Methylene chloride

Other names:

Aerothene MM CH2Cl2 Chlorure de methylene DICHLOROMETHANE F 30 F 30 (chlorocarbon) FREON 30 **HCC 30** Khladon 30 METHYLENE DICHLORIDE Metaclen Methane dichloride Methane, dichloro-Methoklone Methylene bichloride Metylenu chlorek NCI-C50102 NSC 406122 Narkotil R 30 R-30 Rcra waste number U080 Salesthin Solaesthin Soleana VDA Solmethine UN 1593 InChI=1S/CH2CI2/c2-1-3/h1H2 YMWUJEATGCHHMB-UHFFFAOYSA-N CH2Cl2 CICCI 84.93 75-09-2

Physical Properties

Property code

Inchi:

CAS:

InchiKey:

Formula: SMILES:

Mol. weight [g/mol]:

af	0.1990		KDB
affp	628.00 ± 8.00	kJ/mol	NIST Webbook
basg	602.00 ± 8.00	kJ/mol	NIST Webbook
chl	-605.80 ± 8.40	kJ/mol	NIST Webbook
chl	-602.50	kJ/mol	NIST Webbook
dm	1.80	debye	KDB
gf	-68.91	kJ/mol	KDB
gyrad	2.4320		KDB
hf	-95.70 ± 1.30	kJ/mol	NIST Webbook
hf	-95.10 ± 2.50	kJ/mol	NIST Webbook
hf	-95.46	kJ/mol	KDB
hfl	-124.10 ± 2.50	kJ/mol	NIST Webbook
hfl	-124.30	kJ/mol	NIST Webbook
hfus	6.74	kJ/mol	Joback Method
hvap	29.00	kJ/mol	NIST Webbook
hvap	29.00	kJ/mol	NIST Webbook
hvap	30.60 ± 0.10	kJ/mol	NIST Webbook
hvap	29.03 ± 0.08	kJ/mol	NIST Webbook
•	29.03 ± 0.08 28.50 ± 0.42	kJ/mol	NIST Webbook
hvap ie	11.33 ± 0.04	eV	NIST Webbook
ie	11.32	eV	NIST Webbook
		eV	NIST Webbook
ie	11.32 ± 0.01	eV	NIST Webbook
ie	11.33		
ie	11.36	eV	NIST Webbook
ie	11.35 ± 0.02	eV	NIST Webbook
ie	11.40	eV	NIST Webbook
ie	11.40	eV	NIST Webbook
ie	11.28	eV	NIST Webbook
log10ws	-0.63		Estimated Solubility Method
log10ws	-0.63		Aqueous Solubility Prediction Method
logp	1.421		Crippen Method
mcvol	49.430	ml/mol	McGowan Method
nfpah	%!d(float64=2)		KDB
рс	6355.00 ± 15.00	kPa	NIST Webbook
рс	6100.00	kPa	KDB
rinpol	515.00		NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	524.00		NIST Webbook
rinpol	524.00		NIST Webbook
rinpol	530.00		NIST Webbook
rinpol	527.00		NIST Webbook
rinpol	510.00		NIST Webbook
rinpol	504.00		NIST Webbook

rinpol	531.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	512.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	512.70	NIST Webbook
rinpol	553.50	NIST Webbook
rinpol	555.90	NIST Webbook
rinpol	553.70	NIST Webbook
rinpol	548.40	NIST Webbook
rinpol	542.20	NIST Webbook
rinpol	506.30	NIST Webbook
rinpol	518.00	NIST Webbook
rinpol	504.90	NIST Webbook
rinpol	508.00	NIST Webbook
rinpol	516.90	NIST Webbook
rinpol	516.50	NIST Webbook
rinpol	537.80	NIST Webbook
rinpol	537.90	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	518.00	NIST Webbook
rinpol	486.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	497.90	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	513.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	540.00	NIST Webbook
rinpol	540.00	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	512.70	NIST Webbook
rinpol	531.60	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	480.00	NIST Webbook
rinpol	488.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	528.00	NIST Webbook

