3-Pentanone

Other names: (C2H5)2CO

1,3-Dimethylacetone

DEK

Diethyl ketone
Diethylcetone
Dimethylacetone
Ethyl ketone
Ethyl propionyl
Metacetone
Methacetone
NSC 8653
PROPIONE
Pentan-3-one

Inchi: InChl=1S/C5H10O/c1-3-5(6)4-2/h3-4H2,1-2H3

InchiKey: FDPIMTJIUBPUKL-UHFFFAOYSA-N

Pentanone-3 UN 1156

Formula: C5H10O SMILES: CCC(=O)CC

Mol. weight [g/mol]: 86.13 **CAS:** 96-22-0

Physical Properties

Property code	Value	Unit	Source
af	0.3440		KDB
affp	836.80	kJ/mol	NIST Webbook
basg	802.60	kJ/mol	NIST Webbook
basg	803.80 ± 0.30	kJ/mol	NIST Webbook
basg	807.00	kJ/mol	NIST Webbook
chl	-3100.20 ± 1.00	kJ/mol	NIST Webbook
chl	-3104.70 ± 0.90	kJ/mol	NIST Webbook
dm	2.70	debye	KDB
gf	-135.40	kJ/mol	KDB
hf	-258.80	kJ/mol	KDB
hf	-253.40 ± 0.90	kJ/mol	NIST Webbook
hf	-257.95 ± 0.84	kJ/mol	NIST Webbook
hf	-260.50 ± 1.60	kJ/mol	NIST Webbook

hfl			
	-296.51 ± 0.83	kJ/mol	NIST Webbook
hfus	10.30	kJ/mol	Joback Method
hvap	38.50	kJ/mol	NIST Webbook
hvap	38.60	kJ/mol	NIST Webbook
hvap	38.52	kJ/mol	NIST Webbook
hvap	38.68	kJ/mol	NIST Webbook
hvap	38.70 ± 0.30	kJ/mol	NIST Webbook
ie	9.32 ± 0.01	eV	NIST Webbook
ie	9.30	eV	NIST Webbook
ie	9.31 ± 0.02	eV	NIST Webbook
ie	9.37 ± 0.03	eV	NIST Webbook
ie	9.31 ± 0.02	eV	NIST Webbook
ie	9.31	eV	NIST Webbook
ie	9.31 ± 0.01	eV	NIST Webbook
ie	9.22 ± 0.02	eV	NIST Webbook
ie	9.31 ± 0.01	eV	NIST Webbook
log10ws	-0.28		Estimated Solubility Method
log10ws	-0.28		Aqueous Solubility Prediction Method
logp	1.375		Crippen Method
mcvol	82.880	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	3729.00	kPa	KDB
рс	3729.00 ± 10.00	kPa	NIST Webbook
рс	3740.00 ± 41.40	kPa	NIST Webbook
rhoc	255.81 ± 30.15	kg/m3	NIST Webbook
rinpol	681.00	<u> </u>	NIST Webbook
rinpol	650.00		NIST Webbook
rinpol	677.00		NUCTIAL
IIIIPOI	011.00		NIST Webbook
·			
rinpol	676.00		NIST Webbook
rinpol rinpol	676.00 705.00		NIST Webbook NIST Webbook
rinpol rinpol rinpol	676.00		NIST Webbook NIST Webbook NIST Webbook
rinpol rinpol rinpol rinpol	676.00 705.00 651.00 675.00		NIST Webbook NIST Webbook NIST Webbook NIST Webbook
rinpol rinpol rinpol rinpol rinpol	676.00 705.00 651.00 675.00 681.00		NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
rinpol rinpol rinpol rinpol rinpol rinpol	676.00 705.00 651.00 675.00 681.00 688.00		NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
rinpol rinpol rinpol rinpol rinpol rinpol rinpol rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00		NIST Webbook
rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00 676.00		NIST Webbook
rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00 676.00 678.00		NIST Webbook
rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00 676.00 678.00 678.00		NIST Webbook
rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00 676.00 678.00 678.00 688.00		NIST Webbook
rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00 676.00 678.00 678.00 688.00 669.00		NIST Webbook
rinpol	676.00 705.00 651.00 675.00 681.00 688.00 675.00 676.00 678.00 678.00 688.00		NIST Webbook

