Cyclopentane

Other names: PENTAMETHYLENE

UN 1146

Inchi: InChl=1S/C5H10/c1-2-4-5-3-1/h1-5H2
InchiKey: RGSFGYAAUTVSQA-UHFFFAOYSA-N

Formula: C5H10

SMILES: C1CCCC1

Mol. weight [g/mol]: 70.13

CAS: 287-92-3

Physical Properties

Property code	Value	Unit	Source
af	0.1960		KDB
aigt	653.15	K	KDB
ар	289.950	K	KDB
chl	-3291.40 ± 0.60	kJ/mol	NIST Webbook
chl	-3291.20 ± 1.30	kJ/mol	NIST Webbook
chl	-3290.90 ± 0.71	kJ/mol	NIST Webbook
dm	0.00	debye	KDB
fll	1.10	% in Air	KDB
flu	8.70	% in Air	KDB
fpo	266.48	K	KDB
gf	38.60	kJ/mol	KDB
gyrad	3.1200		KDB
hcg	3290.93	kJ/mol	KDB
hcn	3070.889	kJ/mol	KDB
hf	-76.90	kJ/mol	NIST Webbook
hf	-76.40 ± 0.79	kJ/mol	NIST Webbook
hf	-77.29	kJ/mol	KDB
hf	-77.24 ± 0.75	kJ/mol	NIST Webbook
hfl	-105.90 ± 0.75	kJ/mol	NIST Webbook
hfl	-105.60 ± 1.80	kJ/mol	NIST Webbook
hfus	1.57	kJ/mol	Joback Method
hvap	27.29	kJ/mol	Joback Method
ie	10.53 ± 0.05	eV	NIST Webbook
ie	10.35	eV	NIST Webbook
ie	9.83 ± 0.05	eV	NIST Webbook
ie	10.33 ± 0.15	eV	NIST Webbook

ie	10.50	eV	NIST Webbook
ie	10.55 ± 0.03	eV	NIST Webbook
ie	10.70 ± 0.10	eV	NIST Webbook
ie	10.33 ± 0.15	eV	NIST Webbook
ie	10.54 ± 0.05	eV	NIST Webbook
ie	11.01	eV	NIST Webbook
ie	10.48	eV	NIST Webbook
ie	10.40	eV	NIST Webbook
ie	10.49	eV	NIST Webbook
ie	10.91 ± 0.07	eV	NIST Webbook
ie	10.50 ± 0.01	eV	NIST Webbook
ie	10.49	eV	NIST Webbook
ie	10.30 ± 0.10	eV	NIST Webbook
log10ws	-2.64		Aqueous Solubility Prediction Method
log10ws	-2.64		Estimated Solubility Method
logp	1.950		Crippen Method
mcvol	70.450	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	4514.03 ± 5.06	kPa	NIST Webbook
рс	4430.00 ± 50.66	kPa	NIST Webbook
рс	4510.00 ± 40.00	kPa	NIST Webbook
рс	4510.00	kPa	KDB
рс	4508.00 ± 40.53	kPa	NIST Webbook
rhoc	270.01 ± 2.81	kg/m3	NIST Webbook
rhoc	270.01 ± 4.21	kg/m3	NIST Webbook
rhoc	270.01 ± 2.10	kg/m3	NIST Webbook
rinpol	599.00		NIST Webbook
rinpol	566.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	568.00		NIST Webbook
rinpol	568.80		NIST Webbook
rinpol	565.55		NIST Webbook
rinpol	563.30		NIST Webbook
rinpol	575.90		NIST Webbook
rinpol	573.00		NIST Webbook
rinpol	576.00		NIST Webbook
rinpol	567.00		NIST Webbook
rinpol	570.00		NIST Webbook
rinpol	566.00		NIST Webbook
rinpol	568.00		NIST Webbook
rinpol	573.00		NIST Webbook
rinpol	588.00		NIST Webbook

