1,4-Butanediol

Other names:	1,4-BD 1,4-BUTYLENE GLYCOL 1,4-Dihydroxybutane 1,4-Tetramethylene glycol BDO Butane diol-1,4 Butane-1,4-diol Butylene glycol Dabco BDO Diol 14B NSC 406696 SUCOL B TETRAMETHYLENE GLYCOL
Inchi: InchiKey: Formula: SMILES: Mol. weight [g/mol]: CAS:	Tetramethylene 1,4-diol InChI=1S/C4H10O2/c5-3-1-2-4-6/h5-6H,1-4H2 WERYXYBDKMZEQL-UHFFFAOYSA-N C4H10O2 OCCCCO 90.12 110-63-4

Physical Properties

Property code	Value	Unit	Source
affp	915.60	kJ/mol	NIST Webbook
affp	871.70	kJ/mol	NIST Webbook
affp	884.30 ± 0.50	kJ/mol	NIST Webbook
affp	875.00	kJ/mol	NIST Webbook
basg	854.90	kJ/mol	NIST Webbook
basg	852.90 ± 0.50	kJ/mol	NIST Webbook
basg	841.20	kJ/mol	NIST Webbook
basg	843.50	kJ/mol	NIST Webbook
chl	-2495.50 ± 5.70	kJ/mol	NIST Webbook
chl	-2499.90 ± 2.00	kJ/mol	NIST Webbook

cpl	203.79	J/mol×K	Molar heat capacities for {isomer of butanediol + methanol} as function of mixture composition and temperature
gf	-290.84	kJ/mol	Joback Method
hf	-427.00 ± 3.00	kJ/mol	NIST Webbook
hf	-426.00 ± 5.70	kJ/mol	NIST Webbook
hfl	-503.00 ± 2.00	kJ/mol	NIST Webbook
hfl	-505.30 ± 5.70	kJ/mol	NIST Webbook
hfus	14.29	kJ/mol	Joback Method
hvap	57.86	kJ/mol	Joback Method
log10ws	-0.02		Crippen Method
logp	-0.249		Crippen Method
mcvol	78.960	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=1)		KDB
pc	6220.00 ± 150.00	kPa	NIST Webbook
rinpol	912.40	Νά	NIST Webbook
rinpol	922.00		NIST Webbook
rinpol	900.00		NIST Webbook
	900.00		NIST Webbook
rinpol			NIST Webbook
rinpol	922.00		NIST Webbook
rinpol	931.00		
rinpol	912.40		NIST Webbook
ripol	1911.00		NIST Webbook
ripol	1861.00		NIST Webbook
ripol	1890.00		NIST Webbook
ripol	1911.00		NIST Webbook
ripol	1870.00	.,	NIST Webbook
sl	223.40	J/mol×K	NIST Webbook
tb	501.15 ± 1.00	K	NIST Webbook
tb	501.15	К	Isobaric Vapor-Liquid Equilibrium for Binary System of Tetrahydrofuran + 1,4-Butanediol and gamma-Butyrolactone at 50.0 and 70.0 kPa
tb	503.20	K	NIST Webbook
tb	502.88 ± 0.05	K	NIST Webbook
tb	501.15 ± 2.00	K	NIST Webbook
tb	503.15 ± 2.00	К	NIST Webbook
tb	501.05	К	Isobaric Vapor Liquid Equilibrium for Two Binary Systems (n-Butanol + 1,4-Butanediol and .gammaButyrolactone + 1,4-Butanediol) at p = (30.0, 50.0, and 70.0) kPa

