kg/m3
117.90	280.21	797.61
186.70	300.09	780.22
202.70	325.12	757.05
220.40	350.14	731.92
349.50	375.01	702.23
407.60	392.57	679.26
439.60	280.21	797.89
609.40	325.12	757.49
610.50	300.09	780.62
663.40	350.14	732.49
703.30	375.01	702.82
888.70	392.57	680.18
938.70	280.21	798.29
953.40	300.09	780.94
960.00	325.12	757.87
1046.80	375.01	703.38
1071.20	350.14	733.03
1171.40	392.57	680.72
1253.90	325.12	758.21
1328.40	280.21	798.62
1339.50	300.09	781.31
1412.60	350.14	733.49
1437.50	375.01	704.01
1526.60	392.57	681.39
1638.80	325.12	758.63
1656.60	280.21	798.89
1722.10	300.09	781.66
1791.60	375.01	704.58
1844.70	350.14	734.07
1897.40	392.57	682.08
1944.90	280.21	799.14
2021.00	325.12	759.06
2044.80	300.09	781.96
2161.70	375.01	705.16
2226.70	350.14	734.58
2272.30	392.57	682.77
2328.80	325.12	759.39
2440.60	280.21	799.56

2446.40	300.09	782.34
2545.70	375.01	705.76
2619.10	392.57	683.41
2644.70	350.14	735.11
2655.80	325.15	759.75
2834.60	300.09	782.7
2842.70	350.14	735.41
2850.60	280.21	799.88
2909.90	375.01	706.34
3014.90	325.12	760.15
3050.40	392.57	684.2
3198.00	280.21	800.17
3224.90	300.09	783.06
3286.90	350.14	735.99
3321.40	325.12	760.48
3364.10	375.01	707.04
3411.20	392.57	684.86
3630.70	350.14	736.45
3659.40	325.12	760.85
3671.10	300.09	783.47
3677.60	375.01	707.53
3679.10	280.21	800.56
3835.00	392.57	685.63
4004.10	325.12	761.22
4012.20	350.14	736.94
4071.10	280.21	800.9
4074.10	300.09	783.84
4083.20	375.01	708.16
4095.70	392.57	686.12
4362.50	300.09	784.11
4394.60	350.14	737.43
4399.20	325.12	761.65
4437.70	280.21	801.19
4515.70	375.01	708.82
4524.90	392.57	686.89
4691.20	325.12	761.97
4757.60	350.14	737.91
4771.80	300.09	784.48
4832.60	280.21	801.5
4853.50	375.01	709.33
4902.80	392.57	687.57
5010.70	325.12	762.32
5182.10	280.21	801.8

5226.50	300.09	784.89
5280.20	375.01	709.98
5283.50	392.57	688.24
5383.40	325.12	762.71
5559.10	280.21	802.1
5577.90	350.14	738.96
5579.20	300.09	785.21
5646.90	375.01	710.53
5730.50	325.12	763.08
5775.90	392.57	689.09
5910.00	280.21	802.39
5939.30	350.14	739.42
6001.60	300.09	785.59
6039.60	392.57	689.55
6138.10	375.01	711.26
6143.60	325.12	763.52
6321.30	350.14	739.89
6334.90	280.21	802.73
6427.20	300.09	785.98
6447.10	375.01	711.73
6476.60	392.57	690.3
6525.60	325.12	763.91
6730.90	350.14	740.41
6750.90	280.21	803.06
6780.30	300.09	786.29
6880.90	375.01	712.37
6889.70	392.57	691.01
6903.20	325.12	764.31
7119.70	350.14	740.89
7166.50	281.21	803.39
7214.70	300.09	786.68
7269.80	375.01	712.94
7293.80	325.12	764.72
7348.00	392.57	691.78
7564.40	350.14	741.45
7592.00	280.21	803.74
7629.90	300.09	787.05
7661.90	325.12	765.11
7728.00	392.57	692.42
7772.40	375.01	713.68
7918.60	325.12	765.38
7988.50	350.14	741.97
7999.00	280.21	804.07
8020.30	300.09	787.4

8119.20	375.01	714.18
8172.70	392.57	693.17
8254.40	325.12	765.72
8329.00	280.21	804.33
8417.50	300.09	787.75
8472.50	350.14	742.55
8557.20	375.01	714.81
8598.30	392.57	693.88
8755.50	325.12	766.24
8805.70	300.09	788.1
8817.00	280.21	804.7
8925.80	350.14	743.13
8987.30	375.01	715.42
9018.50	392.57	694.57
9212.90	300.09	788.45
9280.80	350.14	743.56
9350.60	280.21	805.11
 9405.00	392.57	695.2
9423.80	375.01	716.04
9621.50	300.09	788.81
9658.50	280.21	805.38
9676.30	350.14	744.05
9837.90	392.57	695.89
9842.20	375.01	716.64

https://www.doi.org/10.1016/j.jct.2008.12.014

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	100.00	785.0
293.15	10000.00	793.2
293.15	20000.00	800.6
293.15	30000.00	807.4
293.15	40000.00	813.7
293.15	50000.00	819.6
293.15	60000.00	825.1
293.15	70000.00	830.4
293.15	80000.00	835.3
293.15	90000.00	840.1
293.15	100000.00	844.6
293.15	110000.00	848.9
293.15	120000.00	853.1
293.15	130000.00	857.1
293.15	140000.00	861.0

303.15	100.00	776.6
303.15	10000.00	785.3
303.15	20000.00	793.3
303.15	30000.00	800.2
303.15	40000.00	806.9
303.15	50000.00	813.1
303.15	60000.00	818.9
303.15	70000.00	824.3
303.15	80000.00	829.1
303.15	90000.00	834.2
303.15	100000.00	838.8
303.15	110000.00	843.1
303.15	120000.00	847.3
303.15	130000.00	851.4
303.15	140000.00	855.2
313.15	100.00	767.8
313.15	10000.00	777.1
313.15	20000.00	785.4
313.15	30000.00	792.9
313.15	40000.00	799.8
313.15	50000.00	806.2
313.15	60000.00	812.1
313.15	70000.00	817.6
313.15	80000.00	822.8
313.15	90000.00	827.8
313.15	100000.00	832.6
313.15	110000.00	837.3
313.15	120000.00	841.5
313.15	130000.00	845.8
313.15	140000.00	849.7
323.15	100.00	758.7
323.15	10000.00	768.6
323.15	20000.00	777.3
323.15	30000.00	785.2
323.15	40000.00	792.4
323.15	50000.00	799.0
323.15	60000.00	805.2
323.15	70000.00	811.0
323.15	80000.00	816.4
323.15	90000.00	821.6
323.15	100000.00	826.6
323.15	110000.00	831.3
323.15	120000.00	835.7
323.15	130000.00	840.0

323.15	140000.00	844.2
333.15	100.00	749.2
333.15	10000.00	759.7
333.15	20000.00	769.1
333.15	30000.00	777.4
333.15	40000.00	785.0
333.15	50000.00	792.0
333.15	60000.00	798.5
333.15	70000.00	804.5
333.15	80000.00	810.1
333.15	90000.00	815.6
333.15	100000.00	820.6
333.15	110000.00	825.4
333.15	120000.00	830.0
333.15	130000.00	834.4
333.15	140000.00	838.5
343.15	100.00	738.8
343.15	10000.00	750.2
343.15	20000.00	760.1
343.15	30000.00	768.8
343.15	40000.00	776.8
343.15	50000.00	784.1
343.15	60000.00	790.9
343.15	70000.00	797.1
343.15	80000.00	803.0
343.15	90000.00	808.6
343.15	100000.00	813.9
343.15	110000.00	818.9
343.15	120000.00	823.8
343.15	130000.00	828.3
343.15	140000.00	832.7
353.15	100.00	728.3
353.15	10000.00	740.5
353.15	20000.00	751.1
353.15	30000.00	760.6
353.15	40000.00	768.9
353.15	50000.00	776.6
353.15	60000.00	783.7
353.15	70000.00	790.3
353.15	80000.00	796.4
353.15	90000.00	802.1
353.15	100000.00	807.5
353.15	110000.00	812.6
353.15	120000.00	817.5

353.15	130000.00	822.3
353.15	140000.00	826.7
363.15	10000.00	730.2
363.15	20000.00	741.7
363.15	30000.00	751.7
363.15	40000.00	760.6
363.15	50000.00	768.7
363.15	60000.00	776.0
363.15	70000.00	782.8
363.15	80000.00	789.2
363.15	90000.00	795.2
363.15	100000.00	800.8
363.15	110000.00	806.2
363.15	120000.00	811.3
363.15	130000.00	816.2
363.15	140000.00	820.8
373.15	10000.00	719.5
373.15	20000.00	731.9
373.15	30000.00	742.6
373.15	40000.00	752.1
373.15	50000.00	760.5
373.15	60000.00	768.2
373.15	70000.00	775.4
373.15	80000.00	782.1
373.15	90000.00	788.4
373.15	100000.00	794.2
373.15	110000.00	799.8
373.15	120000.00	805.0
373.15	130000.00	810.0
373.15	140000.00	814.7
383.15	10000.00	708.0
383.15	20000.00	721.5
383.15	30000.00	732.9
383.15	40000.00	743.1
383.15	50000.00	752.0
383.15	60000.00	760.1
383.15	70000.00	767.6
383.15	80000.00	774.6
383.15	90000.00	781.0
383.15	100000.00	787.1
383.15	110000.00	792.8
383.15	120000.00	798.3
383.15	130000.00	803.5
383.15	140000.00	808.5