rinnal	F66 00	NICT Wohlank
rinpol rinpol	566.00 567.00	NIST Webbook NIST Webbook
•	568.00	NIST Webbook
rinpol		
rinpol	568.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	573.00	NIST Webbook
rinpol	574.00	NIST Webbook
rinpol	566.30	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	563.00	NIST Webbook
rinpol	566.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	563.00	NIST Webbook
rinpol	564.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	578.00	NIST Webbook
rinpol	567.00	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	587.00	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	576.00	NIST Webbook
rinpol	566.50	NIST Webbook
rinpol	563.00	NIST Webbook
rinpol	553.70	NIST Webbook
rinpol	580.29	NIST Webbook
rinpol	563.20	NIST Webbook
rinpol	556.60	NIST Webbook
rinpol	554.33	NIST Webbook
rinpol	554.33	NIST Webbook
rinpol	554.13	NIST Webbook
rinpol	554.24	NIST Webbook
1111001	23 112 1	

rinnol	554.00	NIST Webbook
rinpol rinpol	557.00	NIST Webbook
	559.00	NIST Webbook NIST Webbook
rinpol		NIST Webbook NIST Webbook
rinpol	564.00	
rinpol	564.00	NIST Webbook
rinpol	565.00	NIST Webbook
rinpol	571.00	NIST Webbook
rinpol	566.00	NIST Webbook
rinpol	566.00	NIST Webbook
rinpol	569.00	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	582.00	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	554.50	NIST Webbook
rinpol	564.00	NIST Webbook
rinpol	554.00	NIST Webbook
rinpol	527.00	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	563.00	NIST Webbook
rinpol	587.00	NIST Webbook
rinpol	566.00	NIST Webbook
rinpol	587.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	564.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	560.00	NIST Webbook
rinpol	558.00	NIST Webbook
rinpol	533.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	557.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	577.00	NIST Webbook
rinpol	573.00	NIST Webbook
rinpol	564.00	NIST Webbook
rinpol	573.00	NIST Webbook
rinpol	564.00	NIST Webbook
rinpol	559.00	NIST Webbook
rinpol	553.70	NIST Webbook
rinpol	554.33	NIST Webbook
IIIIpor	001.00	THO I WODDOOK

rinnol	566.50	NIST Webbook
rinpol rinpol	564.00	NIST Webbook
	566.00	NIST Webbook
rinpol		NIST Webbook
rinpol	577.00	
rinpol	568.30	NIST Webbook
rinpol	567.80	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	570.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	566.00	NIST Webbook
rinpol	565.00	NIST Webbook
rinpol	563.00	NIST Webbook
rinpol	574.50	NIST Webbook
rinpol	569.90	NIST Webbook
rinpol	569.40	NIST Webbook
rinpol	566.10	NIST Webbook
rinpol	565.60	NIST Webbook
rinpol	566.50	NIST Webbook
rinpol	587.90	NIST Webbook
rinpol	566.20	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	565.00	NIST Webbook
rinpol	588.00	NIST Webbook
rinpol	587.60	NIST Webbook
rinpol	562.60	NIST Webbook
rinpol	568.40	NIST Webbook
rinpol	568.30	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	567.80	NIST Webbook
rinpol	562.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	582.40	NIST Webbook
rinpol	574.30	NIST Webbook
rinpol	573.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	558.00	NIST Webbook
rinpol	587.70	NIST Webbook
rinpol	587.00	NIST Webbook
rinpol	572.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	568.00	NIST Webbook
rinpol	568.00	NIST Webbook
ripol	698.00	NIST Webbook
ripol	700.00	NIST Webbook
Прог	1 00.00	THE P WODDOOK