tc	728.00	К	Critical temperatures and pressures of straight-chain alkanediols (C3 to C12)
tc	727.00 ± 3.00	K	NIST Webbook
tf	292.80 ± 0.50	K	NIST Webbook
tf	355.40 ± 1.00	К	NIST Webbook
tf	289.90 ± 3.00	К	NIST Webbook
tf	292.15 ± 2.00	К	NIST Webbook
tf	289.40 ± 1.20	К	NIST Webbook
tf	294.05 ± 0.60	K	NIST Webbook
tf	292.40 ± 0.70	К	NIST Webbook
tt	293.58 ± 0.05	К	NIST Webbook
tt	293.38 ± 0.10	К	NIST Webbook
tt	293.58 ± 0.02	К	NIST Webbook
tt	289.90 ± 0.10	К	NIST Webbook
VC	0.297	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	185.68	J/mol×K	528.12	Joback Method	
cpg	173.07	J/mol×K	475.28	Joback Method	
cpg	191.63	J/mol×K	554.54	Joback Method	
cpg	197.36	J/mol×K	580.97	Joback Method	
cpg	202.87	J/mol×K	607.39	Joback Method	
cpg	208.17	J/mol×K	633.81	Joback Method	
cpg	179.49	J/mol×K	501.70	Joback Method	
cpl	217.61	J/mol×K	323.15 2-n	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and nethyl-2,4-pentaned as function of temperature	iol)
cpl	220.72	J/mol×K	328.15 2-n	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and nethyl-2,4-pentaned as function of temperature	iol)

cpl	223.90	J/mol×K	333.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	227.12	J/mol×K	338.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	230.40	J/mol×K	343.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	233.72	J/mol×K	348.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	237.07	J/mol×K	353.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	200.51	J/mol×K	293.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	201.33	J/mol×K	294.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	202.16	J/mol×K	296.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	202.99	J/mol×K	297.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	203.27	J/mol×K	298.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	203.82	J/mol×K	299.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	204.67	J/mol×K	300.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	205.51	J/mol×K	302.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	206.36	J/mol×K	303.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	207.22	J/mol×K	305.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	214.55	J/mol×K	318.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	208.95	J/mol×K	308.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	209.82	J/mol×K	309.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	210.70	J/mol×K	311.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	211.58	J/mol×K	312.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	212.47	J/mol×K	314.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	213.36	J/mol×K	315.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	222.58	J/mol×K	330.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	215.17	J/mol×K	318.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	216.08	J/mol×K	320.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	216.99	J/mol×K	321.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	217.91	J/mol×K	323.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	218.83	J/mol×K	324.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	219.76	J/mol×K	326.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	214.26	J/mol×K	317.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	221.64	J/mol×K	329.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	211.57	J/mol×K	313.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	223.53	J/mol×K	332.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	224.49	J/mol×K	333.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	225.45	J/mol×K	335.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	226.41	J/mol×K	336.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	227.38	J/mol×K	338.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	228.36	J/mol×K	339.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	229.34	J/mol×K	341.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	230.33	J/mol×K	342.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	231.32	J/mol×K	344.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	220.70	J/mol×K	327.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	233.32	J/mol×K	347.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	234.32	J/mol×K	348.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	235.34	J/mol×K	350.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	236.35	J/mol×K	351.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	237.38	J/mol×K	353.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	200.10	J/mol×K	298.15	NIST Webbook
cpl	178.00	J/mol×K	297.79	NIST Webbook
cpl	208.65	J/mol×K	308.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature

cpl	205.82	J/mol×K	303.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	203.06	J/mol×K	298.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	200.39	J/mol×K	293.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	232.32	J/mol×K	345.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	208.08	J/mol×K	306.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
dvisc	0.0448850	Paxs	308.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study

dvisc	0.0568860	Paxs	303.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0727454	Paxs	298.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0972620	Paxs	293.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0290542	Paxs	318.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0358106	Paxs	313.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	

hfust	18.70	kJ/mol	293.58	NIST Webbook	
hfust	18.70	kJ/mol	293.60	NIST Webbook	
hfust	18.70	kJ/mol	293.60	NIST Webbook	
hvapt	72.00	kJ/mol	445.00	NIST Webbook	
hvapt	77.10	kJ/mol	298.15	Vaporization Enthalpies of the r,o-Alkanediols by Correlation Gas Chromatography	
hvapt	77.00 ± 2.00	kJ/mol	419.00	NIST Webbook	
рvар	0.08	kPa	351.20 1-Me Bist	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	
рvар	0.05	kPa	343.60 1-Me Bisi	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	
рvар	0.06	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	

рvар	0.07	kPa	348.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.05	kPa	343.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.07	kPa	348.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.05	kPa	343.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.10	kPa	353.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

рvар	0.10	kPa	353.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.10	kPa	353.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.12	kPa	356.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.04	kPa	341.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

рvар	0.14	kPa	358.60 1-N Bis	Thermodynamic Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Alcohols in 1ethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.14	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in Iethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.17	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in Iethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.19	kPa	363.20 1-N Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1ethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