rinpol	514.00		NIST Webbook
rinpol	520.00		NIST Webbook
rinpol	511.00		NIST Webbook
rinpol	527.00		NIST Webbook
rinpol	528.00		NIST Webbook
rinpol	529.00		NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	510.00		NIST Webbook
ripol	914.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	946.00		NIST Webbook
ripol	935.70		NIST Webbook
ripol	932.62		NIST Webbook
ripol	926.65		NIST Webbook
ripol	933.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	937.20		NIST Webbook
ripol	917.00		NIST Webbook
ripol	914.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	927.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	928.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	919.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	944.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	937.00		NIST Webbook
ripol	932.00		NIST Webbook
ripol	944.00		NIST Webbook
ripol	953.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	927.00		NIST Webbook
ripol	936.00		NIST Webbook
ripol	937.20		NIST Webbook
ripol	905.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	931.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	912.00		NIST Webbook
sl	174.50	J/mol×K	NIST Webbook
tb	313.00	К	KDB

tb	312.95 ± 0.30	К	NIST Webbook
tb	313.35 ± 0.20	K	NIST Webbook
tb	313.20 ± 1.00	К	NIST Webbook
tb	313.20 ± 0.50	K	NIST Webbook
tb	313.15 ± 1.00	К	NIST Webbook
tb	314.70 ± 0.50	K	NIST Webbook
tb	313.30 ± 0.30	К	NIST Webbook
tb	312.92 ± 0.07	K	NIST Webbook
tb	313.00	К	NIST Webbook
tb	312.93 ± 0.20	К	NIST Webbook
tb	314.95 ± 0.50	К	NIST Webbook
tb	312.95 ± 0.50	К	NIST Webbook
tc	510.00	К	NIST Webbook
tc	508.00 ± 0.20	К	NIST Webbook
tc	510.00	К	KDB
tf	178.01	К	KDB
tf	176.65 ± 0.40	К	NIST Webbook
tf	176.00 ± 1.50	К	NIST Webbook
tf	198.06 ± 0.40	К	NIST Webbook
tf	177.62	К	Aqueous Solubility Prediction Method
tf	177.00 ± 2.00	К	NIST Webbook
VC	0.190	m3/kmol	Joback Method
zra	0.26		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	65.49	J/mol×K	448.32	Joback Method
cpg	61.71	J/mol×K	387.85	Joback Method
cpg	59.68	J/mol×K	357.61	Joback Method
cpg	57.56	J/mol×K	327.38	Joback Method
cpg	67.25	J/mol×K	478.55	Joback Method
cpg	55.35	J/mol×K	297.14	Joback Method
cpg	63.64	J/mol×K	418.08	Joback Method
cpl	100.00	J/mol×K	298.00	NIST Webbook
cpl	100.50	J/mol×K	292.50	NIST Webbook
cpl	100.80	J/mol×K	292.50	NIST Webbook
cpl	102.30	J/mol×K	298.15	NIST Webbook
cpl	105.50	J/mol×K	303.20	NIST Webbook
cpl	129.30	J/mol×K	298.00	NIST Webbook

cpl	100.00	J/mol×K	298.10	NIST Webbook
dvisc	0.0006594	Paxs	229.00	Joback Method
dvisc	0.0004912	Paxs	251.72	Joback Method
dvisc	0.0003842	Paxs	274.43	Joback Method
dvisc	0.0026264	Paxs	160.87	Joback Method
dvisc	0.0014784	Paxs	183.58	Joback Method
dvisc	0.0009444	Paxs	206.29	Joback Method
dvisc	0.0003120	Paxs	297.14	Joback Method
hfust	6.16	kJ/mol	178.22	NIST Webbook
hfust	6.16	kJ/mol	178.20	NIST Webbook
hfust	6.16	kJ/mol	178.20	NIST Webbook
hvapt	29.00	kJ/mol	347.00	NIST Webbook
hvapt	28.06	kJ/mol	313.00	NIST Webbook
hvapt	29.40	kJ/mol	249.00	NIST Webbook
hvapt	29.20	kJ/mol	308.00	NIST Webbook
hvapt	30.30	kJ/mol	287.50	NIST Webbook
hvapt	30.20	kJ/mol	273.00	NIST Webbook
pvap	197.94	kPa	333.15	Vapor Liquid Equilibrium and Excess Enthalpy Data for Systems Containing N,N-Dimethylacetamide
рvар	34.66	kPa	285.89	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)
рvар	37.33	kPa	287.58	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)
рvар	41.33	kPa	289.94	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)