ripol	720.00		NIST Webbook
ripol	700.00		NIST Webbook
ripol	694.00		NIST Webbook
ripol	694.00		NIST Webbook
ripol	710.00		NIST Webbook
ripol	720.00		NIST Webbook
sl	204.47	J/mol×K	NIST Webbook
sl	204.14	J/mol×K	NIST Webbook
sl	206.70	J/mol×K	NIST Webbook
tb	322.40	K	KDB
tc	511.70 ± 0.20	K	NIST Webbook
tc	511.60	K	NIST Webbook
tc	511.70 ± 0.20	K	NIST Webbook
tc	511.70	K	KDB
tc	511.75 ± 0.05	K	NIST Webbook
tc	511.60 ± 0.15	K	NIST Webbook
tf	179.25 ± 0.07	K	NIST Webbook
tf	178.85 ± 0.30	K	NIST Webbook
tf	178.15 ± 0.50	K	NIST Webbook
tf	178.35 ± 0.50	K	NIST Webbook
tf	180.05 ± 0.50	K	NIST Webbook
tf	179.30	K	KDB
tf	179.20	K	Aqueous Solubility Prediction Method
tf	176.64 ± 0.30	K	NIST Webbook
tf	179.60 ± 0.30	K	NIST Webbook
tf	179.55 ± 0.30	K	NIST Webbook
tf	178.85 ± 0.30	K	NIST Webbook
tf	179.25 ± 0.40	K	NIST Webbook
tf	179.26 ± 0.40	K	NIST Webbook
tf	179.69 ± 0.10	K	NIST Webbook
tf	179.26 ± 0.07	K	NIST Webbook
tf	179.38 ± 0.05	K	NIST Webbook
tf	179.25 ± 0.06	K	NIST Webbook
tf	179.26 ± 0.05	K	NIST Webbook
tf	179.28 ± 0.04	K	NIST Webbook
tf	179.35 ± 0.20	K	NIST Webbook
tf	179.35 ± 0.20	K	NIST Webbook
tf	179.23 ± 0.01	K	NIST Webbook
tf	179.23 ± 0.05	K	NIST Webbook
tf	178.85 ± 0.20	K	NIST Webbook
tf	179.38 ± 0.05	K	NIST Webbook
tf	179.23 ± 0.40	K	NIST Webbook
tf	179.68 ± 0.30	K	NIST Webbook
tf	179.31 ± 0.20	K	NIST Webbook

tf	177.06 ± 0.20	K	NIST Webbook
tf	178.85 ± 0.30	K	NIST Webbook
tt	179.71 ± 0.01	K	NIST Webbook
tt	179.71 ± 0.05	K	NIST Webbook
tt	179.69 ± 0.08	K	NIST Webbook
tt	179.00 ± 0.20	K	NIST Webbook
VC	0.259	m3/kmol	NIST Webbook
VC	0.259	m3/kmol	KDB
ZC	0.2745520		KDB
zra	0.27		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	93.96 ± 0.19	J/mol×K	329.05	NIST Webbook
cpg	150.70 ± 1.70	J/mol×K	503.00	NIST Webbook
cpg	139.47 ± 0.28	J/mol×K	463.10	NIST Webbook
cpg	138.70 ± 1.30	J/mol×K	463.00	NIST Webbook
cpg	126.30 ± 1.30	J/mol×K	424.00	NIST Webbook
cpg	117.09 ± 0.23	J/mol×K	395.05	NIST Webbook
cpg	117.30 ± 1.30	J/mol×K	395.00	NIST Webbook
cpg	108.16 ± 0.84	J/mol×K	372.00	NIST Webbook
cpg	102.01 ± 0.84	J/mol×K	353.00	NIST Webbook
cpg	160.10 ± 1.70	J/mol×K	539.00	NIST Webbook
cpl	126.17	J/mol×K	293.15	NIST Webbook
cpl	126.74	J/mol×K	298.15	NIST Webbook
cpl	127.44	J/mol×K	300.00	NIST Webbook
cpl	126.78	J/mol×K	298.15	NIST Webbook
cpl	128.83	J/mol×K	298.15	NIST Webbook
cpl	125.90	J/mol×K	293.70	NIST Webbook
cpl	126.87	J/mol×K	298.15	NIST Webbook
cpl	127.28	J/mol×K	298.15	NIST Webbook
dvisc	0.0002690	Paxs	343.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane

dvisc	0.0003940	Paxs	303.15	Density, Viscosity, and Speed of Sound of Dialkyl Carbonates with Cyclopentane and Methyl Cyclohexane at Several Temperatures	
dvisc	0.0004150	Paxs	298.15	Density, Viscosity, and Speed of Sound of Dialkyl Carbonates with Cyclopentane and Methyl Cyclohexane at Several Temperatures	
dvisc	0.0004380	Paxs	293.15	Density, Viscosity, and Speed of Sound of Dialkyl Carbonates with Cyclopentane and Methyl Cyclohexane at Several Temperatures	
dvisc	0.0004173	Paxs	298.15	Temperature and Density Dependence of the Viscosity of Cyclopentane	
dvisc	0.0004405	Paxs	293.15	Temperature and Density Dependence of the Viscosity of Cyclopentane	
dvisc	0.0004657	Paxs	288.15	Temperature and Density Dependence of the Viscosity of Cyclopentane	
dvisc	0.0004932	Paxs	283.15	Temperature and Density Dependence of the Viscosity of Cyclopentane	
dvisc	0.0005230	Paxs	278.15	Temperature and Density Dependence of the Viscosity of Cyclopentane	
dvisc	0.0002502	Paxs	353.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	

