Benzyl alcohol

Other names	(Hydroxymethyl)benzene			
other names.				
	BENZENEMETHANOL			
	Bentalol			
	Benzenecarbinol			
	Benzenmethanol			
	Benzoyl alcohol			
	Benzyl Alkohol			
	Benzylic alcohol			
	Hydroxytoluene			
	Methanol benzene			
	Methanol, phenyl-			
	NCI-C06111			
	NSC 8044			
	PHENYLMETHANOL			
	Phenylcarbinol			
	Phenylmethyl alcohol			
	«alpha»-Hydroxytoluene			
	«alpha»-Toluenol			
	«alpha»-Hydroxytoluene			
	«alpha»-Toluenol			
Inchi:	InChI=1S/C7H8O/c8-6-7-4-2-1-3-5-7/h1-5,8H,6H2			
InchiKey:	WVDDGKGOMKODPV-UHFFFAOYSA-N			
Formula:	C7H8O			
SMILES:	OCc1ccccc1			
Mol. weight [g/mol]:	108.14			
CAS:	100-51-6			

Physical Properties

Property code	Value	Unit	Source
affp	778.30	kJ/mol	NIST Webbook
aigt	709.26	К	KDB
basg	748.00	kJ/mol	NIST Webbook
chl	-3731.00	kJ/mol	NIST Webbook

chl	-3724.00	kJ/mol	NIST Webbook
chl	-3736.90	kJ/mol	NIST Webbook
chl	-3723.00	kJ/mol	NIST Webbook
chl	-3743.00 ± 2.80	kJ/mol	NIST Webbook
dm	1.70	debye	KDB
fpc	377.59	К	KDB
fpo	373.71	К	KDB
gf	-16.35	kJ/mol	Joback Method
hf	-100.70	kJ/mol	NIST Webbook
hf	-94.08	kJ/mol	KDB
hf	-106.70	kJ/mol	NIST Webbook
hf	-113.70	kJ/mol	NIST Webbook
hf	-94.60 ± 3.00	kJ/mol	NIST Webbook
hfl	-154.90 ± 3.00	kJ/mol	NIST Webbook
hfl	-167.00	kJ/mol	NIST Webbook
hfl	-174.00	kJ/mol	NIST Webbook
hfl	-161.00 ± 1.30	kJ/mol	NIST Webbook
hfus	12.02	kJ/mol	Joback Method
hvap	63.00 ± 2.20	kJ/mol	NIST Webbook
hvap	65.50 ± 0.40	kJ/mol	NIST Webbook
hvap	60.30	kJ/mol	NIST Webbook
hvap	62.50 ± 0.30	kJ/mol	NIST Webbook
hvap	60.30 ± 0.40	kJ/mol	NIST Webbook
hvap	60.29 ± 0.42	kJ/mol	NIST Webbook
hvap	62.10 ± 0.30	kJ/mol	NIST Webbook
hvap	64.80 ± 0.60	kJ/mol	NIST Webbook
hvap	69.50	kJ/mol	NIST Webbook
ie	9.53	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	9.23	eV	NIST Webbook
ie	8.26 ± 0.05	eV	NIST Webbook
ie	9.00 ± 0.10	eV	NIST Webbook
ie	9.11	eV	NIST Webbook
ie	8.37	eV	NIST Webbook
ie	9.14 ± 0.05	eV	NIST Webbook
log10ws	-0.40		Aqueous Solubility Prediction Method
log10ws	-0.40		Estimated Solubility Method
logp	1.179		Crippen Method
mcvol	91.600	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=2)		KDB
рс	4300.00	kPa	KDB
rinpol	1014.00		NIST Webbook

rinpol	1005.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1044.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1012.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1046.00	NIST Webbook
rinpol	1023.60	NIST Webbook
rinpol	167.20	NIST Webbook
rinpol	1046.00	NIST Webbook
rinpol	1082.00	NIST Webbook
rinpol	1081.00	NIST Webbook
rinpol	1046.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1009.00	NIST Webbook
rinpol	1025.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1003.00	NIST Webbook
rinpol	1012.00	NIST Webbook
rinpol	1018.00	NIST Webbook
rinpol	1015.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1038.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1027.00	NIST Webbook
rinpol	1043.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1009.00	NIST Webbook
rinpol	1036.90	NIST Webbook
rinpol	1010.00	NIST Webbook