393.15	10000.00	696.3
393.15	20000.00	710.9
393.15	30000.00	723.2
393.15	40000.00	733.7
393.15	50000.00	743.1
393.15	60000.00	751.7
393.15	70000.00	759.6
393.15	80000.00	766.6
393.15	90000.00	773.6
393.15	100000.00	779.9
393.15	110000.00	785.9
393.15	120000.00	791.5
393.15	130000.00	796.8
393.15	140000.00	801.6
403.15	10000.00	683.7
403.15	20000.00	699.5
403.15	30000.00	712.8
403.15	40000.00	724.1
403.15	50000.00	734.2
403.15	60000.00	743.2
403.15	70000.00	751.4
403.15	80000.00	758.9
403.15	90000.00	766.0
403.15	100000.00	772.5
403.15	110000.00	778.7
403.15	120000.00	784.5
403.15	130000.00	790.1
403.15	140000.00	795.4

https://www.doi.org/10.1016/j.jct.2012.05.016

Temperature, K	Pressure, kPa	Mass density, kg/m3
302.90	1040.00	778.1
302.90	2000.00	778.9
302.90	2990.00	779.8
302.90	4060.00	780.8
302.90	5010.00	781.6
302.90	6000.00	782.5
302.90	7020.00	783.4
302.90	8020.00	784.3
302.90	9000.00	785.1
302.90	10000.00	786.0
323.00	1000.00	760.6

323.00	2020.00	761.6
323.00	3000.00	762.7
323.00	4070.00	763.7
323.00	5000.00	764.7
323.00	6010.00	765.7
323.00	7020.00	766.7
323.00	8010.00	767.7
323.00	9010.00	768.6
323.00	10020.00	769.6

https://www.doi.org/10.1016/j.jct.2013.05.040

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	100.00	785.4
293.15	1000.00	786.2
293.15	5000.00	789.6
293.15	10000.00	793.6
293.15	15000.00	797.4
293.15	20000.00	801.1
293.15	25000.00	804.5
293.15	30000.00	807.9
293.15	35000.00	811.2
293.15	40000.00	814.2
293.15	45000.00	817.2
293.15	50000.00	820.1
293.15	55000.00	822.9
293.15	60000.00	825.6
293.15	65000.00	828.2
293.15	70000.00	830.8
293.15	8000.00	835.8
293.15	90000.00	840.5
293.15	100000.00	845.0
293.15	110000.00	849.4
293.15	120000.00	853.5
293.15	130000.00	857.6
293.15	140000.00	861.2
298.15	100.00	781.4
298.15	1000.00	782.1
298.15	5000.00	785.6
298.15	10000.00	789.8
298.15	15000.00	793.7
298.15	20000.00	797.3
298.15	25000.00	800.9

298.15	30000.00	804.3
298.15	35000.00	807.7
298.15	40000.00	810.8
298.15	45000.00	813.8
298.15	50000.00	816.7
298.15	55000.00	819.7
298.15	60000.00	822.5
298.15	65000.00	825.2
298.15	70000.00	827.6
298.15	80000.00	832.8
298.15	90000.00	837.5
298.15	100000.00	842.3
298.15	110000.00	846.4
298.15	120000.00	850.8
298.15	130000.00	854.8
298.15	140000.00	858.7
313.15	100.00	768.2
313.15	1000.00	769.1
313.15	5000.00	773.0
313.15	10000.00	777.4
313.15	15000.00	781.8
313.15	20000.00	785.7
313.15	25000.00	789.5
313.15	30000.00	793.3
313.15	35000.00	796.9
313.15	40000.00	800.1
313.15	45000.00	803.4
313.15	50000.00	806.5
313.15	55000.00	809.6
313.15	60000.00	812.5
313.15	65000.00	815.4
313.15	70000.00	818.2
313.15	80000.00	823.4
313.15	90000.00	828.5
313.15	100000.00	833.1
313.15	110000.00	837.8
313.15	120000.00	842.1
313.15	130000.00	846.4
313.15	140000.00	850.4
333.15	100.00	749.4
333.15	1000.00	750.5
333.15	5000.00	754.9
333.15	10000.00	760.0
333.15	15000.00	764.9

333.15	20000.00	769.3
333.15	25000.00	773.6
333.15	30000.00	777.7
333.15	35000.00	781.5
333.15	40000.00	785.3
333.15	45000.00	788.9
333.15	50000.00	792.3
333.15	55000.00	795.6
333.15	60000.00	798.7
333.15	65000.00	801.8
333.15	70000.00	804.8
333.15	80000.00	810.5
333.15	90000.00	815.9
333.15	100000.00	820.9
333.15	110000.00	825.8
333.15	120000.00	830.4
333.15	130000.00	834.8
333.15	140000.00	839.2
353.15	1000.00	729.8
353.15	5000.00	735.0
353.15	10000.00	741.0
353.15	15000.00	746.5
353.15	20000.00	751.7
353.15	25000.00	756.5
353.15	30000.00	761.0
353.15	35000.00	765.4
353.15	40000.00	769.3
353.15	45000.00	773.3
353.15	50000.00	777.0
353.15	55000.00	780.6
353.15	60000.00	784.0
353.15	65000.00	787.4
353.15	70000.00	790.6
353.15	80000.00	796.7
353.15	90000.00	802.6
353.15	100000.00	808.0
353.15	110000.00	813.2
353.15	120000.00	818.1
353.15	130000.00	822.8
353.15	140000.00	827.3
373.15	1000.00	706.6
373.15	5000.00	712.8
373.15	10000.00	719.9
373.15	15000.00	726.3

373.15	20000.00	732.0
373.15	25000.00	737.7
373.15	30000.00	742.9
373.15	35000.00	747.8
373.15	40000.00	752.2
373.15	45000.00	756.6
373.15	50000.00	760.7
373.15	55000.00	764.7
373.15	60000.00	768.6
373.15	65000.00	772.1
373.15	70000.00	775.6
373.15	80000.00	782.3
373.15	90000.00	788.5
373.15	100000.00	794.4
373.15	110000.00	799.9
373.15	120000.00	805.3
373.15	130000.00	810.2
373.15	140000.00	815.1
393.15	1000.00	680.4
393.15	5000.00	688.2
393.15	10000.00	696.7
393.15	15000.00	704.4
393.15	20000.00	711.4
393.15	25000.00	717.6
393.15	30000.00	723.5
393.15	35000.00	729.0
393.15	40000.00	734.2
393.15	45000.00	739.0
393.15	50000.00	743.5
393.15	55000.00	747.9
393.15	60000.00	752.1
393.15	65000.00	756.1
393.15	70000.00	760.0
393.15	80000.00	767.2
393.15	90000.00	773.9
393.15	100000.00	780.2
393.15	110000.00	786.2
393.15	120000.00	791.8
393.15	130000.00	797.2
393.15	140000.00	802.3
303.15	100.00	777.0
293.15	100.00	785.46
313.15	100.00	768.21
323.15	100.00	759.07

298.15	100.00	781.27
333.15	100.00	749.42

https://www.doi.org/10.1016/j.jct.2018.12.018

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	81.50	780.99
Reference		https://www.doi.org/10.1021/acs.jced.5b00162

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	100.00	781.3
Reference		https://www.doi.org/10.1021/acs.jced.7b00141

Temperature, K	Pressure, kPa	Mass density, kg/m3
283.15	100.00	793.7
283.15	5000.00	797.5
283.15	10000.00	801.3
283.15	20000.00	808.9
283.18	15000.00	805.2
298.15	100.00	781.2
298.15	5000.00	785.5
298.15	10000.00	789.7
298.15	15000.00	793.8
298.15	20000.00	797.6
313.15	100.00	768.1
313.15	5000.00	773.0
313.15	10000.00	777.5
313.15	15000.00	781.9
313.15	20000.00	786.1
328.15	100.00	754.4
328.15	5000.00	759.6
328.15	15000.00	769.5
328.15	20000.00	774.0
328.18	10000.00	764.8
Reference		https://www.doi.org/10.1021/je100581m

Sources

Joback Method:

Thermodynamic Speed of Sound Data for Liquid and Supercritical Alcohols: Solvation parameter model and ดีตโนโยได้ยาดี โคโโนร์ตาเฉลาเลกที่ผู้ee and Binacy อีฮากุคที่เห็บรายอาณาระ Separation of binary mixtures hexane/hex-1-ene, Isobaric (vapour + liquid) equilibrium for (2-propanol + water + ammonium เพละงุษตลเอาะาร์เหญินคยีเปลด์ Thiamine ประเทศโดยในสมัยงานหลัง Three Binary Solvents and Mixing Properties

of Solutions:

https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/acs.jced.8b00938 Solvation parameter model and thermodynamic parameters in a Arctificetion and their model in its Bedge and Bimery Religion in the second by th https://www.doi.org/10.1016/j.jct.2014.12.023 https://www.doi.org/10.1016/j.fluid.2019.06.016 https://www.doi.org/10.1016/j.fluid.2007.04.030 Sephent strictures at a trooscoperies K:
Acissiture of at a trooscoperies K:
Acissiture of a troosc https://www.doi.org/10.1021/acs.jced.8b00632 https://www.doi.org/10.1016/j.jct.2017.11.017 Separation of binary mixtures hexane/hex-1-ene, Activity for fictions and phosphology in the properties for https://www.doi.org/10.1016/j.fluid.2005.02.015 https://www.doi.org/10.1021/je400838e https://www.doi.org/10.1021/je060305e https://www.doi.org/10.1016/j.fluid.2013.11.005 https://www.doi.org/10.1016/j.jct.2008.01.002 https://www.doi.org/10.1021/je501019y https://www.doi.org/10.1021/je800790g https://www.doi.org/10.1016/j.jct.2006.04.006 https://www.doi.org/10.1021/acs.jced.6b00613