dvisc	0.0002590	Paxs	348.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003740	Paxs	308.15	Density, Viscosity, and Speed of Sound of Dialkyl Carbonates with Cyclopentane and Methyl Cyclohexane at Several Temperatures	
dvisc	0.0002793	Paxs	338.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0002912	Paxs	333.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003048	Paxs	328.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003190	Paxs	323.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003350	Paxs	318.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003521	Paxs	313.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003714	Paxs	308.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003923	Paxs	303.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0004148	Paxs	298.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0004382	Paxs	293.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0004646	Paxs	288.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	

dvisc	0.0004922	Paxs	283.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0005224	Paxs	278.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0005567	Paxs	273.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003550	Paxs	313.15	Density, Viscosity, and Speed of Sound of Dialkyl Carbonates with Cyclopentane and Methyl Cyclohexane at Several Temperatures	
dvisc	0.0006347	Paxs	263.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0006786	Paxs	258.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0007268	Pa×s	253.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane	
dvisc	0.0003940	Paxs	303.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	
dvisc	0.0004160	Paxs	298.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	

dvisc	0.0004390	Paxs	293.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K
dvisc	0.0004160	Paxs	298.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K
dvisc	0.0005930	Paxs	268.15	Saturated Liquid Viscosity of Cyclopentane and Isopentane
dvisc	0.0004380	Paxs	293.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters
dvisc	0.0004390	Paxs	293.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters

dvisc	0.0004160	Paxs	298.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0003940	Paxs	303.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0004390	Paxs	293.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	
dvisc	0.0003940	Paxs	303.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
hfust	4.90	kJ/mol	122.00	NIST Webbook	
hfust	0.34	kJ/mol	138.00	NIST Webbook	
hfust	0.60	kJ/mol	179.70	NIST Webbook	
hfust	0.60	kJ/mol	179.70	NIST Webbook	
hsubt	42.60	kJ/mol	122.00	NIST Webbook	
hvapt	27.30 ± 0.10	kJ/mol	322.00	NIST Webbook	
hvapt	27.50	kJ/mol	481.50	NIST Webbook	
hvapt	27.20	kJ/mol	418.00	NIST Webbook	
hvapt	28.00	kJ/mol	353.00	NIST Webbook	
hvapt	29.00	kJ/mol	306.00	NIST Webbook	

hvapt	27.40	kJ/mol	323.00	NIST Webbook	
hvapt	27.30	kJ/mol	322.40	KDB	
hvapt	27.30	kJ/mol	322.40	NIST Webbook	
hvapt	29.21	kJ/mol	298.15	NIST Webbook	
hvapt	29.20	kJ/mol	305.50	NIST Webbook	
hvapt	27.90 ± 0.10	kJ/mol	310.00	NIST Webbook	
rfi	1.40363		298.15	KDB	
rfi	1.40640		293.15	Isobaric Vapor Liquid Equilibrium for Nine Binary Systems of Cracking C5 Fraction at 250 kPa	
rfi	1.40292		298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rfi	1.39456		313.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rhol	747.70	kg/m3	288.15	Phase equilibrium relations for binary mixed hydrate systemscomposed of carbon dioxide and cyclopentane derivatives	
rhol	762.30	kg/m3	273.15	Phase equilibrium relations for binary mixed hydrate systemscomposed of carbon dioxide and cyclopentane derivatives	
rhol	745.00	kg/m3	293.00	KDB	

rhol	757.50	kg/m3	278.15	Phase	
		J		equilibrium relations for binary mixed hydrate systemscomposed of carbon dioxide and cyclopentane derivatives	
rhol	737.80	kg/m3	298.15	Phase equilibrium relations for binary mixed hydrate systemscomposed of carbon dioxide and cyclopentane derivatives	
rhol	740.00	kg/m3	298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes and Aromatic Compounds at T = 313.15 K	
rhol	726.57	kg/m3	308.15	Densities and Excess Molar Volumes of Cyclopentane (1) + 1-Alkanol (2) Systems at (298.15 and 308.15) K	
rhol	733.63	kg/m3	298.15	Densities and Excess Molar Volumes of Cyclopentane (1) + 1-Alkanol (2) Systems at (298.15 and 308.15) K	
rhol	745.70	kg/m3	293.15	Correlation of Experimental Liquid Liquid Equilibrium Data for Ternary Systems Using NRTL and GMDH-Type Neural Network	
rhol	752.60	kg/m3	283.15	Phase equilibrium relations for binary mixed hydrate systemscomposed of carbon dioxide and cyclopentane derivatives	