rinpol	1022.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1003.00	NIST Webbook
rinpol	1042.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1003.00	NIST Webbook
rinpol	1044.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1013.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1006.00	NIST Webbook
rinpol	1012.00	NIST Webbook
rinpol	1003.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1027.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1047.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1012.00	NIST Webbook
rinpol	1019.00	NIST Webbook
rinpol	1001.00	NIST Webbook

rinpol	1027.00	NIST Webbook
rinpol	1038.00	NIST Webbook
rinpol	1006.00	NIST Webbook
rinpol	1005.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1008.00	NIST Webbook
rinpol	1005.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	1010.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1008.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1021.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1005.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1006.50	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1042.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1025.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1006.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1034.00	NIST Webbook

rinpol	1032.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	1000.00	NIST Webbook
rinpol	1046.00	NIST Webbook
rinpol	1060.00	NIST Webbook
rinpol	1052.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1008.00	NIST Webbook
rinpol	1038.00	NIST Webbook
rinpol	1041.30	NIST Webbook
rinpol	1054.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1045.00	NIST Webbook
rinpol	1043.00	NIST Webbook
rinpol	1050.00	NIST Webbook
rinpol	1050.00	NIST Webbook
rinpol	1052.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1028.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1009.00	NIST Webbook
rinpol	1006.00	NIST Webbook
rinpol	1004.00	NIST Webbook
rinpol	1006.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1050.00	NIST Webbook
rinpol	1043.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1015.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1065.00	NIST Webbook
rinpol	1050.00	NIST Webbook
rinpol	1049.00	NIST Webbook

rinpol	1048.00	NIST Webbook
rinpol	1053.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1028.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1042.00	NIST Webbook
rinpol	1028.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1017.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1021.00	NIST Webbook
rinpol	1029.00	NIST Webbook
rinpol	1025.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1027.20	NIST Webbook
rinpol	1045.00	NIST Webbook
rinpol	1052.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1005.00	NIST Webbook
rinpol	1057.00	NIST Webbook
rinpol	1057.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1020.00	NIST Webbook
rinpol	1013.00	NIST Webbook

rinpol	1014.00	NIST Webbook
rinpol	1014.00	NIST Webbook
rinpol	1010.00	NIST Webbook
rinpol	1040.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	1007.40	NIST Webbook
rinpol	1003.90	NIST Webbook
rinpol	1027.20	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1047.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1026.00	NIST Webbook
rinpol	1004.80	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1039.31	NIST Webbook
rinpol	1039.08	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1009.10	NIST Webbook
rinpol	1042.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1002.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1000.00	NIST Webbook
rinpol	1034.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1051.00	NIST Webbook
rinpol	1035.70	NIST Webbook
rinpol	1035.60	NIST Webbook
rinpol	1034.50	NIST Webbook
rinpol	1033.00	NIST Webbook

rinpol	1033.00	NIST Webbook
rinpol	1032.00	NIST Webbook
rinpol	1037.00	NIST Webbook
rinpol	1020.30	NIST Webbook
rinpol	1053.00	NIST Webbook
rinpol	1029.00	NIST Webbook
rinpol	1034.40	NIST Webbook
rinpol	1005.70	NIST Webbook
rinpol	1005.70	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1046.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1022.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1023.60	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1046.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1039.00	NIST Webbook
rinpol	1035.00	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1005.00	NIST Webbook
rinpol	1031.00	NIST Webbook
rinpol	1026.00	NIST Webbook
rinpol	1026.00	NIST Webbook
rinpol	1010.00	NIST Webbook
rinpol	1017.00	NIST Webbook
rinpol	1030.00	NIST Webbook
rinpol	1041.00	NIST Webbook
rinpol	1009.00	NIST Webbook
rinpol	1009.00	NIST Webbook
rinpol	1014.00	NIST Webbook
rinpol	1009.00	NIST Webbook
rinpol	1005.00	NIST Webbook
rinpol	1036.00	NIST Webbook
rinpol	1033.00	NIST Webbook
rinpol	1081.00	NIST Webbook
rinpol	167.20	NIST Webbook
rinpol	1026.00	NIST Webbook
rinpol	1027.54	NIST Webbook
rinpol	1007.00	NIST Webbook
rinpol	1006.80	NIST Webbook

