1,4-Butanediol

Other names: 1,4-BD

1,4-BUTYLENE GLYCOL

1,4-Dihydroxybutane

1,4-Tetramethylene glycol

BDO

Butane diol-1,4 Butane-1,4-diol

Butanediol

Butylene glycol Dabco BDO Diol 14B NSC 406696

SUCOL B

TETRAMETHYLENE GLYCOL

Tetramethylene 1,4-diol

Inchi: InChl=1S/C4H10O2/c5-3-1-2-4-6/h5-6H,1-4H2

InchiKey: WERYXYBDKMZEQL-UHFFFAOYSA-N

 Formula:
 C4H10O2

 SMILES:
 OCCCCO

 Mol. weight [g/mol]:
 90.12

 CAS:
 110-63-4

Physical Properties

Property code	Value	Unit	Source
affp	875.00	kJ/mol	NIST Webbook
affp	915.60	kJ/mol	NIST Webbook
affp	884.30 ± 0.50	kJ/mol	NIST Webbook
affp	871.70	kJ/mol	NIST Webbook
basg	854.90	kJ/mol	NIST Webbook
basg	843.50	kJ/mol	NIST Webbook
basg	852.90 ± 0.50	kJ/mol	NIST Webbook
basg	841.20	kJ/mol	NIST Webbook
chl	-2495.50 ± 5.70	kJ/mol	NIST Webbook
chl	-2499.90 ± 2.00	kJ/mol	NIST Webbook

cpl	203.79	J/mol×K	Molar heat capacities for {isomer of butanediol + methanol} as function of mixture composition and temperature
gf	-290.84	kJ/mol	Joback Method
hf	-426.00 ± 5.70	kJ/mol	NIST Webbook
hf	-427.00 ± 3.00	kJ/mol	NIST Webbook
hfl	-505.30 ± 5.70	kJ/mol	NIST Webbook
hfl	-503.00 ± 2.00	kJ/mol	NIST Webbook
hfus	14.29	kJ/mol	Joback Method
hvap	57.86	kJ/mol	Joback Method
log10ws	-0.02		Crippen Method
logp	-0.249		Crippen Method
mcvol	78.960	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=1)		KDB
рс	6220.00 ± 150.00	kPa	NIST Webbook
rinpol	912.40		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	922.00		NIST Webbook
rinpol	912.40		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	931.00		NIST Webbook
rinpol	922.00		NIST Webbook
ripol	1861.00		NIST Webbook
ripol	1911.00		NIST Webbook
ripol	1870.00		NIST Webbook
ripol	1911.00		NIST Webbook
ripol	1890.00		NIST Webbook
sl	223.40	J/mol×K	NIST Webbook
tb	501.05	K	Isobaric Vapor Liquid Equilibrium for Two Binary Systems (n-Butanol + 1,4-Butanediol and .gammaButyrolactone + 1,4-Butanediol) at p = (30.0, 50.0, and 70.0) kPa
tb	501.15 ± 1.00	K	NIST Webbook
tb	503.15 ± 2.00	K	NIST Webbook
tb	501.15 ± 2.00	K	NIST Webbook
tb	502.88 ± 0.05	K	NIST Webbook
tb	503.20	K	NIST Webbook
tb	501.15	К	Isobaric Vapor-Liquid Equilibrium for Binary System of Tetrahydrofuran + 1,4-Butanediol and gamma-Butyrolactone at 50.0 and 70.0 kPa

tc	727.00 ± 3.00	K	NIST Webbook
tc	728.00	К	Critical temperatures and pressures of straight-chain alkanediols (C3 to C12)
tf	355.40 ± 1.00	K	NIST Webbook
tf	294.05 ± 0.60	K	NIST Webbook
tf	292.40 ± 0.70	K	NIST Webbook
tf	289.90 ± 3.00	K	NIST Webbook
tf	292.15 ± 2.00	K	NIST Webbook
tf	292.80 ± 0.50	K	NIST Webbook
tf	289.40 ± 1.20	K	NIST Webbook
tt	293.58 ± 0.05	K	NIST Webbook
tt	293.38 ± 0.10	K	NIST Webbook
tt	293.58 ± 0.02	K	NIST Webbook
tt	289.90 ± 0.10	K	NIST Webbook
VC	0.297	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	173.07	J/mol×K	475.28	Joback Method	
cpg	208.17	J/mol×K	633.81	Joback Method	
cpg	202.87	J/mol×K	607.39	Joback Method	
cpg	197.36	J/mol×K	580.97	Joback Method	
cpg	191.63	J/mol×K	554.54	Joback Method	
cpg	185.68	J/mol×K	528.12	Joback Method	
cpg	179.49	J/mol×K	501.70	Joback Method	
cpl	220.72	J/mol×K	328.15 2-m	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and nethyl-2,4-pentaned as function of temperature	iol)
cpl	223.90	J/mol×K	333.15 2-m	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and nethyl-2,4-pentaned as function of temperature	iol)