Properties	rhol	742.80	kg/m3	293.15	Phase equilibrium relations for binary mixed hydrate systemscomposed of carbon dioxide and cyclopentane derivatives	
sfust 3.35 J/molxK 179.70 NIST Webbook speedsl 40.13 J/molxK 122.00 NIST Webbook speedsl 1129.90 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1206.60 m/s 298.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 283.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures srf 0.02 N/m 313.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	rhol	739.74	kg/m3	298.15	predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes	
sfust 40.13 J/molxK 122.00 NIST Webbook speedsl 1129.90 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1206.60 m/s 298.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 283.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures srf 0.02 N/m 313.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	sfust	2.49	J/mol×K	138.00	NIST Webbook	
speedsl 1129.90 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1206.60 m/s 298.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 283.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 283.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures srf 0.02 N/m 313.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	sfust	3.35	J/mol×K	179.70	NIST Webbook	
and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1206.60 m/s 298.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 283.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 313.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures srf 0.02 N/m 313.15 Temperatures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures srf 1.002 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	sfust	40.13	J/mol×K	122.00	NIST Webbook	
and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures speedsl 1283.50 m/s 283.15 Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures srf 0.02 N/m 313.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	speedsl	1129.90	m/s	313.15	and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	
and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures srf 0.02 N/m 313.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	speedsl	1206.60	m/s	298.15	and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	
study of 1,4-dioxane with cycloalkane mixtures srf 0.02 N/m 283.15 Thermophysical study of 1,4-dioxane with cycloalkane mixtures	speedsl	1283.50	m/s	283.15	and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three	
study of 1,4-dioxane with cycloalkane mixtures	srf	0.02	N/m	313.15	study of 1,4-dioxane with cycloalkane	
srf 0.02 N/m 293.20 KDB	srf	0.02	N/m	283.15	study of 1,4-dioxane with cycloalkane	
	srf	0.02	N/m	293.20	KDB	

srf	0.02	N/m	298.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures
svapt	97.98	J/mol×K	298.15	NIST Webbook
tcondl	0.13	W/m×K	293.97	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	257.27	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	276.13	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	276.33	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

toondl	0.42	W/m×K	276.47	Thormal
tcondl	0.13	VV/III×K	210.41	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	293.63	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	293.83	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	257.08	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	300.67	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

tcondl	0.13	W/m×K	300.87	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	301.01	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	316.21	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	316.40	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	316.54	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.14	W/m×K	257.40	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
--------	------	-------	--------	---	--

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.42014e+01
Coeff. B	-2.76893e+03
Coeff. C	-3.34600e+01
Temperature range (K), min.	232.47
Temperature range (K), max.	344.93

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	6.44024e+01
Coeff. B	-5.38926e+03
Coeff. C	-7.58416e+00
Coeff. D	7.08554e-06
Temperature range (K), min.	179.28
Temperature range (K), max.	511.76

Datasets

Speed of sound, m/s

	258.15	100.00	1419.058
	258.15	5072.00	1446.07
	258.15	10244.00	1473.008
	258.15	15262.00	1498.119
	258.15	20158.00	1521.653
	258.15	25083.00	1544.511
	258.15	30141.00	1567.131
	273.15	100.00	1336.626
	273.15	5169.00	1366.736
	273.15	10059.00	1394.32
	273.15	15219.00	1422.015
	273.15	20251.00	1447.913
	273.15	25184.00	1472.273
	273.15	30227.00	1496.252
	293.15	105.00	1230.093
	293.15	5059.00	1262.962
	293.15	10088.00	1294.375
	293.15	15198.00	1324.591
	293.15	20121.00	1352.283
	293.15	25192.00	1379.573
	293.15	30134.00	1404.98
	313.15	107.00	1126.831
	313.15	5113.00	1164.014
	313.15	10058.00	1198.273
	313.15	15132.00	1231.306
	313.15	20097.00	1261.807
	313.15	25098.00	1290.997
	313.15	30162.00	1319.175
	333.15	149.00	1026.636
	333.15	5035.00	1067.634
	333.15	10139.00	1106.967
	333.15	15108.00	1142.542
	333.15	20130.00	1176.238
	333.15	25152.00	1207.969
	333.15	30170.00	1238.041
	353.15	261.00	929.399
	353.15	5019.00	974.633
	353.15	10069.00	1018.218
	353.15	15107.00	1058.051
	353.15	20063.00	1094.384
	353.15	25009.00	1128.301
	353.15	30157.00	1161.49
Deference			https://www.doi.org/10.1001/joE010161