rinpol	1005.30	NIST Webbook
rinpol	1012.30	NIST Webbook
ripol	1841.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1905.00	NIST Webbook
ripol	1833.00	NIST Webbook
ripol	1829.00	NIST Webbook
ripol	1822.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1861.00	NIST Webbook
ripol	1894.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1834.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1845.00	NIST Webbook
ripol	1891.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1908.00	NIST Webbook
ripol	1822.00	NIST Webbook
ripol	1822.00	NIST Webbook
ripol	1872.00	NIST Webbook
ripol	1872.00	NIST Webbook
ripol	1857.00	NIST Webbook
ripol	1884.00	NIST Webbook
ripol	1845.00	NIST Webbook
ripol	1837.00	NIST Webbook
ripol	1872.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1871.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1867.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1865.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1872.00	NIST Webbook
ripol	1839.00	NIST Webbook
ripol	1888.00	NIST Webbook
ripol	1887.00	NIST Webbook

ripol	1896.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1871.00	NIST Webbook
ripol	1885.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1831.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1878.00	NIST Webbook
ripol	1899.00	NIST Webbook
ripol	1889.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1866.00	NIST Webbook
ripol	1821.00	NIST Webbook
ripol	1891.00	NIST Webbook
ripol	1861.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1858.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1868.00	NIST Webbook
ripol	1854.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1897.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1880.00	NIST Webbook
ripol	1899.00	NIST Webbook
ripol	1883.00	NIST Webbook
ripol	1890.00	NIST Webbook
ripol	1828.00	NIST Webbook
ripol	1898.00	NIST Webbook
ripol	1841.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1900.00	NIST Webbook
ripol	1895.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1826.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1841.00	NIST Webbook

ripol	1840.00	NIST Webbook
ripol	1872.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1903.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1905.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1829.00	NIST Webbook
ripol	1833.00	NIST Webbook
ripol	1836.00	NIST Webbook
ripol	1833.00	NIST Webbook
ripol	1833.00	NIST Webbook
ripol	1830.00	NIST Webbook
ripol	1833.00	NIST Webbook
ripol	1876.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1821.00	NIST Webbook
ripol	1849.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1854.00	NIST Webbook
ripol	1829.00	NIST Webbook
ripol	1879.00	NIST Webbook
ripol	1881.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1855.00	NIST Webbook
ripol	1880.00	NIST Webbook
ripol	1860.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1878.00	NIST Webbook
ripol	1878.00	NIST Webbook
ripol	1822.00	NIST Webbook
ripol	1826.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1858.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1872.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1878.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1868.00	NIST Webbook

ripol	1874.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1871.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1878.00	NIST Webbook
ripol	1876.00	NIST Webbook
ripol	1837.00	NIST Webbook
ripol	1891.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1908.00	NIST Webbook
ripol	1908.00	NIST Webbook
ripol	1861.00	NIST Webbook
ripol	1883.00	NIST Webbook
ripol	1881.00	NIST Webbook
ripol	1879.00	NIST Webbook
ripol	1894.00	NIST Webbook
ripol	1894.00	NIST Webbook
ripol	1873.00	NIST Webbook
ripol	1873.00	NIST Webbook
ripol	1885.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1886.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1908.00	NIST Webbook
ripol	1884.00	NIST Webbook
ripol	1834.00	NIST Webbook
ripol	1905.00	NIST Webbook
ripol	1873.00	NIST Webbook
ripol	1865.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1912.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1919.00	NIST Webbook
ripol	1845.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1885.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1891.00	NIST Webbook

ripol	1872.00	NIST Webbook
ripol	1909.00	NIST Webbook
ripol	1879.00	NIST Webbook
ripol	1886.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1891.00	NIST Webbook
ripol	1879.00	NIST Webbook
ripol	1891.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1905.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1899.00	NIST Webbook
ripol	1908.00	NIST Webbook
ripol	1908.00	NIST Webbook
ripol	1865.00	NIST Webbook
ripol	1883.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1894.00	NIST Webbook
ripol	1880.00	NIST Webbook
ripol	1851.00	NIST Webbook
ripol	1851.00	NIST Webbook
ripol	1871.00	NIST Webbook
ripol	1858.00	NIST Webbook
ripol	1856.00	NIST Webbook
ripol	1861.00	NIST Webbook
ripol	1865.00	NIST Webbook
ripol	1861.00	NIST Webbook
ripol	1905.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1898.00	NIST Webbook
ripol	1868.00	NIST Webbook
ripol	1915.00	NIST Webbook
ripol	1890.00	NIST Webbook
ripol	1837.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1866.00	NIST Webbook