срІ	227.12	J/mol×K	338.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	230.40	J/mol×K	343.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	233.72	J/mol×K	348.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	237.07	J/mol×K	353.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
срІ	200.51	J/mol×K	293.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	201.33	J/mol×K	294.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	202.16	J/mol×K	296.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	202.99	J/mol×K	297.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	203.27	J/mol×K	298.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	203.82	J/mol×K	299.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	204.67	J/mol×K	300.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	205.51	J/mol×K	302.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	206.36	J/mol×K	303.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
срІ	207.22	J/mol×K	305.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	208.08	J/mol×K	306.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
срІ	217.61	J/mol×K	323.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	209.82	J/mol×K	309.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	210.70	J/mol×K	311.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	211.58	J/mol×K	312.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	212.47	J/mol×K	314.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
срІ	213.36	J/mol×K	315.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	214.26	J/mol×K	317.15	Heat Capacities
				of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	215.17	J/mol×K	318.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	216.08	J/mol×K	320.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	216.99	J/mol×K	321.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	217.91	J/mol×K	323.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	218.83	J/mol×K	324.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	219.76	J/mol×K	326.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	220.70	J/mol×K	327.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	221.64	J/mol×K	329.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	222.58	J/mol×K	330.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	223.53	J/mol×K	332.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	224.49	J/mol×K	333.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	225.45	J/mol×K	335.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	226.41	J/mol×K	336.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	227.38	J/mol×K	338.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between
				(293.15 and 353.15) K
cpl	228.36	J/mol×K	339.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	229.34	J/mol×K	341.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	230.33	J/mol×K	342.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	231.32	J/mol×K	344.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	232.32	J/mol×K	345.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
срІ	233.32	J/mol×K	347.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K

cpl	234.32	J/mol×K	348.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	235.34	J/mol×K	350.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	236.35	J/mol×K	351.65	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	237.38	J/mol×K	353.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
cpl	200.10	J/mol×K	298.15	NIST Webbook
cpl	178.00	J/mol×K	297.79	NIST Webbook
срІ	214.55	J/mol×K	318.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	211.57	J/mol×K	313.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature

cpl	208.65	J/mol×K	308.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	205.82	J/mol×K	303.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	203.06	J/mol×K	298.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	200.39	J/mol×K	293.15	Molar heat capacities for (1-butanol + 1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature
cpl	208.95	J/mol×K	308.15	Heat Capacities of Some Liquid alpha,omega-Alkanediols within the Temperature Range between (293.15 and 353.15) K
dvisc	0.0290542	Paxs	318.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study

dvisc	0.0727454	Paxs	298.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0568860	Paxs	303.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0448850	Paxs	308.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0358106	Paxs	313.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0972620	Paxs	293.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	

hfust	18.70	kJ/mol	293.60	NIST Webbook
hfust	18.70	kJ/mol	293.58	NIST Webbook
hfust	18.70	kJ/mol	293.60	NIST Webbook
hvapt	77.00 ± 2.00	kJ/mol	419.00	NIST Webbook
hvapt	77.10	kJ/mol	298.15	Vaporization Enthalpies of the r,o-Alkanediols by Correlation Gas Chromatography
hvapt	72.00	kJ/mol	445.00	NIST Webbook
pvap	0.10	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in Iethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.03	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in Iethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.02	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in Iethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.02	kPa	332.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.12	kPa	356.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.01	kPa	329.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.04	kPa	339.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.04	kPa	341.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.05	kPa	343.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.05	kPa	343.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.05	kPa	343.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.06	kPa	346.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.07	kPa	348.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.07	kPa	348.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.07	kPa	348.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.14	kPa	358.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.14	kPa	358.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.14	kPa	358.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.17	kPa	361.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.19	kPa	363.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.08	kPa	351.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.66	kPa	383.15 Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene + 1,2-Dichloropropane;
			1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + c-Butyrolactone
рvар	0.10	kPa	353.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.10	kPa	353.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.04	kPa	339.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

rfi	1.44470	298.15	The effect of temperature and pressure on acoustic and thermodynamic properties of 1,4-butanediol. The comparison with 1,2- and 1,3-butanediols	
rfi	1.44570	298.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.44220	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.44170	308.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.43860	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	