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
273.15	100.00	0.0005628
273.15	10000.00	0.0006148
273.15	30000.00	0.0007203
273.15	40000.00	0.0007767
293.15	100.00	0.0004413
293.15	10000.00	0.0004827
293.15	30000.00	0.0005708
293.15	40000.00	0.0006167
298.15	100.00	0.0004167
298.15	10000.00	0.0004583
298.15	30000.00	0.0005409
298.15	40000.00	0.0005846
313.15	10000.00	0.0003920
313.15	30000.00	0.0004646
313.15	45000.00	0.0005222
333.15	10000.00	0.0003247
333.15	30000.00	0.0003882
333.15	45000.00	0.0004364
353.15	15000.00	0.0002868
353.15	30000.00	0.0003291
353.15	45000.00	0.0003727
-		

Reference https://www.doi.org/10.1021/je060416d

Sources

The study of activity coefficients at

The study of activity coefficients at infinite dilution for organic solutes and watermphysical study of pyridiname with a validal and moving and selectivity of measurements for organic solutes in the modynamics and selectivity of separation has eponomical infinite dilution assessments for organic solutes in the modynamics and selectivity of separation has eponomical infinite dilution assessments for organic solutes and the modynamic solutes and the modynamics and the modyna https://www.doi.org/10.1016/j.jct.2013.09.007

Compound at Three Temperatures:

```
Development of a Henry s constant
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2008.01.019
      correlation and solubility
   correlation and solubility
Separations of bitarypeixtures based on https://www.doi.org/10.1016/j.fluid.2017.12.029
tigiting activity coefficients detautains https://www.doi.org/10.1016/j.jct.2016.01.017
tigiting tight of the naphthenic ring on the https://www.doi.org/10.1016/j.fluid.2009.08.017
measurements for organic solutes and Water firether the naphthenic ring on the https://www.doi.org/10.1016/j.jct.2015.07.018
 The effect of the naphthenic ring on the VII-Explication of the VII-
   https://www.doi.org/10.1016/j.jct.2017.10.003
                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.5b00980
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2017.06.001
    The state of the s
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2017.03.004
  https://www.doi.org/10.1021/je049895b
efil hiller Carle nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller Carle nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller Carle nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller Carle nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1021/je049895b
efil hiller nates by the continue of Sound https://www.doi.org/10.1016/j.jct.2006.0
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2006.06.008
  Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols activity 32 efficients alminos Diution of warning almost promote the promote of the promote of
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.8b00600
                                                                                                                                                                                                                                                                                                        http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2018.07.028
      Magaman Mathad coefficients:
                                                                                                                                                                                                                                                                                                        http://link.springer.com/article/10.1007/BF02311772
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2013.05.011
    Activity coefficients at infinite dilution
   activity coefficients at infinite dilution of organic solutes in diethylene glycol Bhasa and light of the solution of all the solution of all the solution of all the solutions and a construct of the solution of all the solutions of a solution of a soluti
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2013.10.057
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2008.12.018
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2018.06.003
   aromatic invarious money, alcohors; elivospeldeen elitestorsolne misse. and sele al selection of the misse and make the selection of the misse and make the misse and make the misse and make the misse and mi
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2008.12.005
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je0202174
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2012.03.005
http://webbook.nist.gov/cgi/cbook.cgi?ID=C287923&Units=SI
      AHRTWARPPROKE ionic liquid
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2018.07.024
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2012.01.004
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je030187k
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je800105r
                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2005.03.014
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2009.07.010
```