ripol	1871.00	NIST Webbook
ripol	1874.00	NIST Webbook
ripol	1859.00	NIST Webbook
ripol	1835.00	NIST Webbook
ripol	1837.00	NIST Webbook
ripol	1862.00	NIST Webbook
ripol	1867.00	NIST Webbook
ripol	1848.00	NIST Webbook
ripol	1867.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1876.00	NIST Webbook
ripol	1872.30	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1846.00	NIST Webbook
ripol	1853.00	NIST Webbook
ripol	1846.00	NIST Webbook
ripol	1841.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1852.00	NIST Webbook
ripol	1868.00	NIST Webbook
ripol	1837.00	NIST Webbook
ripol	1867.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1849.00	NIST Webbook
ripol	1885.00	NIST Webbook
ripol	1885.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1886.00	NIST Webbook
ripol	1868.00	NIST Webbook
ripol	1868.00	NIST Webbook
ripol	1893.00	NIST Webbook
ripol	1907.00	NIST Webbook
ripol	1828.00	NIST Webbook
ripol	1828.00	NIST Webbook
ripol	1826.00	NIST Webbook
ripol	1825.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1882.00	NIST Webbook
ripol	1890.00	NIST Webbook
ripol	1883.00	NIST Webbook
ripol	1870.00	NIST Webbook
ripol	1870.00	NIST Webbook

ripol	1864.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1876.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1896.00	NIST Webbook
ripol	1877.00	NIST Webbook
ripol	1902.00	NIST Webbook
ripol	1876.00	NIST Webbook
ripol	1852.00	NIST Webbook
ripol	1823.00	NIST Webbook
ripol	1886.00	NIST Webbook
ripol	1866.00	NIST Webbook
ripol	1821.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1869.00	NIST Webbook
ripol	1866.00	NIST Webbook
ripol	1837.00	NIST Webbook
ripol	1854.00	NIST Webbook
ripol	1881.00	NIST Webbook
ripol	1857.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1898.00	NIST Webbook
ripol	1886.00	NIST Webbook
ripol	1895.00	NIST Webbook
ripol	1834.00	NIST Webbook
ripol	1844.00	NIST Webbook
ripol	1864.00	NIST Webbook
ripol	1889.00	NIST Webbook
ripol	1904.00	NIST Webbook
ripol	1884.00	NIST Webbook
ripol	1880.00	NIST Webbook
ripol	1879.00	NIST Webbook
ripol	1836.00	NIST Webbook
ripol	1880.00	NIST Webbook
ripol	1879.00	NIST Webbook
ripol	1875.00	NIST Webbook
ripol	1888.00	NIST Webbook
ripol	1887.00	NIST Webbook
ripol	1823.00	NIST Webbook
ripol	1821.00	NIST Webbook
ripol	1830.00	NIST Webbook
ripol	1830.00	NIST Webbook

ripol	1823.00		NIST Webbook
ripol	1822.00		NIST Webbook
ripol	1822.00		NIST Webbook
ripol	1834.00		NIST Webbook
ripol	1822.00		NIST Webbook
ripol	1886.00		NIST Webbook
ripol	1885.00		NIST Webbook
ripol	1880.00		NIST Webbook
ripol	1861.00		NIST Webbook
ripol	1877.00		NIST Webbook
ripol	1861.00		NIST Webbook
ripol	1846.00		NIST Webbook
ripol	1887.00		NIST Webbook
ripol	1875.00		NIST Webbook
ripol	1870.00		NIST Webbook
ripol	1857.00		NIST Webbook
ripol	1846.00		NIST Webbook
ripol	1834.00		NIST Webbook
ripol	1895.00		NIST Webbook
ripol	1882.00		NIST Webbook
ripol	1879.00		NIST Webbook
ripol	1860.00		NIST Webbook
sl	216.70	J/mol×K	NIST Webbook
tb	478.46	К	KDB
tc	713.00	К	Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method
tc	715.00	К	KDB
tf	258.10	К	(Solid + liquid) equilibrium phase diagrams in binary mixtures containing terpenes: New experimental data and analysis of several modelling strategies with modified UNIFAC (Dortmund) and PC-SAFT equation of state
tf	258.10	К	Aqueous Solubility Prediction Method
tf	257.90	К	KDB
VC	0.339	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	182.35	J/mol×K	478.42	Joback Method	
cpg	232.07	J/mol×K	678.50	Joback Method	
cpg	217.53	J/mol×K	611.81	Joback Method	
cpg	209.53	J/mol×K	578.46	Joback Method	
cpg	191.96	J/mol×K	511.77	Joback Method	
cpg	225.03	J/mol×K	645.15	Joback Method	
cpg	201.02	J/mol×K	545.11	Joback Method	
cpl	215.90	J/mol×K	298.50	NIST Webbook	
cpl	217.86	J/mol×K	298.10	NIST Webbook	
cpl	215.94	J/mol×K	298.15	NIST Webbook	
cpl	220.50	J/mol×K	298.00	NIST Webbook	
cpl	223.60	J/mol×K	307.50	NIST Webbook	
dvisc	0.0040100	Paxs	308.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K	
dvisc	0.0035220	Paxs	313.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K	
dvisc	0.0046890	Paxs	303.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	
dvisc	0.0040580	Paxs	308.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	
dvisc	0.0027470	Paxs	323.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone	