rfi	1.44420	298.15	Densities, Dynamic Viscosities, Speeds of Sound, and Relative Permittivities for Water + Alkanediols (Propane-1,2- and -1,3-diol and Butane-1,2-, -1,3-, -1,4-, and -2,3-Diol) at Different Temperatures	
rfi	1.44510	293.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.44310	298.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.44110	303.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	

rfi	1.43910		308.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.43720		313.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.43520		318.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rhol	987.93	kg/m3	338.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	

rhol	994.41	kg/m3	328.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	990.93	kg/m3	333.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	994.02	kg/m3	328.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	997.14	kg/m3	323.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol	997.80	kg/m3	323.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1000.45	kg/m3	318.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	

rhol 1003.37 kg/m3 313.15 Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol +	
Water at Different Temperatures	
rhol 1006.43 kg/m3 308.15 Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol 1009.54 kg/m3 303.15 Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol 1012.68 kg/m3 298.15 Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol 1015.76 kg/m3 293.15 Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	
rhol 1012.96 kg/m3 298.15 Isobaric Vapor Liquid Equilibrium for Two Binary Systems, (3-Methyl-1-butanol + 1,4-Butanediol) and (Hexylene Glycol + 1,4-Butanediol), at p = 40.0, 60.0, and 80.0 kPa	
rhol 997.63 kg/m3 323.15 Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	

rhol	1000.67	kg/m3	318.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1003.70	kg/m3	313.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1006.74	kg/m3	308.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1009.77	kg/m3	303.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1012.80	kg/m3	298.15	Acoustic and volumetric study of renewable oxygenated fuel additives at (298.15-323.15) K: Isomeric butanediols with ethylbutyrate	
rhol	1007.50	kg/m3	308.15	Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures	
rhol	1010.60	kg/m3	303.15	Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures	

rhol	1013.90	kg/m3	298.15	Investigation on
THO	1010.00	Kg/IIIO	250.10	some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures
rhol	1003.95	kg/m3	308.15	Effect of B-cyclodextrin on the behaviour of thermophysical and spectroscopic properties of binary mixtures of (isomeric butanediol + pyrrolidin-2-one)
rhol	1003.95	kg/m3	308.15	A comparative study of thermophysical and spectroscopic properties in mixtures of isomeric butanediol and N,N-dimethylformamide
rhol	1003.95	kg/m3	308.15	Effect of placement of hydroxyl groups in isomeric butanediol on the behaviour of thermophysical and spectroscopic properties of pyrrolidin-2-one
rhol	1003.85	kg/m3	313.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K
rhol	1009.99	kg/m3	303.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K

rhol	1013.06	kg/m3	298.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1016.11	kg/m3	293.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1022.21	kg/m3	283.15	Excess volumes and excess heat capacities for alkanediol + water systems in the temperature interval (283.15-313.15) K	
rhol	1003.70	kg/m3	313.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1006.70	kg/m3	308.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	

rhol	1009.60	kg/m3	303.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1012.60	kg/m3	298.15	Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures	
rhol	1000.72	kg/m3	318.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1003.55	kg/m3	313.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1006.75	kg/m3	308.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	

rhol	1009.96	kg/m3	303.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol,	
				and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1013.04	kg/m3	298.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol	
				1,2-Propanediol,	
				1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1016.37	kg/m3	293.15	Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol	
				1,2-Propanediol, +	
				1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K	
rhol	1013.04	kg/m3	298.15	Isobaric Vapor-Liquid Equilibrium for Four Binary Systems of Ethane-1,2-diol, Butane-1,4-diol,	
				2-(2- droxyethoxy)ethan- and 2-[2-(2-	
			Hyar	oxyethoxy)ethoxy]et at 10.0 kPa, 20.0 kPa and 40.0 kPa	
rhol	972.71	kg/m3	363.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures	

rhol	978.59	kg/m3	353.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures
rhol	981.70	kg/m3	348.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures
rhol	984.81	kg/m3	343.15	Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures
rhol	1003.95	kg/m3	308.15	Thermodynamic, transport, and spectroscopic studies for mixtures of isomeric butanediol and N-methyl-2-pyrrolidinone
sfust	63.72	J/mol×K	293.58	NIST Webbook

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	393.20	K	1.30	NIST Webbook

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.61683e+01
Coeff. B	-4.88254e+03
Coeff. C	-8.04700e+01

Temperature range (K), min.

