Benzene, (1-methylethyl)-

Other names: (1-Methylethyl)benzene; (1-methylethyl)benzene (cumene); (Methylethyl)benzene; 2-Fenilpropano; 2-Fenyl-propaan; 2-Phenylpropane; Benzene, i-propyl-; Benzene, isopropyl-; Cumeen; Cumene; Cumol; Isopropilbenzene; Isopropylbenzenen; Isopropylbenzene; Isopropylbenzol; NSC 8776; Propane, 2-phenyl-; Rcra waste number U055; UN 1918; i-Propylbenzene; iso-propylbenzene (cumene).

InChI: InChI=1S/C9H12/c1-8(2)9-6-4-3-5-7-9/h3-8H,1-2H3

InChI Key: RWGFKTVRMDUZSP-UHFFFAOYSA-N

Formula: C9H12

SMILES: CC(C)c1ccccc1

Molecular Weight: 120.19

CAS: 98-82-8

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAff</td>
<td>791.60</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>BasG</td>
<td>763.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{c}H^{\circ}_{\text{liquid}})</td>
<td>-5215.44 ± 0.96</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{c}H^{\circ}_{\text{liquid}})</td>
<td>-5218.60</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{f}G^{\circ})</td>
<td>134.87</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>(\Delta_{f}H^{\circ}_{\text{gas}})</td>
<td>3.90 ± 1.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{f}H^{\circ}_{\text{liquid}})</td>
<td>-41.20 ± 1.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{fus}H^{\circ})</td>
<td>9.58</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>45.15</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>45.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>45.10 ± 0.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>44.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>45.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>37.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>45.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{vap}H^{\circ})</td>
<td>45.14</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}^\circ H^\circ$</td>
<td>45.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.73 ± 0.02</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.72</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.72 ± 0.01</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.69 ± 0.01</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.76</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.71</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.75</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>8.98</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\log P_{\text{oct/wat}}$</td>
<td>2.81</td>
<td></td>
<td>Crippen Method</td>
</tr>
<tr>
<td>P_c</td>
<td>3210.00 ± 40.00</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>P_c</td>
<td>3209.00 ± 6.00</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>P_c</td>
<td>2786.44 ± 151.99</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>P_c</td>
<td>3160.00 ± 5.88</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>S°_{gas}</td>
<td>386.53</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$S^{\circ}_{\text{liquid}}$</td>
<td>277.57</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.54 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.54 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>152.40 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>405.20 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>408.15 ± 6.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.55 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.35 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.75 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.60 ± 0.70</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.60 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.60 ± 0.25</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 5.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.59 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 0.70</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 4.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.60 ± 0.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.54 ± 0.03</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 4.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.57 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.45 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 4.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.55 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.45 ± 0.02</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.57 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>427.90 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.55 ± 0.07</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.60 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.54 ± 0.06</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>273.15 ± 1.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.45 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.75 ± 0.25</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.15 ± 1.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.55 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.53 ± 0.06</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.05 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 4.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.65 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>424.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.15 ± 0.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.67 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>428.30 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.30 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>425.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.10 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>426.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>631.00 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>631.10 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>624.55 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>635.90 ± 4.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>177.11 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.69 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>177.10 ± 0.02</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>177.13 ± 0.07</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.47 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>177.18 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>177.95 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.69 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.95 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>177.05 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.69 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.90 ± 0.06</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>176.99 ± 0.04</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>177.13 ± 0.01</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>V_{c}</td>
<td>0.43</td>
<td>m³/kg·mol</td>
<td>Joback Method</td>
</tr>
</tbody>
</table>

Temperature Dependent Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Temperature (K)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{p,\text{gas}}$</td>
<td>214.82</td>
<td>J/mol·K</td>
<td>431.56</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>214.40</td>
<td>J/mol·K</td>
<td>295.96</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>213.00</td>
<td>J/mol·K</td>
<td>298.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>215.40</td>
<td>J/mol·K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>209.41</td>
<td>J/mol·K</td>
<td>299.8</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>198.70</td>
<td>J/mol·K</td>
<td>302.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,\text{liquid}}$</td>
<td>198.70</td>
<td>J/mol·K</td>
<td>302.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>η</td>
<td>0.00</td>
<td>Pa·s</td>
<td>431.56</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>7.32</td>
<td>kJ/mol</td>
<td>177.1</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Temperature (K)</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}} H$</td>
<td>7.32</td>
<td>kJ/mol</td>
<td>177.1</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}} H$</td>
<td>7.33</td>
<td>kJ/mol</td>
<td>177.13</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H$</td>
<td>41.90</td>
<td>kJ/mol</td>
<td>384.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H$</td>
<td>42.10</td>
<td>kJ/mol</td>
<td>386.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H$</td>
<td>41.20</td>
<td>kJ/mol</td>
<td>387.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}} S$</td>
<td>41.37</td>
<td>J/mol×K</td>
<td>177.1</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}} S$</td>
<td>41.36</td>
<td>J/mol×K</td>
<td>177.13</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>

Sources

NIST Webbook: http://webbook.nist.gov/cgi/inchi/InChI=1S/C9H12/c1-8(2)9-6-4-3-5-7-9/h3-8H,1-2H3

Legend

PAff: Proton affinity (kJ/mol).
BasG: Gas basicity (kJ/mol).
$\Delta_{\text{c}} H^o_{\text{liquid}}$: Standard liquid enthalpy of combustion (kJ/mol).
$C_{p,\text{gas}}$: Ideal gas heat capacity (J/mol×K).
$C_{p,\text{liquid}}$: Liquid phase heat capacity (J/mol×K).
η: Dynamic viscosity (Pa×s).
Δ_{G}^o: Standard Gibbs free energy of formation (kJ/mol).
$\Delta_{\text{H}}^o_{\text{gas}}$: Enthalpy of formation at standard conditions (kJ/mol).
$\Delta_{\text{H}}^o_{\text{liquid}}$: Liquid phase enthalpy of formation at standard conditions (kJ/mol).
$\Delta_{\text{fus}} H^o$: Enthalpy of fusion at standard conditions (kJ/mol).
$\Delta_{\text{fus}} H$: Enthalpy of fusion at a given temperature (kJ/mol).
$\Delta_{\text{vap}} H^o$: Enthalpy of vaporization at standard conditions (kJ/mol).
$\Delta_{\text{vap}} H$: Enthalpy of vaporization at a given temperature (kJ/mol).
IE: Ionization energy (eV).
$log P_{\text{oct/wat}}$: Octanol/Water partition coefficient.
P_c: Critical Pressure (kPa).
$\Delta_{\text{fus}} S$: Entropy of fusion at a given temperature (J/mol×K).
S^o_{gas}: Molar entropy at standard conditions (J/mol×K).
S^o_{liquid}: Liquid phase molar entropy at standard conditions (J/mol×K).
T_{boil}: Normal Boiling Point Temperature (K).
T_c: Critical Temperature (K).
T_{fus}: Normal melting (fusion) point (K).
T_{triple}: Triple Point Temperature (K).
V_{c}: Critical Volume (m3/kg-mol).

Latest version available from:
https://www.chemeo.com/cid/25-914-9/Benzene%2C%20%281-methylethyl%29-
Generated by Cheméo on Fri, 27 Mar 2020 17:02:53 +0000.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.