rinpol	701.00	NIST Webbook
rinpol	669.92	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	671.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	701.30	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	687.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	694.00	NIST Webbook
rinpol	707.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	659.00	NIST Webbook
rinpol	670.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	643.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	676.91	NIST Webbook
rinpol	675.75	NIST Webbook
rinpol	675.42	NIST Webbook
rinpol	675.52	NIST Webbook
rinpol	675.84	NIST Webbook
rinpol	677.74	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	675.00	NIST Webbook

rinpol	676.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	647.00	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	638.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	969.00	NIST Webbook
ripol	971.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	977.00	NIST Webbook
ripol	965.00	NIST Webbook
ripol	986.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	997.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	1002.00	NIST Webbook
ripol	971.00	NIST Webbook
ripol	980.00	NIST Webbook
ripol	964.00	NIST Webbook
ripol	975.00	NIST Webbook
ripol	981.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	979.00	NIST Webbook
ripol	979.00	NIST Webbook
ripol	956.00	NIST Webbook
ripol	970.00	NIST Webbook
ripol	978.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	983.00	NIST Webbook
ripol	958.00	NIST Webbook
ripol	976.00	NIST Webbook
ripol	1006.30	NIST Webbook
ripol	1001.50	NIST Webbook
ripol	996.90	NIST Webbook

ripol	1011.30		NIST Webbook
ripol	974.00		NIST Webbook
ripol	977.00		NIST Webbook
sl	266.00	J/mol×K	NIST Webbook
tb	375.11	K	KDB
tc	561.46	K	KDB
tc	561.46 ± 0.20	K	NIST Webbook
tc	560.90 ± 0.56	K	NIST Webbook
tc	561.50	K	NIST Webbook
tf	231.20 ± 1.50	K	NIST Webbook
tf	233.35 ± 0.40	K	NIST Webbook
tf	234.18 ± 0.01	K	NIST Webbook
tf	234.15 ± 0.02	K	NIST Webbook
tf	233.90	К	Aqueous Solubility Prediction Method
tf	231.15 ± 0.50	K	NIST Webbook
tf	234.00	K	KDB
tt	234.36	K	Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the solid-liquid equilibrium and vapou-liquid equilibrium. The Modified UNIFAC (Do) model characterization
tt	234.16 ± 0.03	K	NIST Webbook
tt	234.16 ± 0.03	K	NIST Webbook
	20 11 10 2 0100		
VC	0.336	m3/kmol	KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	175.14	J/mol×K	473.15	NIST Webbook	
cpg	168.70	J/mol×K	448.15	NIST Webbook	
cpg	151.38	J/mol×K	383.15	NIST Webbook	
cpg	156.77	J/mol×K	403.15	NIST Webbook	
cpg	162.13	J/mol×K	423.15	NIST Webbook	
cpg	146.31	J/mol×K	364.15	NIST Webbook	
cpl	190.00	J/mol×K	298.15	NIST Webbook	
cpl	190.90	J/mol×K	298.15	NIST Webbook	
срІ	195.70	J/mol×K	298.15	NIST Webbook	
cpl	196.40	J/mol×K	298.15	NIST Webbook	

cpl	190.30	J/mol×K	298.15	NIST Webbook	
cpl	200.70	J/mol×K	298.15	NIST Webbook	
dvisc	0.0004190	Paxs	303.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003880	Paxs	313.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0004490	Paxs	298.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0004290	Paxs	303.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0003960	Paxs	308.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0003760	Paxs	313.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	

dvisc	0.0003799	Paxs	313.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0004231	Paxs	303.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0004714	Paxs	293.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0003970	Paxs	308.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
hfust	11.59				
hfust	11.59	kJ/mol	234.20	NIST Webbook	_
	0.01	kJ/mol kJ/mol	234.20 180.00	NIST Webbook NIST Webbook	
hfust	0.01 0.11	kJ/mol kJ/mol		NIST Webbook	
hfust	0.01 0.11 11.59	kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20	NIST Webbook NIST Webbook NIST Webbook	
hfust hvapt	0.01 0.11 11.59 36.90	kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00	NIST Webbook NIST Webbook NIST Webbook NIST Webbook	
hfust hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10	kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00 375.00	NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook	
hfust hvapt hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10 34.90 ± 0.10	kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00 375.00 354.00	NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook	
hfust hvapt hvapt hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10 34.90 ± 0.10 36.10 ± 0.10	kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00 375.00 354.00 335.00	NIST Webbook	
hfust hvapt hvapt hvapt hvapt hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10 34.90 ± 0.10 36.10 ± 0.10 36.60	kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00 375.00 354.00 335.00 356.50	NIST Webbook	
hfust hvapt hvapt hvapt hvapt hvapt hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10 34.90 ± 0.10 36.10 ± 0.10 36.60 33.30	kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00 375.00 354.00 335.00 356.50 527.50	NIST Webbook	
hfust hvapt hvapt hvapt hvapt hvapt hvapt hvapt hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10 34.90 ± 0.10 36.10 ± 0.10 36.60 33.30 36.60	kJ/mol	180.00 118.50 234.20 303.00 375.00 354.00 335.00 356.50 527.50 377.50	NIST Webbook	
hfust hvapt hvapt hvapt hvapt hvapt hvapt hvapt	0.01 0.11 11.59 36.90 33.50 ± 0.10 34.90 ± 0.10 36.10 ± 0.10 36.60 33.30	kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol	180.00 118.50 234.20 303.00 375.00 354.00 335.00 356.50 527.50	NIST Webbook	