рvар	70.49	kPa	303.15	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Carbon Tetrachloride, Chloroform, and Dichloromethane at 303.15 K	
рvар	49.33	kPa	294.15	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	53.33	kPa	296.05	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	58.66	kPa	298.41	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	63.99	kPa	300.61	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	69.33	kPa	302.67	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	74.66	kPa	304.61	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	

pvap	79.99	kPa	306.43	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	85.33	kPa	308.17	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	90.66	kPa	309.82	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	95.99	kPa	311.39	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
рvар	67.40	kPa	301.80	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
рvар	55.90	kPa	296.80	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
рvар	45.70	kPa	291.90	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
рvар	37.10	kPa	287.00	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	

pvap	45.33	kPa	292.12 Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)
rfi	1.42190		298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42370		293.15 Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents
rfi	1.42370		293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.43050		283.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42760		288.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42510		293.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rhol	1325.67	kg/m3	293.15 Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study
rhol	1317.00	kg/m3	298.00 KDB

rhol	1334.81	kg/m3	288.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1327.00	kg/m3	293.15	Interfacial Properties, Densities, and Contact Angles of Task Specific Ionic Liquids	
rhol	1316.58	kg/m3	298.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1307.90	kg/m3	303.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1334.08	kg/m3	288.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1325.79	kg/m3	293.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	

rhol	1316.75	kg/m3	298.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1307.51	kg/m3	303.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1307.60	kg/m3	303.15	Viscosity and Density for Binary Mixtures of Carbon Tetrachloride + Chloroform, Carbon Tetrachloride + Dichloromethane, and Chloroform + Dichloromethane and One Ternary Mixture of Chloroform + 1:1 (Carbon Tetrachloride + Dichloromethane) at 303.15 K	
srf	0.03	N/m	293.20	KDB	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	313.25	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.43555e+01
Coeff. B	-2.65134e+03
Coeff. C	-4.07080e+01
Temperature range (K), min.	229.18
Temperature range (K), max.	510.00
Information	Value
Property code	pvap

riopolity could	prop
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	8.08779e+01
Coeff. B	-6.03061e+03
Coeff. C	-1.00863e+01
Coeff. D	9.81251e-06
Temperature range (K), min.	178.01
Temperature range (K), max.	510.00

Sources

Activity Coefficients at Infinite Dilution

of Organic Solutes in Southlition of Solutes in Nangeo Konghyld Chiphraid Frankin, Buildone di Solograstivity coefficients of Solatio crassivity coefficients of

Activity southers viring and the solution
of a card of the souther in a constraint of the souther is a c sensitive samples under inert atmosphere:

https://www.doi.org/10.1021/je200050q https://www.doi.org/10.1021/acs.jced.5b00007 biliate is diversitivity coefficients of volatile organic compounds in two prevention of some winds in the some with the solution of the https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.jct.2016.07.021 https://www.doi.org/10.1016/j.jct.2013.10.038 https://www.doi.org/10.1021/acs.jced.5b00135 Solutes Dissolved in Two

tatianisenyl polekaziwe Determinatinos Modeliegnand https://www.doi.org/10.1021/acs.jced.9b00360 https://www.doi.org/10.1021/je020150k https://www.doi.org/10.1021/je020150k https://www.doi.org/10.1016/j.jct.2015.08.016 Oxtraction in Supergratical (C22)ary (carbon dioxide + dichloromethane + Determinination casternary at stars (carbon dioxide + dichloromethane + Determining at the solution of the solution o

dissolution enthalpy and entropy of Solutitute and Correlation of the https://www.doi.org/10.1021/je100626x https://www.doi.org/10.1021/acs.jced.84

Partial Molar Volumes of

N,N'-1,2-Ethyl-bis(salicyladimine) Schiff

of (+)-Biotin Intermediate Lactone in Different 287.15 https://www.doi.org/10.1021/je8007815 Organiz Solvents and Ethanol + Water Briary Mizer Feier and Ethanol + Water Briary Mizer Feier and Ethanol + Water