рvар	0.66	kPa	383.15 Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene
			1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone
рvар	0.04	kPa	339.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.04	kPa	339.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.03	kPa	338.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap0.02KPa335.20Thermodynamic Properties of Mixtures Containing toric Liquids. Activity Coefficients of Ethers and Alcohols in Methodpvap0.02KPa332.30Thermodynamic Properties of Mixtures Coefficients of Ethers and Methodpvap0.02KPa332.30Thermodynamic Properties of Mixtures Coefficients of Ethers and Methodpvap0.02KPa332.30Thermodynamic Properties of Mixtures Coefficients of Ethers and Alcohols in I-Methyl-3-Ethyl-Imidazoliumpvap0.01KPa329.20Thermodynamic Properties of Mixtures Coefficients of Ethers and Alcohols in I-Methyl-3-Ethyl-Imidazoliumpvap0.01KPa329.20Thermodynamic Properties of Mixtures Containing lonic Properties of Mixtures 				
Properties of Mixtures of Mixtures Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Atobols in 1-Methyl-3-Ethyl-Imidazolium Bistrifiluoromethyl-sulfonyl) Imide Using the Transpiration Method pvap 0.01 kPa 329.20 Thermodynamic Properties of Mixtures pvap 0.01 kPa 328.30 Thermodynamic Properties of Mixtures pvap 0.14 kPa 358.30 Thermodynamic Properties of Mixtures pvap 0.14 kPa 358.30 Thermodynamic Properties of Mixtures pvap 0.14 kPa 358.30 Thermodynamic Properties of Mixtures pvap 0.07 kPa 348.60 Thermodynamic Properties of Mixtures pvap 0.07 kPa 348.60 Thermodynamic Properties of Mixtures pvap 0.07 kPa 348.60 Thermodynamic Properties of Mixtures properties of Mixtures	рvар	0.02	kPa	Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration
Properties of Mixtures Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(Influoromethyl-sulfonyl) Imide Using the Transpiration pvap 0.14 kPa 358.30 Thermodynamic Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Thermodynamic Properties of Mixtures 2000 0.07 kPa 348.60 Thermodynamic Properties of Mixtures 2011 No 2020 0.07 kPa 348.60 Thermodynamic Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-Steffyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration	рvар	0.02	kPa	Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration
Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Properties of Mixtures 0.07 kPa 348.60 Thermodynamic Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method Properties of Mixtures Containing lonic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration	рvар	0.01	kPa	Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration
Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration	рvар	0.14	kPa	Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration
	рvар	0.07	kPa	Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration

rfi	1.44220	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.44170	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.43860	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.44420	298.15	Densities, Dynamic Viscosities, Speeds of Sound, and Relative Permittivities for Water + Alkanediols (Propane-1,2- and -1,3-diol and Butane-1,2-, -1,3-, -1,4-, and -2,3-Diol) at Different Temperatures	

rfi	1.44510	293.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.44310	298.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.44110	303.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.43910	308.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	

rfi	1.43720		313.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.43520		318.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.44570		298.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.44470		298.15	The effect of temperature and pressure on acoustic and thermodynamic properties of 1,4-butanediol. The comparison with 1,2- and 1,3-butanediols	
rhol	1012.80	kg/m3	298.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	

rhol	1012.60	kg/m3	298.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1009.60	kg/m3	303.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1006.70	kg/m3	308.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1003.70	kg/m3	313.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1022.21	kg/m3	283.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	

rhol	1016.11	kg/m3	293.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1013.06	kg/m3	298.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1009.99	kg/m3	303.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1003.85	kg/m3	313.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1003.95	kg/m3	308.15	Effect of placement of hydroxyl groups in isomeric butanediol on the behaviour of thermophysical and spectroscopic properties of pyrrolidin-2-one	
rhol	1003.95	kg/m3	308.15	A comparative study of thermophysical and spectroscopic properties in mixtures of isomeric butanediol and N,N-dimethylformamic	de