dvisc	0.0035310	Paxs	313.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone
dvisc	0.0055500	Paxs	298.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K
dvisc	0.0041250	Paxs	308.15	Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure
dvisc	0.0052110	Paxs	298.15	Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure
dvisc	0.0035200	Pa×s	313.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K

dvisc	0.0040040	Paxs	308.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0046700	Pa×s	303.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0051600	Paxs	298.15	Densities and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Benzyl Alcohol and Acetophenone at (298.15, 303.15, 308.15, and 313.15) K
dvisc	0.0046750	Paxs	303.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K
dvisc	0.0031030	Paxs	318.15	Densities and Viscosities of the Binary Mixtures of Phenylmethanol with 2-Butanone
hfust	8.79	kJ/mol	257.60	NIST Webbook
hfust	8.79	kJ/mol	257.60	NIST Webbook
hfust	8.97	kJ/mol	257.60	NIST Webbook
hvapt	66.20	kJ/mol	318.00	NIST Webbook
hvapt	54.60	kJ/mol	479.00	NIST Webbook
hvapt	61.50	kJ/mol	303.00	NIST Webbook

pvap	0.02	kPa	303.60 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.07	kPa	318.60 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.10	kPa	323.60 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.05	kPa	314.10 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	4.07e-03	kPa	285.90	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers

рvар	5.32e-03	kPa	288.90	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	7.38e-03	kPa	292.10	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	9.83e-03	kPa	295.30	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.01	kPa	298.20	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.02	kPa	301.20	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.02	kPa	300.20 1-Me Bis(Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.03	kPa	305.80	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.03	kPa	308.80	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers

pvap	0.04	kPa	311.70	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.05	kPa	314.90	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.07	kPa	318.10	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.08	kPa	321.10	Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.01	kPa	298.60 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.01	kPa	297.20 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium s(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	8.90e-03	kPa	294.10 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	6.88e-03	kPa	291.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	5.16e-03	kPa	288.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	3.68e-03	kPa	285.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	2.72e-03	kPa	282.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

рvар	0.02	kPa	302.80 Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.02	kPa	303.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	3.06e-03	kPa	282.90 Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Alcohol and tert-Alkyl Ethers
рvар	0.04	kPa	311.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
рvар	0.03	kPa	308.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.03	kPa	308.10 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazoliun (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	m)
pvap	0.05	kPa	313.60 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazoliui (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	n
рvар	0.02	kPa	305.20 1-M Bis	Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazoliui (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	n)
rfi	1.53810		298.15	Excess Molar Enthalpies of Benzyl Alcohol + Alkanols (C1-C6) and Their Correlations at 298.15 K and Ambient Pressure	
rfi	1.53780		298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K	

rfi	1.53421	308.15	Densities, Viscosities, Refractive Indices, and Surface Tensions for the Ternary Mixtures of 2-Propanol + Benzyl Alcohol + 2-Phenylethanol at T = 308.15 K	
rfi	1.53540	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K	
rfi	1.53180	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K	
rfi	1.53770	298.15	Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) + Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure	

rfi	1.53500		308.15	Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) + Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure	
rhol	1025.67	kg/m3	318.15	Measurement and Modeling of Volumetric Properties and Speeds of Sound of Several Mixtures of Alcohol Liquids Containing Butanediol	
rhol	1043.53	kg/m3	298.15	Thermodynamics of Mixtures Containing Aromatic Alcohols. 1. Liquid Liquid Equilibria for (PhenyImethanol + Alkane) Systems	
rhol	1033.64	kg/m3	308.50	Excess Molar Enthalpies and Hydrogen Bonding in Binary Mixtures Containing Ethers and Benzyl Alcohol at 308.15 K and Atmospheric Pressure	
rhol	1041.46	kg/m3	298.15	Excess Properties of Binary Mixtures of Esters of Carbonic Acid + Three Aryl Alcohols at 308.15 K	
rhol	1033.70	kg/m3	308.15	Thermodynamic Study of Binary Mixtures Containing Glycols or Polyethylene Glycols + Benzyl Alcohol at 308.15 K	

