2-Hexanol, 2-methyl-

Other names: 1,1-Dimethyl-1-pentanol

2-Methyl-2-hexanol 2-Methyl-2-hexanol

2-Methyl-2-hydroxyhexane

2-methylhexan-2-ol Butyldimethylcarbinol Methyl-2 hexanol-2

InChi=1S/C7H16O/c1-4-5-6-7(2,3)8/h8H,4-6H2,1-3H3

InchiKey: KRIMXCDMVRMCTC-UHFFFAOYSA-N

Formula: C7H16O

SMILES: CCCCC(C)(C)O

Mol. weight [g/mol]: 116.20 CAS: 625-23-0

Physical Properties

Property code	Value	Unit	Source
gf	-125.92	kJ/mol	Joback Method
hf	-348.79	kJ/mol	Joback Method
hfus	10.56	kJ/mol	Joback Method
hvap	58.60 ± 0.40	kJ/mol	NIST Webbook
log10ws	-1.08		Estimated Solubility Method
log10ws	-1.08		Aqueous Solubility Prediction Method
logp	1.948		Crippen Method
mcvol	115.360	ml/mol	McGowan Method
рс	3159.72	kPa	Joback Method
rinpol	822.00		NIST Webbook
rinpol	822.00		NIST Webbook
rinpol	822.00		NIST Webbook
rinpol	817.00		NIST Webbook
rinpol	817.00		NIST Webbook
rinpol	817.00		NIST Webbook
rinpol	785.70		NIST Webbook
rinpol	786.10		NIST Webbook
rinpol	787.00		NIST Webbook
rinpol	782.40		NIST Webbook

rinpol	822.00		NIST Webbook
rinpol	817.00		NIST Webbook
rinpol	818.00		NIST Webbook
rinpol	822.00		NIST Webbook
rinpol	822.00		NIST Webbook
rinpol	817.00		NIST Webbook
ripol	1180.00		NIST Webbook
ripol	1204.00		NIST Webbook
ripol	1196.00		NIST Webbook
ripol	1188.00		NIST Webbook
ripol	1196.00		NIST Webbook
tb	414.65 ± 2.00	K	NIST Webbook
tb	414.70	K	NIST Webbook
tb	415.90 ± 1.00	K	NIST Webbook
tb	412.15 ± 3.00	K	NIST Webbook
tb	416.25 ± 0.50	K	NIST Webbook
tb	415.10 ± 1.00	K	NIST Webbook
tb	410.65 ± 2.00	K	NIST Webbook
tb	416.25 ± 0.50	K	NIST Webbook
tb	415.15 ± 1.00	K	NIST Webbook
tb	414.15 ± 2.00	K	NIST Webbook
tc	618.48	K	Joback Method
tf	231.89	K	Joback Method
VC	0.435	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	312.34	J/mol×K	618.48	Joback Method
cpg	262.01	J/mol×K	476.84	Joback Method
cpg	273.08	J/mol×K	505.17	Joback Method
cpg	283.62	J/mol×K	533.50	Joback Method
cpg	293.67	J/mol×K	561.82	Joback Method
cpg	303.23	J/mol×K	590.15	Joback Method
cpg	250.39	J/mol×K	448.51	Joback Method
cpl	279.80	J/mol×K	275.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	286.60	J/mol×K	280.00	Calorimetric and FTIR study of selected aliphatic heptanols