rhol	1003.95	kg/m3	308.15	Thermodynamic, transport, and spectroscopic studies for mixtures of isomeric butanediol and N-methyl-2-pyrrolidinor	ne
rhol	1003.95	kg/m3	308.15	Effect of B-cyclodextrin on the behaviour of thermophysical and spectroscopic properties of binary mixtures of (isomeric butanediol + pyrrolidin-2-one)	
rhol	1013.90	kg/m3	298.15	Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures	
rhol	1010.60	kg/m3	303.15	Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures	
rhol	1007.50	kg/m3	308.15	Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures	
rhol	997.80	kg/m3	323.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	

rhol	1009.77	kg/m3	303.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1006.74	kg/m3	308.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1003.70	kg/m3	313.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1000.67	kg/m3	318.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	997.63	kg/m3	323.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1012.96	kg/m3	298.15	Isobaric Vapor Liquid Equilibrium for Two Binary Systems, (3-Methyl-1-butanol + 1,4-Butanediol) and (Hexylene Glycol + 1,4-Butanediol), at p = 40.0, 60.0, and 80.0 kPa	

rhol	1015.76	kg/m3	293.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	1012.68	kg/m3	298.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	1009.54	kg/m3	303.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	1006.43	kg/m3	308.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	1003.37	kg/m3	313.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	1000.45	kg/m3	318.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	997.14	kg/m3	323.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	

rhol	994.02	kg/m3	328.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	990.93	kg/m3	333.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	987.93	kg/m3	338.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	984.81	kg/m3	343.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	981.70	kg/m3	348.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	978.59	kg/m3	353.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	972.71	kg/m3	363.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	

rhol	1013.04	kg/m3		Isobaric Vapor-Liquid Equilibrium for Four Binary Systems of Ethane-1,2-diol, Butane-1,4-diol, 2-(2- droxyethoxy)ethan-1-ol and 2-[2-(2- oxyethoxy)ethoxy]ethanol at 10.0 kPa, 20.0 kPa and 40.0 kPa	
rhol	1016.37	kg/m3	293.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1013.04	kg/m3	298.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1009.96	kg/m3	303.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	

rhol	1006.75	kg/m3	308.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and +	
				Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1003.55	kg/m3	313.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol	
				from (293.15 to 328.15) K	
rhol	1000.72	kg/m3	318.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol,	
				+ 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	994.41	kg/m3	328.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol	
				+ 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
sfust	63.72	J/mol×K	293.58	NIST Webbook	

Pressure Dependent Properties

Property code

tbrp 393.20 K 1.30 NIST Webb	ook
------------------------------	-----

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.61683e+01
Coeff. B	-4.88254e+03
Coeff. C	-8.04700e+01
Temperature range (K), min.	387.92
Temperature range (K), max.	530.19

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	5.07189e+01
Coeff. B	-9.72020e+03
Coeff. C	-4.35830e+00
Coeff. D	1.55136e-06
Temperature range (K), min.	293.05
Temperature range (K), max.	667.00

Sources

Effect of B-cyclodextrin on the behaviour of thermophysical and mixtures of (isomeric butanediol + by restricting for alkanediol + water by restricting for alkanediol + wat And -1.3-diol and Butane-1.2-and -1.3-diol and Butane-1.2-, -1.3-, Production 2:3-Diractive index and density of deep eutectic solvents using attentic solvents using attentic solvents using attentic solvents and Mixtures of Dihydroxy Alcohols and Micesson Magased Ionic Liquids:

A thermodynamic study of solute solvent interactions through dielectric solvent interactions through dielectric Melaethest sense interactions through dielectric Melaethest sense interactions through dielectric https://www.doi.org/10.1016/j.jct.2014.07.023 behaviour of glycine, DL-alanine, and Devisities rand beta sense interaction of behaviour of glycine, DL-alanine, and Devisities rand beta sense interaction of behaviour of glycine, DL-alanine, and Devisities rand beta sense interaction of behaviour of glycine, DL-alanine, and Devisities rand beta sense interaction of behaviour of glycine, DL-alanine, and https://www.doi.org/10.1016/j.jct.2008.09.008 https://www.doi.org/10.1021/je700499d https://www.doi.org/10.1021/je700499d behaviour of glycine interaction of behaviour of glycine, DL-alanine, and beh + Ethane-1,2-diol from (293.15 to 328.15) K:

https://www.doi.org/10.1016/j.jct.2012.08.026 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1016/j.fluid.2013.06.041 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.fluid.2013.06.050 https://www.doi.org/10.1021/acs.jced.9b00283 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2012.05.032