rhol	1041.46	kg/m3	298.15	Thermodynamic Study of Binary Mixtures Containing Glycols or Polyethylene Glycols + Benzyl Alcohol at 308.15 K	
rhol	1011.30	kg/m3	333.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol	
rhol	1030.00	kg/m3	313.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol	
rhol	1041.80	kg/m3	298.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol	

rhol	1045.60	kg/m3	293.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1029.71	kg/m3	313.15	The study of excess molar volumes and related properties for binary mixtures containing benzyl alcohol and 1,3-dichloro-2-propanol with vinyl acetate, ethyl acetate and t-butyl acetate at T = 293.15 to 313.15 K and P = 0.087 MPa
rhol	1033.63	kg/m3	308.15	The study of excess molar volumes and related properties for binary mixtures containing benzyl alcohol and 1,3-dichloro-2-propanol with vinyl acetate, ethyl acetate and t-butyl acetate at T = 293.15 to 313.15 K and P = 0.087 MPa
rhol	1037.50	kg/m3	303.15	The study of excess molar volumes and related properties for binary mixtures containing benzyl alcohol and 1,3-dichloro-2-propanol with vinyl acetate, ethyl acetate and t-butyl acetate at T = 293.15 to 313.15 K and P = 0.087 MPa

rhol	1041.38	kg/m3	298.15	The study of excess molar volumes and related properties for binary mixtures containing benzyl alcohol and 1,3-dichloro-2-propanol with vinyl acetate, ethyl acetate and t-butyl acetate at T = 293.15 to 313.15 K and P = 0.087 MPa
rhol	1045.21	kg/m3	293.15	The study of excess molar volumes and related properties for binary mixtures containing benzyl alcohol and 1,3-dichloro-2-propanol with vinyl acetate, ethyl acetate and t-butyl acetate at T = 293.15 to 313.15 K and P = 0.087 MPa
rhol	1029.12	kg/m3	313.15	Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzylalcohol
rhol	1033.30	kg/m3	308.15	Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzylalcohol
rhol	1037.60	kg/m3	303.15	Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzylalcohol
rhol	1041.56	kg/m3	298.15	Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzylalcohol

rhol	1025.59	kg/m3	318.15	FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols	
rhol	1029.46	kg/m3	313.15	FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols	
rhol	1033.32	kg/m3	308.15	FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols	
rhol	1037.15	kg/m3	303.15	FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols	
rhol	1041.05	kg/m3	298.15	FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols	
rhol	1041.22	kg/m3	298.15	Measurement and Modeling of Volumetric Properties and Speeds of Sound of Several Mixtures of Alcohol Liquids Containing Butanediol	

rhol	1037.35	kg/m3	303.15	Measurement and Modeling of Volumetric Properties and Speeds of Sound of Several Mixtures of Alcohol Liquids Containing Butanediol	
rhol	1033.47	kg/m3	308.15	Measurement and Modeling of Volumetric Properties and Speeds of Sound of Several Mixtures of Alcohol Liquids Containing Butanediol	
rhol	1029.58	kg/m3	313.15	Measurement and Modeling of Volumetric Properties and Speeds of Sound of Several Mixtures of Alcohol Liquids Containing Butanediol	
rhol	1033.84	kg/m3	308.15	Densities and volumetric properties of binary mixtures of amino acid ionic liquid [bmim][Glu] or [bmim][Gly] with benzylalcohol at T = (298.15 to 313.15) K	
rhol	1041.00	kg/m3	298.00	KDB	
rhol	1041.44	kg/m3	298.15	Thermodynamics of binary mixtures: The effect of substituents in aromatics on their excess properties with benzylalcohol	
rhol	1037.67	kg/m3	303.15	Thermodynamics of binary mixtures: The effect of substituents in aromatics on their excess properties with benzylalcohol	

rhol	1033.75	kg/m3	308.15	Thermodynamics of binary mixtures: The effect of substituents in aromatics on their excess properties with benzylalcohol	
rhol	1029.91	kg/m3	313.15	Thermodynamics of binary mixtures: The effect of substituents in aromatics on their excess properties with benzylalcohol	
rhol	1037.18	kg/m3	303.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	1033.45	kg/m3	308.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	1029.36	kg/m3	313.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	