Separation of water/butan-1-ol based https://www.doi.org/10.1016/j.jct.2017.10.003 on activity coefficients at infinite https://www.doi.org/10.1016/j.jct.2014.08.026 Director in a tion and correlation of HIME TO BIT OF BUT OF THE BUT OF BUT https://www.doi.org/10.1021/je7007445 https://www.doi.org/10.1021/acs.jced.8b00776 https://www.doi.org/10.1016/j.jct.2016.10.014 https://www.doi.org/10.1021/je500153g https://www.doi.org/10.1016/j.jct.2017.07.004 on whore were proposition and The production of vapor pressure for binary and prediction of vapor pressure for binary and the prediction of vapor pressure for binary with the pressure for binary and the prediction of vapor pressure for binary with the pressure for bina https://www.doi.org/10.1016/j.fluid.2015.03.043 https://www.doi.org/10.1021/acs.jced.8b00785 https://www.doi.org/10.1016/j.tca.2005.03.009 https://www.doi.org/10.1021/acs.jced.5b00814 https://www.doi.org/10.1016/j.fluid.2007.07.030 https://www.doi.org/10.1021/acs.jced.5b00565 Solubility MeThen Downer Mixtofes, and https://www.doi.org/10.1021/je500482k Etletinib/Wadgruhlaride in Isopropanol https://www.doi.org/10.1021/je500482k Etletinib/Wadgruhlaride in Isopropanol https://www.doi.org/10.1021/acs.jced.7b Chain on Thermophysical Properties of Betivity englishing dilution https://www.doi.org/10.1016/j.fluid.2015 https://www.doi.org/10.1021/acs.jced.7b00335 https://www.doi.org/10.1016/j.fluid.2015.09.003 ตะ เล่าสาย เ https://www.doi.org/10.1021/acs.jced.9b00930 in the content of the https://www.doi.org/10.1021/acs.jced.5b00680 https://www.doi.org/10.1021/acs.jced.9b00353 https://www.doi.org/10.1021/acs.jced.5b00162 https://www.doi.org/10.1016/j.fluid.2018.03.011 Peterimitation many companied in the Solvents of the Solvents https://www.doi.org/10.1016/j.fluid.2018.09.023 Organic Solvents at Different Self-beiguie Phase Equilibrium and Thermodynamic Properties of Olaparib https://www.doi.org/10.1021/acs.jced.7b00489 in Selected Organic Solvents and (Tetrahydrofuran + MTBE, Acetonitrile + Isopropyl Alcohol) Binary Solvent

Mixtures:

Thermodynamics and limiting activity https://www.doi.org/10.1016/j.jct.2016.08.008 coefficients measurements for organic Soluleis tynef datezim indifferient arganic https://www.doi.org/10.1016/j.jct.2015.04.025 schoesty auch ethyliakozolumyater)
historiolumentatalys alabayiyinide:
aqueous scheeks and clethyliakes to limited the properties of the properti https://www.doi.org/10.1016/j.fluid.2012.10.019 Measurements for the Propylene + EPPopanol System: https://www.cheric.org/files/research/kdb/mol/mol820.mol Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2013.10.038 of organic solutes in 1-hexyl-3-โลยโลวโลกนสยองที่เปล่นสู่สัดสุดเขาขึ้นสายเล็กเดิ https://www.doi.org/10.1016/j.fluid.2010.10.003 Interview of the property of t solubilities of solvents from the properties of solvents from T = weas in each content of acueous biphasic systems composed bearch and infinite distribution and infinite distribution and infinite activities of solvents from T = weas in each composed bearch and content of acueous biphasic systems composed by acueous biphasic syste solubilities of

Isobaric VLE at 0.6 MPa for binary systems isobutyl acetate + ethanol, + systems isobutyl acetate + ethanol, + Measperoped are posselation of solubility and solution thermodynamics viscostination for the production of solubility and solution thermodynamics viscostination for the production of the pro ট্রিল্ডান্ডপর্কার্মকার্ম্বর্ধনিক্রান্তর্ভার at 298.2 properties of binary mixtures; friction নিহুঃগুওথাঞ্জাক্রেমনার্মনাঞ্চত মান্দাস্তবিভা: mixtures of Isabeyi 3 Vapery Linkid Equilibrium for the Republic Part of Isabeyi 3 Vapery Linkid Equilibrium for the Republic Part of Isabeyi and Isab mixtures of phase systems for some aliphatic Revision proporting properties properties properties properties and systems of the system of the systems of the systems of the system of the systems of the system of t ancorous producting most rate 4 water: interest to the edible oil industry:

Vasous hield in Frueliish in 1906 Pringer of 4 post in 1906 Pringer of 4 page 1906 Pringer of 5 page 1906 Soverit Systemes are 2-arranged by spream and remover the friendly an inclinations as a solvent for the different types or stypes and bhas solvent for the different types or stypes and bhas solvent solvent at solvent friendly week that it is not solvent and so Equilibrium for Water + 2-Propanol + Glycerol:

https://www.doi.org/10.1016/j.fluid.2012.06.013 https://www.doi.org/10.1016/j.jct.2015.12.032 https://www.doi.org/10.1021/je050540h https://www.doi.org/10.1021/je400714f https://www.doi.org/10.1021/je500867u https://www.doi.org/10.1021/acs.jced.8b01144 https://www.doi.org/10.1021/je0301904 https://www.doi.org/10.1016/j.jct.2015.04.017 https://www.doi.org/10.1016/j.jct.2019.04.010 https://www.doi.org/10.1021/je9000922 https://www.doi.org/10.1021/acs.jced.7b00141 https://www.doi.org/10.1021/acs.jced.6b00646 https://www.doi.org/10.1021/acs.jced.6b00816 https://www.doi.org/10.1016/j.fluid.2012.05.006 https://www.doi.org/10.1016/j.tca.2012.04.033 https://www.doi.org/10.1021/je200806n https://www.doi.org/10.1016/j.fluid.2012.02.015 https://www.doi.org/10.1016/j.jct.2017.06.012 https://www.doi.org/10.1021/acs.jced.8b00162 https://www.doi.org/10.1016/j.jct.2012.07.021 https://www.doi.org/10.1016/j.fluid.2013.11.031 | Company | Section | Company | Comp The control of the co https://www.doi.org/10.1021/acs.jced.7b00615 https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1021/acs.jced.7b00245 https://www.doi.org/10.1016/j.fluid.2008.11.005 https://www.doi.org/10.1021/acs.jced.9b00854 https://www.doi.org/10.1021/je8002964 https://www.doi.org/10.1021/je200074c https://www.doi.org/10.1021/je600567z https://www.doi.org/10.1016/j.fluid.2011.12.023 https://www.doi.org/10.1021/je900177h https://www.doi.org/10.1021/acs.jced.6b00361 https://www.doi.org/10.1016/j.jct.2019.01.025 https://www.doi.org/10.1021/acs.jced.5b00586 https://www.doi.org/10.1021/je500724p