cpl	286.60	J/mol×K	280.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	293.90	J/mol×K	285.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	293.80	J/mol×K	285.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	301.40	J/mol×K	290.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	301.40	J/mol×K	290.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	309.00	J/mol×K	295.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	308.90	J/mol×K	295.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	316.30	J/mol×K	300.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	316.20	J/mol×K	300.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	323.60	J/mol×K	305.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	323.50	J/mol×K	305.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	330.60	J/mol×K	310.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	330.50	J/mol×K	310.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	337.30	J/mol×K	315.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	337.20	J/mol×K	315.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	343.60	J/mol×K	320.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	343.60	J/mol×K	320.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	349.40	J/mol×K	325.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	349.40	J/mol×K	325.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	354.60	J/mol×K	330.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	354.50	J/mol×K	330.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	359.10	J/mol×K	335.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	359.00	J/mol×K	335.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	363.20	J/mol×K	340.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	363.00	J/mol×K	340.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	367.20	J/mol×K	345.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	366.80	J/mol×K	345.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	370.70	J/mol×K	349.99	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	370.20	J/mol×K	350.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	373.20	J/mol×K	355.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	372.90	J/mol×K	355.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	375.20	J/mol×K	360.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	374.90	J/mol×K	360.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	376.70	J/mol×K	365.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	376.40	J/mol×K	365.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	377.40	J/mol×K	370.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	377.20	J/mol×K	370.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	378.00	J/mol×K	375.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	377.60	J/mol×K	375.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	378.10	J/mol×K	379.98	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	279.80	J/mol×K	275.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	377.70	J/mol×K	382.70	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	273.30	J/mol×K	270.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	273.30	J/mol×K	270.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	267.20	J/mol×K	265.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	267.20	J/mol×K	265.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	263.70	J/mol×K	261.95	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	377.80	J/mol×K	380.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	263.30	J/mol×K	261.57	Calorimetric and FTIR study of selected aliphatic heptanols	
dvisc	0.0002207	Paxs	448.51	Joback Method	
dvisc	0.0985996	Paxs	231.89	Joback Method	
dvisc	0.0179763	Paxs	267.99	Joback Method	
dvisc	0.0049095	Paxs	304.10	Joback Method	
dvisc	0.0017661	Paxs	340.20	Joback Method	
dvisc	0.0007730	Paxs	376.30	Joback Method	
dvisc	0.0003910	Paxs	412.41	Joback Method	
hvapt	54.50	kJ/mol	363.00	NIST Webbook	
pvap	0.16	kPa	291.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.21	kPa	294.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	

pvap	0.21	kPa	294.40	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.12	kPa	288.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.37	kPa	301.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.45	kPa	304.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	

pvap	0.52	kPa	306.20	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.10	kPa	285.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.07	kPa	282.40	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	
pvap	0.06	kPa	279.50	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols	

pvap	0.04	kPa	276.50	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols
pvap	0.04	kPa	274.80	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols
pvap	0.03	kPa	274.40	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols
pvap	0.29	kPa	298.30	Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	327.20	K	2.00	NIST Webbook

Correlations

mormation	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.56175e+01
Coeff. B	-3.67654e+03
Coeff. C	-7.97450e+01
Temperature range (K), min.	319.57
Temperature range (K), max.	436.48

Value

Sources

Measurement and Prediction of https://www.doi.org/10.1021/je049561m

Information

Thermochemical Properties. Improved Bausous Spelibity Frenties in the control of Enthalpies of Was of a real of the control of Enthalpies of Was of a real of the control of Enthalpies of Was of a real of the control of Enthalpies of Was of Control of Enthalpies of Control of Enthalpies of Control of Enthalpies of Control of Control of Enthalpies of Control of Control

http://webbook.nist.gov/cgi/cbook.cgi?ID=C625230&Units=SI

Estimated Solubility Method: http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

McGowan Method:http://link.springer.com/article/10.1007/BF02311772Crippen Method:http://pubs.acs.org/doi/abs/10.1021/ci990307I

Joback Method: https://en.wikipedia.org/wiki/Joback_method

Calorimetric and FTIR study of selected https://www.doi.org/10.1016/j.fluid.2016.04.003 aliphatic heptanols:

Legend

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

Rish Webbook: Aliphatic Alcohols:

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

hvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/30-747-9/2-Hexanol-2-methyl.pdf

Generated by Cheméo on 2024-04-17 21:18:50.551861933 +0000 UTC m=+15677979.472439242.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.