rhol	1025.57	kg/m3	318.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	1021.78	kg/m3	323.15	Study on thermo physical properties of binary mixture containing aromatic alcohol with aromatic, substituted aromatic amines at different temperatures interms of FT-IR, 1H NMR spectroscopic and DFT method	
rhol	1044.85	kg/m3	298.15 1-bu ł	Densities and excess volumes of binary mixtures of the ionic liquid utyl-3-methylimidazolium nexafluorophosphate with aromatic compound at T = (298.15 to 313.15) K	
rhol	1041.64	kg/m3	298.15	Densities and volumetric properties of binary mixtures of amino acid ionic liquid [bmim][Glu] or [bmim][Gly] with benzylalcohol at T = (298.15 to 313.15) K	
rhol	1037.42	kg/m3	303.15	Densities and volumetric properties of binary mixtures of amino acid ionic liquid [bmim][Glu] or [bmim][Gly] with benzylalcohol at T = (298.15 to 313.15) K	

rhol	1021.75	kg/m3	323.15	Measurement and Modeling of Volumetric Properties and Speeds of Sound of Several Mixtures of Alcohol Liquids Containing Butanediol	
rhol	1030.43	kg/m3	313.15	Densities and volumetric properties of binary mixtures of amino acid ionic liquid [bmim][Glu] or [bmim][Gly] with benzylalcohol at T = (298.15 to 313.15) K	
sfust	34.82	J/mol×K	257.60	NIST Webbook	
srf	0.04	N/m	318.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary Mixtures of 2-Propanol + Benzyl Alcohol, + 2-Phenylethanol and Benzyl Alcohol + 2-Phenylethanol at T) (298.15, 308.15, and 318.15) K	
srf	0.04	N/m	298.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary Mixtures of 2-Propanol + Benzyl Alcohol, + 2-Phenylethanol and Benzyl Alcohol + 2-Phenylethanol at T) (298.15, 308.15, and 318.15) K	
srf	0.04	N/m	323.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Mixtures of Ethanol, Benzyl Acetate, and Benzyl Alcohol	

srf	0.04	N/m	313.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Mixtures of Ethanol, Benzyl Acetate, and Benzyl Alcohol	
srf	0.04	N/m	303.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Mixtures of Ethanol, Benzyl Acetate, and Benzyl Alcohol	
srf	0.04	N/m	293.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Mixtures of Ethanol, Benzyl Acetate, and Benzyl Alcohol	
srf	0.04	N/m	323.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.04	N/m	318.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.04	N/m	313.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.04	N/m	308.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.04	N/m	303.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.04	N/m	298.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.04	N/m	293.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	

srf	0.04	N/m	323.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	318.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	313.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	308.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	303.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	298.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	293.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.04	N/m	323.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	
srf	0.04	N/m	318.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	
srf	0.04	N/m	308.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	
srf	0.04	N/m	303.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	
srf	0.04	N/m	298.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	

srf	0.04	N/m	293.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	
srf	0.04	N/m	308.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary Mixtures of 2-Propanol + Benzyl Alcohol, + 2-Phenylethanol and Benzyl Alcohol + 2-Phenylethanol at T) (298.15, 308.15, and 318.15) K	
srf	0.04	N/m	313.15	Equilibrium Surface Tensions of Benzyl Alcohol + Ethylene Glycol Mixtures	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source	
tbrp	366.20	К	1.30	NIST Webbook	
tbrp	366.00	K	1.30	NIST Webbook	

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.62136e+01
Coeff. B	-4.73989e+03
Coeff. C	-6.92220e+01
Temperature range (K), min.	366.84
Temperature range (K), max.	503.99

Information

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	8.81942e+01
Coeff. B	-1.07272e+04
Coeff. C	-9.93247e+00
Coeff. D	8.07990e-07
Temperature range (K), min.	303.00
Temperature range (K), max.	711.66

Datasets

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
298.15	81.50	1042.1
Reference		https://www.doi.org/10.1021/acs.jced.5b00162