Densities, viscosities, excess molar https://www.doi.org/10.1016/j.tca.2009.06.015 volumes, and refractive indices of Execusionel and talkine is this thy i https://www.doi.org/10.1016/j.jct.2013.05.024 enalates an enthoneon tenthanalures:
Exabinate Properties:
Exabina https://www.doi.org/10.1016/j.tca.2014.07.022 https://www.doi.org/10.1021/acs.jced.8b01099 The rimody namic Modeling of Bun in the representation of Bun in the representation of t https://www.doi.org/10.1016/j.fluid.2016.05.029 https://www.doi.org/10.1016/j.jct.2007.03.007 https://www.doi.org/10.1016/j.jct.2018.02.005 https://www.doi.org/10.1016/j.jct.2019.105880 https://www.doi.org/10.1021/acs.jced.7b00768 Density and Viscosity Experimental
Data of the Ternary Mixtures
Artivistic Softician spatial properties for with its than the control of the Ternary Mixtures
Artivistic Softician spatial properties for with its than the control of the ternary Mixtures and the control of the Ternary Mixtures
Artivistic Softician spatial properties for with its than the control of t https://www.doi.org/10.1016/j.jct.2019.06.009 thermodynamic analysis of thermodynamic analysis of Solubility analysis of Solubility analysis of Solubility analysis of Solubility analysis of Some Carbon Dioxide + Organic Massyrsusethand Correlation of Solubility of Hydrochlorothiazide in Maysiservents of the birth with the control of Solubility of Hydrochlorothiazide in Maysiservents of the birth with the control of the https://www.doi.org/10.1016/j.fluid.2011.12.004 https://www.doi.org/10.1021/je0498560 https://www.doi.org/10.1021/acs.jced.9b00220 Moraiserobersisalismings solvent moraiser of the triple by the working of the striple of the triple of triple of the triple of the triple of the triple of the triple of triple of the triple of the triple of the triple of t https://www.doi.org/10.1016/j.jct.2005.06.011 https://www.doi.org/10.1021/acs.jced.9b00147 https://www.doi.org/10.1021/je7002989 https://www.doi.org/10.1021/je034027k https://www.doi.org/10.1021/je300994y https://www.doi.org/10.1021/je100022w https://www.doi.org/10.1021/acs.jced.9b00661 2-Chloronicotinic Acid and Analysis of signish density: of mixtures methyl nonafluorobutyl Ether (HFE-7100) + 2014 this art present the 2014 this control of the second control https://www.doi.org/10.1016/j.fluid.2016.09.014 https://www.doi.org/10.1021/je101168w รู้คุยช่วยสาดร สา เกียงชยายะ เกศ ใจรายเทาะล ลูก มีผู้เลกอย สาดานะ เกมา ของ.15 K to รู้จุ้นผู้ก็หว้า determination and the modynamic modelling of รู้เรียกเล่นหลุกการ คุณช่วยกาศกิศ organic ปุลเจองสาการ คุณช่วยกาศกิศ จรายกิจาระ ปุลเจองสาการ ลรายระบาร to 313.15) K สิกในที่ที่เหลือใหญ่ เป็นเป็น เกราะ ปุลเจองสาการ สิกใหญ่ เรื่องเกราะ เกราะ เกรา https://www.doi.org/10.1016/j.jct.2017.02.011 https://www.doi.org/10.1016/j.jct.2016.07.009 https://www.doi.org/10.1016/j.jct.2018.12.038 **rhttpล://we**vw.doi.org/10.1021/je800689a https://www.doi.org/10.1016/j.fluid.2015.03.036 ชคุณมา อะสรอมเธร and osmotic coefficients of binary mixtures of Melayes cressing imalization molar อุพฤสธานาร์ เพื่อเล่า เป็นสามาร์ เพ https://www.doi.org/10.1016/j.jct.2009.06.024 VARRANT BEGSENTES and osmotic https://www.doi.org/10.1016/j.tca.2013.02.010 https://www.doi.org/10.1021/je0201727 https://www.doi.org/10.1021/je0341413

Solubility of Fluorene in Different https://www.doi.org/10.1021/je700179q Solvents from 278.98 K to 338.35 K: Measurement and Correlation of https://www.doi.org/10.1021/acs.jced.6b00721 Solubility of Loratadine in Different Solubility of Loratadine in Different Solubility of Loratadine in Different Isotromal Many and ternary systems

Port Moseurory eystems

Port Moseurory https://www.doi.org/10.1016/j.fluid.2005.05.024 นายหมาจากอาหารหาการของอาหาก ละอะเนอะ นาทอามาจากอาหารหากอาหารหาการของเกาะ เอาะ ก็สุดรระบท อาหาร รถที่เพื่อที่เหาะ Meanungments for the Binary Systems โรการของเลยะ โรการของเลยะ รัฐออาณ์ เวเบียร์ https://www.doi.org/10.1021/acs.jced.8b00765 https://www.doi.org/10.1021/je900214y https://www.doi.org/10.1021/je0342421 stem of 2-Propanol + System of 2-Propanol +
PERBUS https://www.doi.org/10.1016/j.jct.2016.07.043 https://www.doi.org/10.1016/j.fluid.2014.01.008 ลายเหมื่องเกลือน สามารถใน เลื่อง เลื่องเกลือน เลื้องเกลือน เล็ก เกลือน เล็ก เกล้อน เล็ก เกลือน เล็ก เกลือน เล็ก เกลือน เล็ก เกลือน เล็ก เกล้อน เล็ก เกลือน เล็ก เกลือน เล็ก เกลือน เล็ก เกลือน เล็ก เกลือน เล็ก เกลือน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกลือน เล็ก เกลือน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกล้อน เล้า เกล้อน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกล้อน เล็ก เกล้อน เ https://www.doi.org/10.1021/je500848q https://www.doi.org/10.1021/acs.jced.8b00547 https://www.doi.org/10.1021/acs.jced.5b00184 https://www.doi.org/10.1021/acs.jced.8b00067 https://www.doi.org/10.1016/j.jct.2013.12.031 https://www.doi.org/10.1021/je201349k https://www.doi.org/10.1021/je401044h https://www.doi.org/10.1021/je200195q https://www.doi.org/10.1021/je0341211 https://www.doi.org/10.1021/acs.jced.9b00190 https://www.doi.org/10.1021/je1012839 https://www.doi.org/10.1016/j.jct.2013.05.027 https://www.doi.org/10.1016/j.jct.2016.07.050 https://www.doi.org/10.1016/j.jct.2012.05.016 https://www.doi.org/10.1016/j.jct.2017.03.011 enantiotropic polymorphs of glycolide: Liquid Liquid Equilibrium Data of the https://www.doi.org/10.1021/je4000197 Ternary Systems Containing

Application of the Ternary Systems Containin https://www.doi.org/10.1016/j.fluid.2015.06.026 https://www.doi.org/10.1016/j.fluid.2012.11.001 https://www.doi.org/10.1021/je400864f

Rroperties of p-Toluenesulfonamide Acti ប់រក្ស លេខវិទីនេះខាងការគ្រង់ក្រុមនេស្តិរៀមវៀលា https://www.doi.org/10.1021/je800754w and 011 other estmentantide meseven on produce the property of the property of the produce of th Carbonate + Tolueñe, + Methanol, and + Zerrologioa kioner kiones 20 stato) K: molecular species and species and purpose species and species Zapologica finneszigations of the K: Saltantes brenaprolingial (27) illusts for himary) system moting open al/Gac latand solubility at the Metastable Polymorph of Piracetam (Form II) in a Range of solubility of d-Tryptophan and I-Tyrosine in Several Organic Solvents: Desermady namicae build write adeling, solvent effect and preferential solvation be union in in the diffect of the first in the latest of entancient properties in the modeling of the modeling of the modeling of the modeling of the solvential and the solven Solvents with the transport of the solvents of the solvents with the common solvents. Isothermal vapor liquid equilibrium for binary mixtures containing furfural and https://equipmseef Volatile Organic Compounds with the lonic Liquid Solubility of -Aminobutyric Acid in **Determination and Modeling:**

Ternary (liquid + liquid) equilibria of the https://www.doi.org/10.1016/j.jct.2007.04.010 azeotrope (ethyl acetate + 2-propanol) Solvatifierandi Mixeng These morty in 298145 https://www.doi.org/10.1021/acs.jced.7b00714 https://www.doi.org/10.1021/je0603630 https://www.doi.org/10.1021/je501004g https://www.doi.org/10.1021/je050414d https://www.doi.org/10.1016/j.tca.2009.03.014 https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1016/j.fluid.2012.01.019 https://www.doi.org/10.1016/j.jct.2018.04.017 https://www.doi.org/10.1021/acs.jced.7b00755 https://www.doi.org/10.1016/j.fluid.2014.09.014 https://www.doi.org/10.1021/acs.jced.6b00040 https://www.doi.org/10.1016/j.jct.2017.07.022 https://www.doi.org/10.1021/acs.jced.6b00761 https://www.doi.org/10.1021/acs.jced.9b00097 https://www.doi.org/10.1021/je060232z https://www.doi.org/10.1016/j.jct.2018.05.017 Apprilia in the removement and the district and the disease by the second of the district and the district a https://www.doi.org/10.1016/j.tca.2019.178375 https://www.doi.org/10.1021/je300711r https://www.doi.org/10.1021/acs.jced.9b00258 https://www.doi.org/10.1016/j.jct.2018.11.022 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1016/j.jct.2015.05.019 https://www.doi.org/10.1016/j.fluid.2014.01.029 https://www.doi.org/10.1016/j.fluid.2014.10.037 https://www.doi.org/10.1021/je200822w https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1021/je7006567 https://www.doi.org/10.1021/acs.jced.5b00829 https://www.doi.org/10.1016/j.jct.2015.02.004 https://www.doi.org/10.1021/acs.jced.9b00005