https://www.doi.org/10.1016/j.jct.2010.10.026

```
Activity coefficients at infinite dilution
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2013.05.008
     and physicochemical properties for
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2009.06.011
     Acquitit sorticients watefiniterbilitino
   The second water in the long of the second o
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2013.01.007
                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2016.07.017
   https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2003.09.011
https://www.doi.org/10.1016/j.jct.2003.09.011
https://www.doi.org/10.1016/j.jct.2003.09.011
https://www.doi.org/10.1016/j.fluid.2011.02.00
https://www.doi.org/10.1016/j.fluid.2011.02.00
https://www.doi.org/10.1016/j.fluid.2011.02.00
https://www.doi.org/10.1016/j.fluid.2011.02.00
https://www.doi.org/10.1016/j.fluid.2011.02.00
https://www.doi.org/10.1016/j.fluid.2011.02.00
https://www.doi.org/10.1016/j.fluid.2011.02.00
                                                                                                                                                                                                                             https://www.cheric.org/files/research/kdb/mol/mol454.mol
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2011.02.001
                                                                                                                                                                                                                              https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=454
Activity coefficients at infinite dilution of organic solutes in Activity medicinems at infinite dilution, and the property of the property 
     Activity coefficients at infinite dilution
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2013.02.006
    of organic solutes in
   Prèssure:
Activity coefficients at infinite dilution
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2012.01.019
     and physicochemical properties for
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2017.11.017
       Sedeanatisculates barby wateriles he ionic
     he kane/hex-1-ene,
e you have he kane he kan you want of https://www.doi.org/10.1021/je800831d
fts/high style in the first happen and he know the work of https://www.doi.org/10.1021/je020145g
1-Alkyl-3-methylimidazolium
     Activity coefficient at a time type distributions: https://www.doi.org/10.1016/j.jct.2012.08.016
    and physicochemical properties for biggerst established of ic
                                                                                                                                                                                                                              https://www.doi.org/10.1021/je050540h
   arganacesiukeriskersiaterianeedonic soundocthe Anakoskersees with selection of the Anakoskerse with the selection of the sele
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je900890u
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2015.05.014
                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2009.08.012
    trioctylmethylammonium
```

bis(trifluoromethylsulfonyl)imide ionic

liquid using gas liquid chromatography:

Measurements of activity coefficients at infinite dilution for organic solutes in KDB-chatenter in organic soldies in https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=454
Reposties Data Tourism physical onic https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=454
Reposties Data Tourism physical onic https://www.doi.org/10.1016/j.jct.2005.07.003 Representable and activity coefficients at infinite dilution using polar and heli-sible accidings to activity coefficients at infinite dilution using polar and heli-sible accidings to activity coefficients at infinite dilution and achysic selections as a construction of a complete selections and activity coefficients at infinite dilution and achysic selections are included as a construction of the sible of the coefficients of the coefficient of t Expelimentaherd perdiated venery liquid caviflation of organic solutes in the ionic liquid, being mice solutes and solutes in the solutes in t https://www.doi.org/10.1016/j.jct.2009.12.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2012.03.015

https://www.doi.org/10.1016/j.fluid.2018.11.011

https://www.doi.org/10.1016/j.jct.2010.12.020

https://www.doi.org/10.1021/je0498107

https://www.doi.org/10.1016/j.jct.2011.02.012

https://www.doi.org/10.1021/je050110r

https://www.doi.org/10.1016/j.jct.2013.01.005

https://www.doi.org/10.1016/j.jct.2013.10.017

https://www.doi.org/10.1016/j.jct.2009.12.004

https://www.doi.org/10.1016/j.jct.2013.02.004

https://www.doi.org/10.1016/j.jct.2012.03.015

https://www.doi.org/10.1016/j.fluid.2018.01.019

Legend

Acentric Factor af:

Autoignition Temperature aigt:

ap: **Aniline Point**

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity

fII: Lower Flammability Limit flu: Upper Flammability Limit

Flash Point (Open Cup Method) fpo:

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf:
NFPA Fire Rating
NFPA Health Rating
pc:
Critical Pressure
vapor pressure
rfi:
Refractive Index
rhoc:
Critical density
Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

svapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/29-704-8/Cyclopentane.pdf

Generated by Cheméo on 2025-12-20 10:35:19.285866567 +0000 UTC m=+5975116.815907309.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.