Sources

Crippen Method:	http://pubs.acs.org/doi/abs/10.1021/ci990307l
Aqueous Solubility Prediction Method	http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDataset002.xlsx/35182603444444444444444444444444444444444444
KDB:	https://www.cheric.org/files/research/kdb/mol/mol870.mol
KDB Pure (Korean Thermophysical	https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=870
Properties Databank): Densities and Viscosities of Binary	https://www.doi.org/10.1021/je030163d
Mixtures of N,N-Dimethylformamide With Bethsylfandbrokarid/Aberophenon	e https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
areas and states areas and states and states and states are states and states areas are states and states are	https://www.doi.org/10.1021/je0500431
Linear Alcohols in Benzyl Alcohol: Excess Properties of Binary Mixtures (of https://www.doi.org/10.1021/je0497395
Esters of Carbonic Acid + Three Aryl Axominentalogigh-Kemperature,	https://www.doi.org/10.1021/acs.jced.9b00396
High-Pressure Density Measurement ନିର୍ଦ୍ଧ ହାଣରା ମହାର ଅନ୍ୟାର୍କ୍ତ ଅନ୍ୟାର୍କ୍ତରେ Pf	https://www.doi.org/10.1016/j.jct.2006.07.001
Association of the deviation of the second states of the second	https://www.doi.org/10.1016/j.fluid.2014.07.038
<u>ጠብቶቹ መድመድ መድመድ የ</u> ይህዝ ይህዝ ውስጥ የሚያስት የሚያ የሚያስት የሚያስት የሚያ የሚያስት የሚያስት	https://www.doi.org/10.1016/j.fluid.2016.06.040
extraction of furtural from aqueous	https://www.doi.org/10.1021/je050085p
Refractive Indices for Binary Mixtures ธิศเวฟฟรชมยาจานที่สะคะโดยระเวทรเอะBaya	yl https://www.doi.org/10.1021/je049591p
Aleohols at todene Chrob Mixtures:	https://www.doi.org/10.1021/je500775r
Methylbenzene + Benzyl Alcohol and Methylbenzene + Benzaldehyde Solve Mixtures:	nt http://webbook.nist.gov/cgi/cbook.cgi?ID=C100516&Units=SI

Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Thatee dy damie: Ryospartings def Mitatures Harces dy Damier Krobentos de Mittives Containent beneric 3 aguis X Activity RABBING A Series of the Acti benzylalcohol at T = (298.15 to 313.15) thermochemistry of Benzyl Alcohol:

Solubility Measurement and Thermodynamic Modeling of **จุญหยุ่ดมันยุโนชรุญกายในสุขุณชุม** thermodynamic properties of their SABry anatulies sume Bataylalcohol:

(Solid + liquid) equilibrium phase diagrams in binary mixtures containing topene Malendexperimental data and analysis of several modelling strategies with modelling strategies https://www.doi.org/10.1021/je200150r thermodynamic modelling of ประเทศสาราสาราสาราราสาราราสาราราสารารา รักษากร่าวก็อิจาชายไฟใช้รับรรณ์เป็นครางไ Liquids Containing Butanediol:

Legend

https://www.doi.org/10.1021/je0497799 https://www.doi.org/10.1021/je7007445 https://www.doi.org/10.1021/je300146k https://www.doi.org/10.1016/j.fluid.2014.01.019 https://www.doi.org/10.1016/j.jct.2009.12.003 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt Thermochemistry of Benzyl Alcohol: Reaction Equilibria Involving Benzyl Annitican Equilibria Involving Benzyl Annitican Equilibria Involving Benzyl Annitican Equilibria Involving Benzyl Annitican Equilibria Involving Benzyl Annobel 2 Manager (1.1021/je201009c https://www.doi.org/10.1021/je201009c https://www.doi.org/10.1021/je100095p https://www.doi.org/10.1021/je0504212 https://www.doi.org/10.1 https://www.doi.org/10.1021/je049823k https://www.doi.org/10.1021/acs.jced.5b00162 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1021/je401028g Solitibility in a first in in grading purpleInterstee stateInterstee stateSecond in the BinaryInterstee stateInterstee stateMixtures as the stateInterstee stateInterstee stateMixture https://www.doi.org/10.1016/j.tca.2014.01.027 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=870 https://www.doi.org/10.1016/j.fluid.2015.12.048 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je500439z https://www.doi.org/10.1021/je050159x https://www.doi.org/10.1016/j.tca.2016.04.001 and related properties for binary **Fixtures tomaning server provide and Fixtures tomaning server provide and server provide and**

https://www.doi.org/10.1021/je5009334

https://www.doi.org/10.1021/je0501991

affp: Proton affinity Autoignition Temperature aigt:

basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
fpc:	Flash Point (Closed Cup Method)
fpo:	Flash Point (Open Cup Method)
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sfust:	Entropy of fusion at a given temperature
sl:	Liquid phase molar entropy at standard conditions
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tbrp:	Boiling point at reduced pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/30-937-8/Benzyl-alcohol.pdf

Generated by Cheméo on 2024-04-27 20:59:48.536773705 +0000 UTC m=+16540837.457351015. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.