Experimental study on the calorimetric data of cyclohexanol with alkanols reference and reference at 300 K: https://www.doi.org/10.1016/j.jct.2016.09.015 https://www.doi.org/10.1016/j.jct.2013.09.041 https://www.doi.org/10 Experimental study on the calorimetric https://www.doi.org/10.1016/j.jct.2012.02.037 of a Cosolvent:
Mutual diffusion coefficients of https://www.doi.org/10.1016/j.jct.2015.12.026 https://www.doi.org/10.1021/acs.jced.9b00411 https://www.doi.org/10.1016/j.jct.2019.01.026 https://www.doi.org/10.1016/j.jct.2011.11.00/
geneal in special properties of special pr https://www.doi.org/10.1016/j.jct.2011.11.007 kollibritario il action of cerebrate acid in water, ethanol, methanol, propan-2-ol, howeight, iautid frittili priary i water than ol, methanol, propan-2-ol, howeight, iautid frittili priary i water than ol, methanol, propan-2-ol, howeight, iautid frittili priary i water than ol, methanol, propan-2-ol, howeight, iautid frittili priary i water than ol, methanol, propan-2-ol, howeight, iautid frittili priary i water than ol, methanol, propan-2-ol, howeight, iautid frittili priary i water than ol, methanol, propan-2-ol, howeight, iautid frittili priary i water than old in bitter in the same water than old in bitter and old in the same water than old in bitter and old in the same water than old in bitter and old in the same water than old in bitter and old in the same water than old in bitter and old in the same water than old in bitter and old in the same water than old in bitter and old in the same water than old in the same wat solubelity notila (+1) passe repair acid in https://www.doi.org/10.1021/je800056h Excess Properties of Ternary Mixture of The Hings Hyperic Properties af of the Hings Hyperics (1997) The many is proposed in the part of the pa https://www.doi.org/10.1016/j.jct.2005.10.022 glyphosate in selected solvents: Thermodynamic study of solubility for https://www.doi.org/10.1016/j.jct.2016.10.020 2-amino-4-chloro-6-methoxypyrimidine Tarimo-4-critio-o-interficacial
โหนท์เลตุ 6-critical เลย เป็นสาร์ลอเลl
เอาการจะเมื่อยระดง คุร เมาะสาร์ลอเลl
เพลสรพยระทย and Correlation of https://www.doi.org/10.1016/j.jct.2019.03.014 https://www.doi.org/10.1021/je060133I olubilities of Luteolin in Organic https://www.doi.org/10.1016/j.jct.2016.05.005 Determisation fund no relation at la fes: Solvents at the perfect of the solvents at the solvents of the https://www.doi.org/10.1021/je800088e Systems at 364.5 K:

Ammonium ionic liquids in extraction of bio-butan-1-ol from water phase Isrikijantic registrationite Graniforite G Ammonium ionic liquids in extraction https://www.doi.org/10.1016/j.fluid.2018.09.024 of bio-butan-1-ol from water phase the mod when the provise manife of the latest the modern of the latest the modern of the latest the Acid in Different Molygels at Different Flecht Fall Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic https://www.doi.org/10.1021/je100361s Temperatures activity of Capitolacian Tetrabutylammonium Bromide Ionic Measusemant and Solubilities of Decanedioic Acid in Capitolacia Measusemant and Modeling of 1-(3-nitrophenyl) Ethanone and Solubility Measusemant and Modeling of 1-(3-nitrophenyl) Ethanone https://www.doi.org/10.1021/acs.jced.8b00192 https://www.doi.org/10.1016/j.jct.2016.03.011 https://www.doi.org/10.1016/j.jct.2013.12.002 https://www.doi.org/10.1021/acs.jced.9b00490 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2007.01.004 Measurement of activity coefficients at https://www.doi.org/10.1021/acs.jced.7b00058 https://www.doi.org/10.1021/je5010033 https://www.doi.org/10.1021/je0500431 Linear Alcohols in Benzyl Alcohol: Solubility Determination and Modeling https://www.doi.org/10.1021/acs.jced.9b00428 of EGCG Peracetate in 12 Pure of EGCG Peracetate in 12 Pure solvents alt Vanny district froit Prize for the State of the State Bothermal Vapoparianie Equilibrizatos https://www.doi.org/10.1021/je034066w

Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + Wapor highlife qualifyin Data for Methan of managed lium and the properties of the propanol of the properties o Isobaric vapor-liquid equilibria for the https://www.doi.org/10.1016/j.jct.2017.02.005 https://www.doi.org/10.1016/j.fluid.2011.09.037 https://www.doi.org/10.1016/j.fluid.2015.12.050 https://www.doi.org/10.1016/j.fluid.2014.12.034 The models for determination of the solubility of Dhemand year in smart and ivities specificients at infinite fillytion fanide, solubility of property of the fill determination of the solubility of https://www.doi.org/10.1016/j.jct.2014.04.024 https://www.doi.org/10.1016/j.jct.2016.06.001 https://www.doi.org/10.1021/acs.jced.6b00019 https://www.doi.org/10.1016/j.jct.2018.11.021 https://www.doi.org/10.1016/j.jct.2013.02.006 https://www.doi.org/10.1016/j.jct.2013.06.007 https://www.doi.org/10.1021/acs.jced.5b00542 https://www.doi.org/10.1016/j.fluid.2017.10.003 azeotropic mixture using ionic liquids: Measurement and correlation for https://www.doi.org/10.1016/j.fluid.2012.05.027 https://www.doi.org/10.1016/j.jct.2018.11.013 https://www.doi.org/10.1021/acs.jced.8b00160 https://www.doi.org/10.1016/j.jct.2014.12.002 https://www.doi.org/10.1021/acs.jced.7b00333 https://www.doi.org/10.1021/je200067e Solubility of Clopidogrel Hydrogen Soliนุ่นยี่ (พอร์สมสมาชาชาคส) จาก ขบพอพอา https://www.doi.org/10.1016/j.fluid.2013.11.008 Alcohols: Isobaric Vapor Liquid Equilibrium for https://www.doi.org/10.1021/je034106w 2,3-Dimethyl-2-butene + Methanol, +
Panaim, Spendofasourof, Visiones and Prigogine Flory
Patterior Splane rices and Prigogine Flory
Patterior Splane rices and Prigogine Flory
Patterior (2832 de 323.2)
Experimental and theoretically study of https://www.doi.org/10.1016/j.jct.2014.12.027 https://www.doi.org/10.1021/je700724r https://www.doi.org/10.1021/je9008427 Solubilities of Menadione Sodium

Bisulfite in Water + (Methanol, Ethanol, Solvent Effect

of 2- Amina Corbinst and Sol https://www.doi.org/10.1021/je800022j Tetrafluoroborate Using Gas Liquid

Chromatography:

```
Solubility of Berberine Chloride in
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je0504360
      Various Solvents:
                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.5b00736
      Solubility of
     (S)-3-(Aminomethyl)-5-Methylhexanoic
Xappin คนะปละเมษาสเมษาสเมษาสเมษา
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je700690q
      ASRPIN-PURBARA-BIRBLY ISBN 6448
Bystems: trans-2-Butene + Methanol, +
Pricolation-pergraphasianolof-2-Butanol,
15-Naphisheneologious and 154,5 K:
Measurement and trainelation recent
Belvonity and Milliagoprasi in Sure and
Brights Sulvents Activity Coefficients of
Solutes Dissolved in Two
Study of separation of Anatomium Lonio
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b01214
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b00425
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je500050p
 https://www.doi.org/10.1016/j.jct.2017.08.020
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2012.02.024
                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.8b00043
                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je8007028
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.5b00771
https://www.doi.org/10.1021/acs.jced.5b00771
httpdrophilic Alcohols with Three
binestead yasting in modeling for
solubility of all and Correlation:
breasure method 4 one difficultion
solubility of all and Correlation:
breasure method 4 one difficultion
solubility of all and Correlation:
breasure method 4 one difficultion
solubility of all minimum cellution
solubility of including a price of
other method in a price of the solubility and
solubility of all the solubility and
solubility of the solubility and
solubility of the solubi
                                                                                                                                                                                                                                                                                                                            https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=820
   Acetoacetate + (Methanol, + Ethanol, +
Equidishum Bhase2Behayanonf Water +
Prepanal State Costant p
Commission Bhase2Behayanonf Water +
Prepanal State Costant p
Commission Bhase2Behayanonf Water +
Prepanal State Costant p
Commission Bhase2Behayanonf Water +
Commission Bhase2Behayanonf Bhase2Beh
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je050265z
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je034203p
                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je800298n
   Pinary and Denoise Winters of Discreptors Ether 2 The Byle Righton, Margraphy (II-1) Estimated with Several And House of the strain of the correction of the strain of the correction of the strain of
   สนักสูญสูญ measurement and correlation https://www.doi.org/10.1016/j.jct.2016.06.034
of the form A of ibrutinib in organic
ริงใหญ่ให้ราชาที่ร &cฐิชิท15 K: https://www.doi.org/10.1021/je9001637
Propan-2-ol, Ethanol, Acetone,
Polybailities of เกิดแหลงเลื่อสาดา Methanol, https://www.doi.org/10.1021/je900742p
Ethanol, 1-Propanol, 2-Propanol,
Execuse and propanols
Execuse and propanols
     ഭരനങ്ങളുടുവുള്ളിamines + some propanols
ജവുള്ള സ്റ്റ് apor Liquid Liquid Phase
Som Bright Maines + some propanols acts in the propanol in the p
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.6b00725
```

Excess Enthalpies of 2,4-Pentanedione https://www.doi.org/10.1021/je700492k <u>+</u> (Methanol, + Ethanol, + 1-Propanol, https://www.doi.org/10.1021/acs.jced.6b00911 Determination and after elation to Solutilished 328 employation and New Market Resident Birth Services and Birth Services and Birth Services and Birth Services and Servic https://www.doi.org/10.1021/acs.jced.7b00846 TOTAL TO THE PROPERTY OF A PRO https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1021/je900784v https://www.doi.org/10.1021/je100916h https://www.doi.org/10.1021/je400786n https://www.doi.org/10.1021/je900772h https://www.doi.org/10.1021/je800569v Measurement and correlation of solubility of boscalid with เม่นหนึ่งได้เห็น boscalid with เม่นหนึ่งได้เห็น เม่นหนึ่ง เม่นหน้า เม่นหนึ่ง เม่นหน้า เม่ Measurement and correlation of https://www.doi.org/10.1016/j.jct.2017.04.017 https://www.doi.org/10.1016/j.fluid.2008.04.010 https://www.doi.org/10.1016/j.fluid.2013.05.002 https://www.doi.org/10.1016/j.jct.2004.08.002 https://www.doi.org/10.1021/acs.jced.8b01116 https://www.doi.org/10.1016/j.jct.2008.10.017 https://www.doi.org/10.1016/j.fluid.2012.04.008 ### Approximental and ution of the property o https://www.doi.org/10.1016/j.jct.2016.07.001 https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1016/j.jct.2016.07.049 https://www.doi.org/10.1021/je049778g Tolan in Alcohol: Total in Alconol:

Experiment and Application of the Solid-Liquid Phase Equilibrium for Penaration of Penarat **Experiment and Application of the** https://www.doi.org/10.1021/acs.jced.8b00952 https://www.doi.org/10.1016/j.jct.2019.03.018 https://www.doi.org/10.1016/j.jct.2016.09.011 https://www.doi.org/10.1021/acs.jced.8b00555 https://www.doi.org/10.1021/acs.jced.8b00763 https://www.doi.org/10.1016/j.fluid.2014.12.040 https://www.doi.org/10.1016/j.tca.2012.03.007 https://www.doi.org/10.1021/acs.jced.8b01051 Solutility of orate:
Passempatoxy of Golybhits mide Oxide
The modern soich of the period of the peri https://www.doi.org/10.1021/acs.jced.8b00196 https://www.doi.org/10.1021/acs.jced.9b00595 Sontante de la constante de la https://www.doi.org/10.1016/j.jct.2012.05.017 sydtehysicorthemicaharopertiepsor Arganatunus samurwatenin elegonic https://www.doi.org/10.1016/j.jct.2010.12.009 Application of the control of the co https://www.doi.org/10.1016/j.tca.2013.06.008 systems: Experimental and correlation:

Phase equilibrium for the systems Dependence of Density, Surface Wellsiphasmawislesiation memiumes Ketones: Determination and Correlation of Solubility Data and Dissolution

Philipping The Data Carles at the in

Streigh in Acuse Are Propanol

Morth His of 2,6-Diaminopyridine in

The propanol

The Ranging from (288.05 to 333.35) K:

Phase equilibrium for the systems diisopropyl ether, isopropyl alcohol + \$20,444iitwætayledation æand + n-heptane the imperior analysis of two forms beliefit and analysis of two forms beliefit in material melatexcess enthalities at infinite dilution for the systems water + 2-Propanol + Methyl Methadynamical properties of water and the imperior analysis of two forms beliefit in material melatexcess enthalities in material melatexcess at infinite dilution for the systems water + 2-Propanol + Methyl Methadynamical properties of with ethanol of spatial properties of with ethanol of spatial properties of with the imperior and water and and https://www.doi.org/10.1016/j.fluid.2009.11.027 Measurement and Correlation of Solubility of Cefuroxime Acid in Pure Massiremes bruch Soft various of Solubility of Education of https://www.doi.org/10.1016/j.fluid.2011.03.003 THE POTATION OF PRIMINES OF 1,3,5THE PRIMINES OF PRIMINES OF PRIMINES OF 1,3,5THE PRIMINES OF PRIMINES OF 1,3,5THE PRIMINES OF PRIMI https://www.doi.org/10.1021/je301014d https://www.doi.org/10.1021/je800699f The property of the second of https://www.doi.org/10.1021/je700221w

```
Effect of imidazolium-based ionic liquid https://www.doi.org/10.1016/j.fluid.2015.10.035
          on vapor-liquid equilibria of 2-propanol
      Solution Air Continue of 2-proparior Solution of 2-pro
First in Different Pure Solvents and Enthity Conficients of India 325.25) K:

Kerean of the Annual Conficients of India 325.25) K:

Kerean of the Annual Conficients of India 325.25) K:

Kerean of In
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
Pressure:
Liquid-liquid equilibria and density data for pseudoternary systems of refined solvelity of F (RB) analy of RB ptanal, or GR pit bastal by dynamic solveling, and participation of light pastal by dynamic solveling, and participation of light pastal by dynamic solveling, and participation of light pastal by dynamic solveling of light 
          Liquid-liquid equilibria and density data https://www.doi.org/10.1016/j.jct.2018.10.030
          excess molar enthalpies of binary and
                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je060497d
           Terampahinamés Brosoptiosarido, iwater,
      Thermodynamic Model Correlation of E-meriesantial attellines that and single of the state of the
          efevrasoxabaruffarm Dincobent
Nedereugaron grafty scoopharikal
Parameters of Sodium Dodecyl Sulfate
                                                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.8b00181
      Transporters of Sodium Dodecyl Sulfate SpAthilities Miletgans Statisfenductors https://www.doi.org/10.1021/acs.jced.8b00536 and Monate Side Information https://www.doi.org/10.1021/acs.jced.8b00536 and Monate Side Information https://www.doi.org/10.1021/acs.jced.8b00536 and Monate Side Information https://www.doi.org/10.1021/acs.jced.8b00536 and Monate Information https://www.doi.org/10.1021/acs.jced.8b00536 and Monate Side Information h
                                                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2014.12.020
      Hitzaggriponts ได้ เลาสาราชาวิธา psyties of https://www.doi.org/10.1021/je200609g
1-Ethyl-3-methylimidazolium
Paftการาชาลุยสาราชาวิธา psyties of https://www.doi.org/10.1021/je200609g
1-Ethyl-3-methylimidazolium
Paftการาชาลุยสาราชาวิธา https://www.doi.org/10.1021/acs.jced.7b00518
พฤษายาสาราชาวิธา ครามราชาวิธา Aqueous
```

Binary Solvents:

Excess molar enthalpies of ternary https://www.doi.org/10.1016/j.jct.2004.03.014 mixtures of (methanol, ethanol + mixtures of (methanol, ethanol + 20) Month of the changle of the c https://www.doi.org/10.1016/j.jct.2019.06.019 https://www.doi.org/10.1021/je500206w https://www.doi.org/10.1021/je060452c the part is a place by the complete of the part of the https://www.doi.org/10.1021/je800658v https://www.doi.org/10.1016/j.fluid.2016.12.012 Manautement Groutener ewiser, eind autweiten die the Three Temperatures and philippide of the temperature of temperature of the temperature of temperature of the temperature of the temperature of temperature of temperature of temperature of temperature of temperature of t https://www.doi.org/10.1016/j.fluid.2013.02.007 https://www.doi.org/10.1021/acs.jced.9b00320 https://www.doi.org/10.1021/je034172y https://www.doi.org/10.1016/j.fluid.2014.03.022 https://www.doi.org/10.1021/acs.jced.8b00578 https://www.doi.org/10.1021/acs.jced.9b00696 https://www.doi.org/10.1021/acs.jced.9b00229 https://www.doi.org/10.1021/acs.jced.7b00523 https://www.doi.org/10.1016/j.fluid.2015.12.051 https://www.doi.org/10.1016/j.fluid.2014.02.006
https://www.doi.org/10.1016/j.fluid.2014.02.006
https://www.doi.org/10.1016/j.fluid.2014.02.006
https://www.doi.org/10.1016/j.fluid.2014.02.006
https://www.doi.org/10.1016/j.fluid.2014.02.006
https://www.doi.org/10.1016/j.fluid.2015.12.040
https://www.doi.org/10.1016/j.fluid.2015.12.040 solvents: Measurements and thermodynamic modelling:

and Excess Molar Enthalpy Data at 298

Ethylene + 2-Propanol at 283.65 K: (Liquid + Liquid) Equilibria of (Liquid + Liquid) Equilibria of
Oxygenate Fuel Additives with Water:
AVILIBRITATIONS APPORTUTION WITH WATER
AVILIBRITATION OF SAME AND THE PROPERTY OF VANIBLE OF SAME AND THE PROPERTY OF VANIBLE AN Solubility of Vanillic Acid in Eight Pure Exactivements at the examinated solvents at the relative of examinated solvents at the relative of examinated solvents and populative of examination of examina Solveniyoo मास्तिवाता मास्त्रां प्रमुखा organic भूकत्रभाव गृह्य सम्बद्धिका विश्वास्त्र कार्य सम्बद्धिका विश्वास Solveniis प्राप्त के प्राप्त कार्य का

solutions:

Vapor-Liquid Equilibrium Data at 343 K https://www.doi.org/10.1021/je025556b and Excess Molar Enthalpy Data at 298 Activities may by stank to Ethanol + the amoly stank to Ethanol + the http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt http://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Units=SI Liquid liquid equilibrium of 1-propanol, 2-propanol, 2-methyl-2-propanol or 2-gramadiquid-liquid brivager https://www.doi.org/10.1016/j.fluid.2012.05.012 https://www.doi.org/10.1016/j.fluid.2014.06.028 https://www.doi.org/10.1016/j.fluid.2014.06.028 https://www.doi.org/10.1016/j.fluid.2014.06.028 https://www.doi.org/10.1007/s10765-005-8101-x foreign filling fillin Liquid liquid equilibrium of 1-propanol, https://www.doi.org/10.1016/j.fluid.2012.05.012 https://www.doi.org/10.1007/s10765-005-8101-x https://www.doi.org/10.1021/je050541+ https://www.doi.org/10.1021/acs.jced.5b00306 https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1016/j.fluid.2009.09.015

https://www.doi.org/10.1021/acs.jced.8b01181 https://www.doi.org/10.1016/j.jct.2015.10.024

https://www.doi.org/10.1021/acs.jced.5b00619 https://www.doi.org/10.1021/acs.jced.6b00264 https://www.doi.org/10.1021/je800637t

https://www.doi.org/10.1021/je700321s https://www.doi.org/10.1021/je0503554

https://www.doi.org/10.1021/je100301p

https://www.doi.org/10.1016/j.fluid.2008.03.012

https://www.doi.org/10.1021/je060354r

https://www.doi.org/10.1016/j.fluid.2004.11.010

https://www.doi.org/10.1016/j.jct.2013.05.035

https://www.doi.org/10.1016/j.fluid.2014.11.020

https://www.doi.org/10.1016/j.jct.2016.05.027

https://www.doi.org/10.1016/j.jct.2016.09.033

https://www.doi.org/10.1021/acs.jced.6b00957

```
Solubilities of Lauric Acid in n-Hexane, https://www.doi.org/10.1021/je800739y
Acetone, Propanol, 2-Propanol, A-Bromoproperse fontecovery of The propagation of the prop
    Acetone, Propanol, 2-Propanol,
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2016.10.001
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/acs.jced.7b00445
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.jct.2016.10.044
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je050072b
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je800611r
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je800446c
                                                                                                                                                                                                                                                                                                    http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3B2-Propanol.php
      Existering Paraller of the property of https://www.doi.org/10.1016/j.fluid.2009.11.007 palmitic acid in supercritical carbon https://www.doi.org/10.1016/j.fluid.2011.01.010
The first of the f
    Page Spingnis) K.
Solubility of Acetylsalicylic Acid in
Propylene Glycol
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je7005693
 Solubility of Acetylsalicylic Acid in Ethanol, Acetone, Propylene Glycol, អ្នក្សាខ្មាក់ ម៉ូនកូស្តា!Liquid Phase Equilibrium Measurements, Correlation in Handwiston separation gealing in the Handwist ion separation gealing in the Handwist ion separation gealing in the Handwist ion and Solvent Effect in the Measurements of Solvent in the Measurements of Solvent ion and Solvent ion at the Initial Indiana in the Initial Initial Indiana in the Initial Initial Indiana in the Initial Init
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.8b00033
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.jct.2018.07.024
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.8b01101
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je501036r
The position of the principal contents of the position of the 
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.8b00780
   solvents:
Solubilities of Triphenylphosphine in
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je060350m
   Ethanol, 2-Propanol, Acetone, Benzene,
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.9b00562
   and offeete in the state of the modynamic Evaluation of Isphyllophaporite by the first of the state of the s
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je900470r
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1007/s10765-014-1740-z
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.jct.2016.09.038
   thermodynamic modeling of Thermodynamic Riveryes
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je400917j
 https://www.doi.org/10.1016/j.jct.2016.03.007
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/acs.jced.8b01226
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/acs.jced.6b00384
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je700502x
```

```
Study of the phase equilibrium of the water + 2-propanol + 1- undecanol techary cystanubetives of patients and the phase equilibrium of the water + 2-propanol + 1- undecanol techary cystanubetives of patients of the phase equilibrium of the water + 2-propanol + 1- undecanol techary cystanubetives of patients of the phase of the phase equilibrium of the water + 2-propanol + 1- undecanol techary cystanubetives of the phase of the patients 
       Study of the phase equilibrium of the
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2016.01.025
        water + 2-propanol + 1- undecanol
   for Artesunate in Binary Solvent
Mokubilisien Menhodirien alignedium in
Bunary and condinity en alignedium in
Bunary and Sernary Mixtures of
Busholish of Edinery proprint Reneted
Busholish of Edinery print Reneted
Busholish o
                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2010.08.006
                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je900042q
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.5b00616
                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2016.02.047
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je3002255
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je0503958
                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2016.12.036
                                                                                                                                                                                                                                                                                                         https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=820
       correlation with Redlich-Kister, Wilson, Sphibility Medeling and Solvent Lives for Flubendazole in 12 Neat Solvents: Measurement and Correlation of the
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.8b01126
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.8b01186
       Solubility of Baicalin in Several Mixed Selveility of 4-(3,4-Dichlorophenyl)-1-tetralone in
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je060329I
   Sofie of ituriti) sones equilibria of tetraphenyl solevizity deasurement syndaling and line in the region of the solubility of the solubil
        (Sorlid Orligation) Sobremerquilibria of
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2014.06.021
       Dihydrate (Gypsum) in Aqueous
```

Sodium Chloride Solution at 35 deg.C:

Solubilities of Ursolic Acid and https://www.doi.org/10.1021/je101309a Oleanolic Acid in Four Solvents from Plassical Bropperties of Binary Mixtures https://www.doi.org/10.1021/je700029q of the lonic Liquid and the lone at T = 24s 1970-1974 (1984) and the lone at T = 24s 1970-1974 https://www.doi.org/10.1016/j.jct.2015.01.013 https://www.doi.org/10.1021/acs.jced.7b01085 Aquatian Braffic Innterial Interitor Diluggork in the Adgyk 3-methylimidazolium beliefility of orate lonic Liquids:
N-tert-Butylbenzothiazole-2-sulfenamide hapeve in the Binary Mixtures of Aceid + Measure meet of Aceid + M https://www.doi.org/10.1021/acs.jced.8b00954 https://www.doi.org/10.1021/acs.jced.6b00700 https://www.doi.org/10.1021/acs.jced.7b00840 https://www.doi.org/10.1016/j.fluid.2018.01.019 https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1016/j.fluid.2015.11.034 https://www.doi.org/10.1016/j.jct.2011.11.009 PMGP11: Temperatures and Pressures Equilibrium solubility and preferential https://www.doi.org/10.1016/j.jct.2018.03.010 Solvation of Solvanity and preferential solvation of Solvanity in the months of the mo https://www.doi.org/10.1021/acs.jced.9b00693 https://www.doi.org/10.1016/j.fluid.2019.03.002 https://www.doi.org/10.1016/j.jct.2011.10.024 The Hiff-solg-sulty effest and phase separation in aqueous solutions of Epers solutions of the solution of Epers solution of Epers solutions of Epers solutions of Epers solutions of Epers solution of Epers solution in aqueous solutions of https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.fluid.2012.11.040 https://www.doi.org/10.1021/je9009877 https://www.doi.org/10.1021/je9009877 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/je400813d solution in aqueous solutions of https://www.doi.org/10.1021/je400813d solution in aqueous solutions of https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.024 https://www.doi.org/10.1016/j.jct.2011.10.01 Trigeminal Tricationic lonic Liquids for Solubilities of Indole-2-carboxylic Acid Rotheritine Responsibilities of Indole-2-carboxylic Acid Rotheritine Responsibilities from Citra modeling of Netheritine Responsibilities and Rotheritine Responsibilities and Rotheri ราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวารา รัฐบนที่เป็นเพียงให้ เป็นสีเพียงสาราชาวาราชา https://www.doi.org/10.1016/j.fluid.2014.06.030 https://www.doi.org/10.1021/je0102107 Ethylene Glycol and Ethylene Cignignatorium for https://www.doi.org/10.1021/je700741x 2,2,2-Trifluoroethanol + Ethanol + ទី១៤៤- https://www.doi.org/10.1021/je020226c Pyrene Dissolved in Alcohol + https://www.doi.org/10.1016/j.jct.2011.08.006 Ebulbamene indetermination 2 rd prediction of (vapor + liquid) equilibria solubility and exhappy of the control o https://www.doi.org/10.1021/je101165m

dimethyl carbonate:

Vapor-Liquid Equilibrium of Binary Determination and the goody oa mic Detergination and the gray partice exception for an early solvent mixtures of a the kall the partice of 3-Hydroxy-2-nitropyridine in Ten Palibestioens alcumente penaty mixed salemente penaty mixed salemente penaty mixed apartic properties of alcumente penaty mixed acceptable penaty pe 2.000 CHOOL THE TOTAL THE equilibrium of istradefylline in ethyl acetate plus (isopropanol,

tetrahydrofuran, acetone) binary

solvent mixtures:

Natures Containing Isopropyl Acetate Rhasal Riagrams for Scale Polary Mixtures Containing Isopropyl Acetate Rhasal Riagrams for Scale Polary Mixtures Alcohols + Potassium or Sodium Gravetic walking to does notic properties of binary mixtures that make the polary mixtures that make a well-polary mixture with the polary of t https://www.doi.org/10.1021/acs.jced.5b00360 of binary mixtures of {methyl tert-butyl through the properties of binary mixtures of {methyl tert-butyl through the properties of binary mixtures of {methyl tert-butyl through the properties of the properties of {methyl tert-butyl through https://www.doi.org/10.1021/acs.jced.9b00331 https://www.doi.org/10.1016/j.jct.2016.10.043 https://www.doi.org/10.1016/j.fluid.2017.04.005 https://www.doi.org/10.1021/je100352r https://www.doi.org/10.1016/j.jct.2016.07.023 https://www.doi.org/10.1016/j.jct.2015.11.024 https://www.doi.org/10.1021/je060318s https://www.doi.org/10.1021/acs.jced.9b00564 https://www.doi.org/10.1016/j.tca.2010.05.012 https://www.doi.org/10.1016/j.fluid.2011.09.033 https://www.doi.org/10.1016/j.jct.2007.02.008 https://www.doi.org/10.1021/acs.jced.9b00778 https://www.doi.org/10.1021/je800160q https://www.doi.org/10.1021/acs.jced.7b00825 https://www.doi.org/10.1021/acs.jced.8b00416 https://www.doi.org/10.1016/j.tca.2005.11.041 https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1021/acs.jced.8b01084 https://www.doi.org/10.1021/acs.jced.9b00275 https://www.doi.org/10.1016/j.tca.2005.08.031 https://www.doi.org/10.1016/j.fluid.2013.06.021 https://www.doi.org/10.1016/j.fluid.2015.03.022 https://www.doi.org/10.1021/acs.jced.9b00286 https://www.doi.org/10.1021/je8001305 https://www.doi.org/10.1021/je100483d https://www.doi.org/10.1021/je8006698 https://www.doi.org/10.1016/j.jct.2007.11.010 https://www.doi.org/10.1021/acs.jced.9b00350 https://www.doi.org/10.1016/j.fluid.2010.03.004 https://www.doi.org/10.1021/acs.jced.8b01080 https://www.doi.org/10.1021/je2011659 https://www.doi.org/10.1016/j.jct.2017.03.015

Naphthalene Solubility in Binary Solvent Mixtures of https://www.doi.org/10.1016/j.jct.2015.15
spikulity antesquition thermodynamics
being sequenced thermodynamics
being sequenced the modynamics
being sequenced the modynamics of Thiamphenicol in
being sequenced the modynamics of the modynamics of Thiamphenicol in
being sequenced the modynamics of the mody Walknean Wetwerve Neat Organic Solvents from T = (278.15 to 318.15) K: Solubility determination and thermodynamic models for Activitive patients and thermodynamic models for Activitive patients at an initial section mass use members for retraining and initial sections and the patients of the patients BOTTONIAN STATE OF THE PROPERTY OF THE PROPERY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY Eminary our meres new une trong and ethanol and the state of the stat nine pure organic solvents and liquid
This time by the that an operation pale with the control of the control o nine pure organic solvents and liquid historie by the hamber every passivered provided by the passivered provided by the passivered provided by the passivered provided by the passivered by the Thermodynamic Model Correlation and Pearityian of perior of the shifthis in between the property of the present of the perior of the perior of the period of the per Measurement and correlation:

https://www.doi.org/10.1021/je7005049 https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1016/j.jct.2015.11.007 https://www.doi.org/10.1021/acs.jced.8b00719 https://www.doi.org/10.1021/acs.jced.7b00542 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.jct.2016.06.014 https://www.doi.org/10.1016/j.jct.2012.12.009 https://www.doi.org/10.1016/j.jct.2015.07.010 https://www.doi.org/10.1016/j.tca.2016.01.012 https://www.doi.org/10.1021/acs.jced.5b00823 https://www.doi.org/10.1016/j.fluid.2008.06.004 https://www.doi.org/10.1016/j.jct.2014.07.011 https://www.doi.org/10.1021/acs.jced.6b00415 https://www.doi.org/10.1016/j.fluid.2014.10.028 https://www.doi.org/10.1021/acs.jced.7b00948 https://www.doi.org/10.1016/j.jct.2006.06.001 https://www.doi.org/10.1021/je1001945 https://www.doi.org/10.1016/j.fluid.2013.01.024 https://www.doi.org/10.1021/acs.jced.7b00110 https://www.doi.org/10.1016/j.tca.2019.178383 https://www.doi.org/10.1016/j.fluid.2010.06.021 https://www.doi.org/10.1021/acs.jced.5b01053 https://www.doi.org/10.1021/je101020m https://www.doi.org/10.1016/j.jct.2016.12.028 https://www.doi.org/10.1016/j.jct.2017.12.009 https://www.doi.org/10.1016/j.fluid.2012.06.011 https://www.doi.org/10.1016/j.fluid.2005.01.002 https://www.doi.org/10.1021/acs.jced.8b00600 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1021/acs.jced.8b00362 https://www.doi.org/10.1016/j.jct.2014.07.019 https://www.doi.org/10.1021/je7005743 https://www.doi.org/10.1021/je700347h https://www.doi.org/10.1021/acs.jced.8b00717 https://www.doi.org/10.1016/j.jct.2019.03.023 https://www.doi.org/10.1016/j.tca.2012.10.023 https://www.doi.org/10.1021/acs.jced.8b00931 https://www.doi.org/10.1016/j.jct.2007.04.006

Solvents from 276.65 K to 345.10 K: Modified Method for Measuring the Modified Method for Measuring the Solubility of Pharmaceutical Colubility of Pharmaceutical Colubility of Pharmaceutical Colubility of Pharmaceutical Colubility of Pharmaceutical Pharmaceutical Colubility of Application of Application of Excess molar length pharmaceutics of Ethyl vanillin Presing Solubility in Several Pure Solubility and presing in Several Pure Solubility fand postais not absolutation of BOWHISTROM PUBLIFICATION OF TUBER OF THE PROPERTY OF THE PROPE Distillation Using Low Transition Manageramentmixt activity Englainients Peteomiceoipo ตรปลดีเกิดได้สายคโลสาครี afvent Solubility of 3,4-Dinitro-1H-pyrazole in อีเสอค์ เลี้ยวสายคอลค์ 296 รายเสียว bifice five properties and control in bifice five properties with primary present and control from the properties of the control first properties of the control from the the con

Solubility of Hydroquinone in Different https://www.doi.org/10.1021/je0502748 https://www.doi.org/10.1021/acs.jced.5b00122 https://www.doi.org/10.1021/je050145r https://www.doi.org/10.1016/j.jct.2014.09.001 https://www.doi.org/10.1016/j.jct.2016.10.029 https://www.doi.org/10.1021/acs.jced.9b00659 https://www.doi.org/10.1016/j.jct.2019.04.001 https://www.doi.org/10.1021/acs.jced.5b00714 https://www.doi.org/10.1021/acs.jced.7b00026 https://www.doi.org/10.1021/je800571y Liquid Mixtures of 2-Butanone with Behvilles and discositives of light and discositives of dimethylsulfoxide + Efficient Allocations of dimethylsulfoxide + The problem of the properties of the problem of the https://www.doi.org/10.1007/s10765-007-0204-0
 គឺម៉ាំត្រីខ្លែង អាស្តាល់ខ្លែង ក្នុង សំខាន់ អាចសារ
 And Anderson Angel Ang https://www.doi.org/10.1016/j.jct.2013.07.004 THE STANDARD PRODUCT OF THE PRODUCT OF THE STANDARD PR https://www.doi.org/10.1016/j.fluid.2018.04.012 https://www.doi.org/10.1016/j.fluid.2018.12.008 https://www.doi.org/10.1021/acs.jced.6b00219 https://www.doi.org/10.1016/j.jct.2005.12.010 https://www.doi.org/10.1016/j.jct.2016.10.022 https://www.doi.org/10.1016/j.fluid.2016.08.011 https://www.doi.org/10.1016/j.fluid.2013.08.007 https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1021/je800506q

Thermodynamic Solubility and Mixing https://www.doi.org/10.1021/acs.jced.9b00844 Thermodynamic Solubility and Mixing Properties of Phenformin in 14 Pure Bolwhitises we imperatures Ranging of 50.727.iacs to vizitaranone in Fourteen beginning of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of the first warmone in Fourteen beginning of solubility of LiBr and and obassis of propriate and properties of the first warmone in Fourteen beginning of solubility of LiBr and and obassis of propriate and water in the ionic of the first warmone in Fourteen beginning of the first warmone in Fourteen the first warmone in Fourte Properties of Phenformin in 14 Pure and objection in the ionic and objection in the https://www.doi.org/10.1021/je4009816 **-phosphabicyclo[2.2.2]octane** https://www.doi.org/10.1016/j.jct.2012.01.002 ### In the properties of the p https://www.doi.org/10.1016/j.jct.2018.11.026 separation on investigation of limiting https://www.doi.org/10.1021/je8005979 िराधे प्रकार हो हो गाउँ कि शिक्ष प्रमालक स्त्री Excess Molar Enthalpies of Binary https://www.doi.org/10.1021/je400709f Excess Molar Enthalpies of Binary
Mixtures Containing
SAMehi/1930 ctyl-imidazolium
Totolium Same And And Horstan (3)
Totolium Same And https://www.doi.org/10.1021/acs.jced.6b00349 **3.3**] https://www.doi.org/10.1016/j.fluid.2018.05.005 https://www.doi.org/10.1021/je200646r https://www.doi.org/10.1021/acs.jced.8b00902

Legend

Acentric Factor af:

Solvents from 273.15 K to 318.15 K:

affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

flu:

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

cpl: Liquid phase heat capacity

dm: Dipole Moment
dvisc: Dynamic viscosity
econd: Electrical conductivity
fll: Lower Flammability Limit

fpc: Flash Point (Closed Cup Method)fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

Upper Flammability Limit

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhoc: Critical density
rhol: Liquid Density

rinpol: Non-polar retention indices ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume volm: Molar Volume

zc: Critical Compressibility

zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/24-809-7/Isopropyl-Alcohol.pdf

Generated by Cheméo on 2025-12-23 13:55:55.703111223 +0000 UTC m=+6246353.233151888.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.