387.92

Temperature ran	nge (K), max	Χ.
-----------------	--------------	----

530.19

Information	Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	5.07189e+01
Coeff. B	-9.72020e+03
Coeff. C	-4.35830e+00
Coeff. D	1.55136e-06
Temperature range (K), min.	293.05
Temperature range (K), max.	667.00

Sources

Heat Capacities of Some Liquid alpha,omega-Alkanediols within the remperative Rargemetweenqubysisal aroperties proposical different temperatures:

Miscibility Phenomena in Systems Containing Polyhydroxy Alcohols and https://www.doi.org/10.1016/j.jct.2012.03.013 on acoustic and thermodynamic on acoustic and thermodynamic prosection of the product of the pro

Ketones: Measurement and correlation of excess molar enthalpy for (1,2-propanediol, or Fifest of a motival potential potentia Measurement and correlation of excess https://www.doi.org/10.1016/j.jct.2005.06.018

Isobaric Vapor Liquid Equilibrium for Two Binary Systems (n-Butanol +
A-Buranelika study of thermophysical
authree-Buranelika study of thermophysical
authree-Buranelika study of thermophysical
authree-Buranelika study of the hexafluorophosphate ionic liquids with polyhydric alcohols:

https://www.doi.org/10.1021/je800356x

https://www.doi.org/10.1016/j.jct.2012.11.016

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.cheric.org/files/research/kdb/mol/mol916.mol

https://www.doi.org/10.1021/je101269p

https://www.doi.org/10.1016/j.fluid.2013.06.041

https://www.doi.org/10.1016/j.jct.2009.06.006

https://www.doi.org/10.1016/j.tca.2005.06.014

https://www.doi.org/10.1016/j.fluid.2013.06.048

https://www.doi.org/10.1021/acs.jced.8b00126

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/acs.jced.6b00088

https://www.doi.org/10.1016/j.jct.2005.09.001

https://www.doi.org/10.1021/je400884v

https://www.doi.org/10.1016/j.fluid.2011.11.004

Thermodynamic and transport properties of (1-Butanol + 1) Permanent of (1 golarım electiversirin alkanes to deep https://www.doi.org/10.1016/j.fluid.2007.12.007
https://www.doi.org/10.1016/j.fluid.2007.12.007
https://www.doi.org/10.1016/j.fluid.2007.12.007
https://www.doi.org/10.1016/j.fluid.2007.12.007
https://www.doi.org/10.1016/j.fluid.2007.12.007
https://www.doi.org/10.1021/je401020e
https://www.doi.org/10.1021/je401020e
https://www.doi.org/10.1021/je401020e
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1016/j.jct.2009.11.018
https://www.doi.org/10.1016/j.jct.2009.11.018
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1007/s10765-015-1980
https://www.doi.org/10.1007/s10765-015-1980
https://www.doi.org/10.1007/s10765-015-1980
https://www.doi.org/10.1007/s10765-015-1980
https://www.doi.org/10.1007/s10765-015-1980
https://www.doi.org/10.1016/j.jct.2007.12.007
https://www.doi.org/10.1016/j.jct.2007.12.007
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1016/j.jct.2009.11.018
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1021/je0497799
https://www.doi.org/10.1016/j.jct.2007.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014
https://www.doi.org/10.1016/j.jct.2017.03.014 DANAGE METGROCOI with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Smearich report Jawie Equilibrium for Two Binary Systems, (ฟร์ฟัาeฟฟร์ÞÞ์จะใหลnol + 1,4-Butanediol) and (Hexylene Glycol + 1,4-Butanediol), yapor -Idulio Edwilloria en Seven Binary Systems: Ethylene Oxide + Binary Systems: Ethylene Oxide +
Production of anti-active opher and +
pressity: of deep pulse is solvents, using
production of anti-active opher and +
pressity: of deep pulse is solvents, using
production of anti-active in solvents, using
production of the interval of the interval of solvents and interval of interva

https://www.doi.org/10.1016/j.jct.2009.09.013 https://www.doi.org/10.1016/j.fluid.2017.05.008 https://www.doi.org/10.1016/j.fluid.2007.12.007 https://www.doi.org/10.1021/acs.jced.7b00584

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=916 https://www.doi.org/10.1007/s10765-015-1980-6

https://www.doi.org/10.1021/acs.jced.6b00092

http://webbook.nist.gov/cgi/cbook.cgi?ID=C110634&Units=SI

https://www.doi.org/10.1021/je050317k

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.chemeo.com/doc/models/crippen_log10ws

Legend

affp: Proton affinity basg: Gas basicity

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions Enthalpy of vaporization at a given temperature hvapt:

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/29-232-2/1-4-Butanediol.pdf

Generated by Cheméo on 2024-04-09 23:17:02.050152386 +0000 UTC m=+14993870.970729698.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.