Thermodynamics of phase transfer for polar molecules from alkanes to deep Accessitics and hele metric study of

1,4-butanediol, 2,3-butanediol, sebarianeanor, biquid Equilibrium for Emery Alzterent antibution Lating and the social so

August Rolems of Ethers and Alcohors in 1-Methyl-3-Ethyl-Imidazolium Branching of Agrinary Longov (Ande Dode ing of Agrinary Longov) Equinor Maria (Construction of Construction Found of Construction of Construction Heat Ganasity for the South of Construction the Construction of Construction Constructi

Experimental study of the excess molar volume of ternary mixtures containing where (reports and the second of the two by a new second of the second of the two by a new second of the second of the two by a new second of the second of the two by a new second of the second of the two by a new second of the second of the the second of the second of the second of the two second of the second of the second of the two second of the second of the second of the two second of the second of the second of the second of the two second of the two second of the second of Appeous Mixtures of 1.4-Butanediol molar enthalpy for (1,2-propanediol, or Tipeprogaritation, and transpatciol + properties of (influence) (298.15, set influence) (298.15, set influence) (298.15, set influence) (208.15, set influence Miscibility Phenomena in Systems

298.15K The Yaws Handbook of Vapor Pressure:

spectroscopic properties of pyrrolidin-2-one:

https://www.doi.org/10.1016/j.fluid.2017.05.008 Accessific some weither in study of renewable oxygenated fuel additives at the complete the soft is omerical within the perspective of Binary Mixtures of sective in a pay dispect of Binary Mixtures of sective in a https://www.doi.org/10.1016/j.jct.2019.05.002 https://www.doi.org/10.1007/s10765-015-1980-6 https://www.doi.org/10.1016/j.tca.2005.06.014 https://www.doi.org/10.1016/j.fluid.2013.06.048 https://www.doi.org/10.1016/j.jct.2007.04.011 https://www.doi.org/10.1021/acs.jced.7b00584 https://www.doi.org/10.1021/je0497799 http://webbook.nist.gov/cgi/cbook.cgi?ID=C110634&Units=SI https://www.doi.org/10.1016/j.jct.2017.03.014 https://www.doi.org/10.1021/je0341918 https://www.chemeo.com/doc/models/crippen_log10ws Temperatures Experimental study of the excess molar https://www.doi.org/10.1016/j.jct.2009.11.018 https://www.doi.org/10.1021/acs.jced.6b00088 https://www.doi.org/10.1021/je060333x https://www.doi.org/10.1021/je400884v https://www.doi.org/10.1021/je8008792 https://www.cheric.org/files/research/kdb/mol/mol916.mol with Alcohols at 298.2 K: Measurement and correlation of excess https://www.doi.org/10.1016/j.jct.2005.06.018 https://www.doi.org/10.1016/j.jct.2009.09.013 https://www.doi.org/10.1021/acs.jced.8b00126 https://www.doi.org/10.1021/je101269p Containing Polyhydroxy Alcohols and Isopiestic determination of osmotic and https://www.doi.org/10.1021/je101269p activity coefficients of aqueous Sol bit was of any filter polyois at https://www.cheric.org/research/kdb/hcprop/sho https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=916 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Pressure: A comparative study of thermophysical and spectroscopic properties in Molecules of instantion bucklever() and instant of the manifed with 1-butanol, Pressure: Pressure: Pressure: Comparative study of thermophysical instantion bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever() and mexallen endowed of herein bucklever() and strain bucklever A comparative study of thermophysical https://www.doi.org/10.1016/j.jct.2005.09.001 https://www.doi.org/10.1016/j.fluid.2007.12.007 https://www.doi.org/10.1016/j.fluid.2011.11.004 https://www.doi.org/10.1021/acs.jced.6b00092

Legend

affp:	Proton affinity
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dvisc:	Dynamic viscosity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sfust:	Entropy of fusion at a given temperature
sl:	Liquid phase molar entropy at standard conditions
tb:	Normal Boiling Point Temperature
tbrp:	Boiling point at reduced pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/29-232-2/1-4-Butanediol.pdf

Generated by Cheméo on 2024-04-27 23:14:02.556969633 +0000 UTC m=+16548891.477546947. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.