rfi	1.39000		298.15	Phase Equilibria in the Binary and Ternary Systems Composed of Diethyl ketone, 2-Pentanone and 3-Pentanol at 101.3 kPa	
rfi	1.39020		298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 303.15 K	9
rhol	809.09	kg/m3	298.15 I	Excess molar enthalpies and volumes of binary mixtures of nonafluorobutylmethyletl with ketones at T = 298.15 K	ner
rhol	818.90	kg/m3	288.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
rhol	789.63	kg/m3	318.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K	
rhol	814.00	kg/m3	293.00	KDB	
rhol	799.55	kg/m3	308.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K	

rhol	809.38	kg/m3	298.15	Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K	
rhol	789.41	kg/m3	318.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
rhol	804.62	kg/m3	303.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide	
				with ketones at T = 303.15 K	
rhol	799.32	kg/m3	308.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
rhol	809.16	kg/m3	298.15	Thermal and Volumetric Properties of Some C5 and C6 Alkanones at Infinite Dilution in Water	
sfust	0.96	J/mol×K	118.50	NIST Webbook	
sfust	0.04	J/mol×K	180.00	NIST Webbook	
sfust	49.50	J/mol×K	234.20	NIST Webbook	
speedsl	1197.00	m/s	303.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K	

enoodal	1179.00	m/s	308.15	Densities and
speedsl	1179.00	111/5	300.13	Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
speedsl	1160.00	m/s	313.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
srf	0.02	N/m	321.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	317.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	307.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	305.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	303.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	311.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	301.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	329.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	297.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	295.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	293.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.03	N/m	291.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	327.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	299.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	289.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	325.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	323.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	319.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

srf	0.02	N/m	309.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	285.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	283.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	315.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.02	N/m	313.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K
srf	0.03	N/m	287.15	Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15 K to 303.15 K

Correlations

Information Value

Property code	pvap		
Equation	In(Pvp) = A + B/(T + C)		
Coeff. A	1.47173e+01		
Coeff. B	-3.36681e+03		
Coeff. C	-4.16190e+01		
Temperature range (K), min.	274.94		
Temperature range (K), max.	399.57		

Information	Value	
Property code	pvap	
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$	
Coeff. A	7.00329e+01	
Coeff. B	-6.68960e+03	
Coeff. C	-8.16282e+00	
Coeff. D	5.65048e-06	
Temperature range (K), min.	234.18	
Temperature range (K), max.	561.00	

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
308.15	101.30	0.0003710
Reference		https://www.doi.org/10.1021/je8003723

Sources

tetracyanoborate:

Measurements of Activity Coefficients Measurements of Activity Coefficients at Infinite Dilution for Organic Solutes Activity Epotificients at Infinite Dilution for Organic Solutes Activity Epotificients are implied gilution and levil properties for organic Solutes and support of the properties for organic Solutes and support of the properties of the pro 1-ethyl-3-methylimidazolium

https://www.doi.org/10.1021/je101008y

```
Evaluation of the Performance of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je201129y
        Trigeminal Tricationic Ionic Liquids for
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je200195q
        និទ្ធា្ជម៉ូរ៉ូស៊ូត្រទៅទីនៃ Infinite Dilution
      of Organic Compounds in Four New Activities Repetited by the Property of the P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2012.01.019
https://www.doi.org/10.1016/j.jct.2012.01.019
and physicochemical properties for
beginity applies exit weep in the ionic
Mixtures of n-Butyl Acetate with
Meanways of properties for
beginity applies exit weep in the ionic
Mixtures of n-Butyl Acetate with
Meanways of properties for
beginity applies exit weep in the ionic
Mixtures of n-Butyl Acetate with
Meanways of n-Butyl Acetate
Mixtures of 
    Talinary Systems Composed of Diethyl Receiver Re
    And in hysicochemical properties for of similar the policy of the properties of the 
The randy is a large with the control of the rand was a large of the randy in the randy in the randy is a large of the randy in the randy is a large of the randy in the randy is a large of the randy in the randy in the randy in the randy is a large of the randy in the randy in the randy is a large of the randy in the randy in the randy is a large of the randy in the randy is a large of the randy in the randy is a large of the randy in the randy is a large of the randy in the randy is a large of the randy in the randy is a large of the randy is 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   https://www.cheric.org/files/research/kdb/mol/mol1196.mol
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     http://link.springer.com/article/10.1007/BF02311772
  Activity coefficients at infinite dilution and physicochemical properties for Measurement amporation of the properties for Measurement amporation of the properties for Measurement and excess enthalpies (HE) of the properties of 
                    eparation based on activity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1196
        Kollander Parapartinge Cartation of
    Coefficients aleasingle dilation of various solutes in Ashlyt's chernyminazointimite dilution and physicochemicazointimite dilution and physicochemical properties for aligning synates army aleasing the light and a superfection of bio-butan-1-ol from water phase the properties of the light and the light are light to the light and the light are light to the light and the light and the light are light to the light and the light and the light are light to the light and the light and the light are light to the light and the light are light to the light and the light are light to the light and the light are light are light and the light are light are light and the light are l
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2018.01.003
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.08.008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2018.09.024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2014.04.024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2016.07.017
    angunatisolones) white and data waves hitps://www.discorpopages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph/pages.ph
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2005.07.024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2011.04.018
```

High selective water/butan-1-ol separation on investigation of limiting Separationer (Mates/William-1-ol based) greactivity notificient statutinite and introduction of ବ୍ୟୁକ୍ତ ବ୍ୟୁକ୍ତ ନିର୍ଦ୍ଦେଶ ନିର୍ଦ୍ଦେଶ ବ୍ୟୁକ୍ତ ନିର୍ଦ୍ଦେଶ କଥା ନିର୍ଦ୍ଦେ କଥା ନିର୍ଦ୍ଦେଶ କଥା ନିର୍ମ କଥା ନିର୍ମ କଥା ନିର୍ଦ୍ଦେଶ କଥା ନିର୍ଦ୍ଦ Activity coefficients at infinite dilution of organic solvents and water in PartityP3-Greatigiants 26 Reganic Group units in New Amidazolium and Helfaller H Activity coefficients at infinite dilution for Organic Compounds Dissolved in stanky pi intenschop between organic someonds Dissolved in stanky pi intenschop between organic someonds agenty and properties of a cid in the surface of the surface and water in the long thought in clutter at initial the little of the li bio-butanol extraction on investigation ฟุตลดพฤติตองเร∧ญ่จะผู้ผู้หน่ายคะสู่ficients at infinite dilution of organic dehasผู้เฟียฟิจฟิง water in isoguinolinium-based ionic liquid Yearsurements of actively coefficients at infinite dilution of organic solutes Estimated សolubility Method: Interpretation of 35 Solutes in the company of the property of the company of the property of the company of th

https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1021/acs.jced.7b00035 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1021/je9003178 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1196 https://www.doi.org/10.1021/je700591h https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1021/je030151s https://www.doi.org/10.1016/j.jct.2012.08.016 https://www.doi.org/10.1021/je100715x http://webbook.nist.gov/cgi/cbook.cgi?ID=C96220&Units=SI https://www.doi.org/10.1021/je300692s https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1016/j.jct.2013.09.012 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1016/j.jct.2006.03.003 https://www.doi.org/10.1016/j.jct.2009.01.006 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.jct.2010.10.026 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.jct.2010.05.017 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1021/acs.jced.5b00980

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.tca.2013.03.008

https://www.doi.org/10.1021/je900838a

https://www.doi.org/10.1021/je800658v

Chromatography: Legend

af: Acentric Factoraffp: Proton affinitybasg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dm: Dipole Momentdvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhoc: Critical density
rhol: Liquid Density

rinpol: Non-polar retention indices ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/30-912-5/3-Pentanone.pdf

Generated by Cheméo on 2025-12-05 10:21:30.157624769 +0000 UTC m=+4678287.687665423.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.