Artariy M. Reiffieien in a chrolinite Oblution of Polar Solutes in 1 cernod wave in promotion constrained of the second of the

Semily in the series of a contract of the series of the se

Autoria in the second and the second Canbon with the provide from (278-2 to Sompounds in Four New Perrol and the providence of the providence By the providence of the providence of the providence of the providence providence of the prov

Solubility, Solubility Modeling, and Antisolvent Precipitation of Southing and about the senting and a senting and a senting and a senting a s Metaulal Survey as sphinic Acid, Activity Wesser and Server at the server of the server at the serve **REXAMPLIATE OF CONTRACT OF CO**

Infinite Dilution Activity Coefficients of https://www.doi.org/10.1021/je500050p

tsplickyleterededyapprocessilionia of Ionic https://www.doi.org/10.1016/j.jct.2014.06.021

https://www.doi.org/10.1016/j.fluid.2015.02.022

http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa

https://www.doi.org/10.1016/j.tca.2012.06.025

https://www.doi.org/10.1021/acs.jced.8b01205

http://webbook.nist.gov/cgi/cbook.cgi?ID=C75092&Units=SI

https://www.doi.org/10.1021/je100369a

http://link.springer.com/article/10.1007/BF02311772

(283.15 to 318.15) K: Solubility Measurement and Correlation https://www.doi.org/10.1021/acs.jced.5b00857

https://www.doi.org/10.1021/acs.jced.9b00445

https://www.doi.org/10.1021/je200822w

https://www.doi.org/10.1021/acs.jced.8b00080

https://www.doi.org/10.1021/acs.jced.8b00581

https://www.doi.org/10.1021/acs.jced.8b01017

https://www.doi.org/10.1016/j.jct.2009.05.003

https://www.doi.org/10.1021/je7007457

https://www.doi.org/10.1021/je900838a

https://www.doi.org/10.1016/j.jct.2012.11.021

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1021/acs.jced.9b00432

https://www.doi.org/10.1021/je1009812

https://www.doi.org/10.1021/acs.jced.7b00119

Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je200628n by GLĆ in Alkanediamines as Schubilty of Faxes loxacin Sodium in Various Solvents at Various Kelfiperatures:

Solubilities of Adefovir Dipivoxil in Different Binary Solvents at 298.15 K: Solubilities of Phosphorus-Containing Compounds in Selected Solvents: Densities and Excess Molar Volumes for Binary Mixtures of Ionic Liquid Setubility Astronomy Different Bolynniff from it 83200 dot 327.60) K: Activity Coefficients at Infinite Dilution

Activity Coefficients at Infinite Dilution of Organic Solutes in Mean yr synaeth and dag mod ynamic Mean yr synaeth and dag yr synaeth ar Mean yr synaeth ar Sal Dreadent Sal yr synaeth ar Sal Dreadent Gal yr synaeth a of organic solutes in the ionic liquid solution is a solution in the ionic liquid is a solution in the ionic liquid is a solution of continue in the ionic liquid solution is a solution of a solution of continue in the ionic liquid solution is a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of a solution of a solution distribution of a solution of Rinsolvence and income on the order and the second measurements in binary mixtures of drom 6 kollectrane and 1-alkanols (C1 -

Phase Behavior, Densities, and Jisothermal Compressibility of the CO2 ViEgoaiton and Logooton an Alibert Arnary Nisteras politation Pates Regions: California, Carpon Steracianide +

 Example:
 Curve measurements for (water https:

 + propionic acid + dichloromethane)
 Https:

 Example:
 Curve measurements for (water https:

 + propionic acid + dichloromethane)
 Https:

 Example:
 Curve measurements for (water https:

 Trigeminal Tricationic lonic Liquids for
 Https:

 Tris(o-phenylenedioxy)cyclotriphosphazene
 Https:

 Gase Solubilities (GS)
 Corversion (GS)

 and He) in Liquid Chlorinated
 Https:

 Methanes:
 Handbook of Vapor

Pressure:

A simple apparatus for data solubility determination: Experimental and theoretical study of

interaction between organic Studies and signed liquid interactions of

Semijeci And Jiquid interactions of comparticipation of the second seco Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains:

https://www.doi.org/10.1021/je8005826 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526 https://www.doi.org/10.1021/je700664g https://www.doi.org/10.1021/je100341g https://www.doi.org/10.1021/je1002237 https://www.doi.org/10.1021/je0603630 https://www.doi.org/10.1021/je800218g https://www.doi.org/10.1021/acs.jced.7b00160 https://www.doi.org/10.1021/acs.jced.8b00635 https://www.doi.org/10.1016/j.fluid.2013.10.037 https://www.doi.org/10.1016/j.jct.2014.04.020 https://www.doi.org/10.1016/j.fluid.2013.09.023 https://www.doi.org/10.1016/j.jct.2018.05.017 https://www.doi.org/10.1016/j.jct.2018.08.028 https://www.doi.org/10.1021/je400813d https://www.doi.org/10.1016/j.jct.2008.08.013 https://www.doi.org/10.1021/acs.jced.7b00840 https://www.doi.org/10.1021/je800468h https://www.doi.org/10.1016/j.fluid.2015.11.037 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je049616k https://www.doi.org/10.1021/je020067x Chuitistion no example in the end of the end https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/acs.jced.8b01193 https://www.doi.org/10.1021/acs.jced.5b00268 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/je200252c https://www.doi.org/10.1021/je800200j https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1016/j.fluid.2007.03.032 https://www.doi.org/10.1016/j.fluid.2014.06.021 https://www.doi.org/10.1016/j.tca.2009.07.011

https://www.doi.org/10.1016/j.fluid.2012.05.006

KDB Pure (Korean Thermophysical Properties Databank): Solubility and Thermodynamic

 Functions of Isatin in Pure Solvents:

 Synthesis and Solubility of

 5,5-Dimethyl-2-(phenyl(phenylamino)methyl)-1,3,2-dioxaphosphinane

 Address Strike Prostiegt Strike

Solutions I. LiFSI with Valeronitrile, Soluti

Solubilities of

Solubilities of https://www.doi.org/10.1021/je4000982 4-Amino-4?-nitrodiphenyl Sulfide in Six Distant Solution were and the second se

containing Thermodynamic Studies Rin Solubility fos (Namonalana and Salvamis de Onic Branto III de III Official Configurations de Onic Branto III de III Official Configurations Jenzotriazole in Different Pure Separation of Solubility of Tetraphenyl Polekility of Jetraphenyl

Activity Coefficients at Infinite Dilution

Activity Coefficients at Infinite Dilution https://www.doi.o of Organic Compounds in Four New inites://www.doi.o https://www.doi.o https:/

(293.15 to 313.15) K: Total Vapor Pressure Measurements Total Vapor Pressure Measurements for 2-Ethoxyethanol with Carbon Activity Inconstruction of the second sec Toluene, and 2-Nitrotoluene:

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526

https://www.doi.org/10.1021/je500396b

https://www.doi.org/10.1016/j.fluid.2008.07.016 https://www.doi.org/10.1021/acs.jced.8b00590

https://www.doi.org/10.1016/j.fluid.2018.06.008

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526

https://www.doi.org/10.1021/je4000982

https://www.doi.org/10.1021/acs.jced.9b00064

https://www.doi.org/10.1021/acs.jced.7b01085

https://www.doi.org/10.1021/je500678z

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je200195g

https://www.doi.org/10.1021/je900784v

https://www.doi.org/10.1021/acs.jced.6b00970

https://www.doi.org/10.1021/je900540d

http://pubs.acs.org/doi/abs/10.1021/ci990307I

https://www.doi.org/10.1021/je034153o

https://www.doi.org/10.1021/je4001894

https://www.doi.org/10.1021/acs.jced.6b00164

https://www.doi.org/10.1016/j.jct.2017.07.012

https://www.doi.org/10.1021/je500286x

https://www.doi.org/10.1016/j.fluid.2014.11.020

https://www.doi.org/10.1016/j.jct.2011.09.028

https://www.doi.org/10.1021/je049907t

Legend

af:	Acentric Factor
affp:	Proton affinity
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
gf:	Standard Gibbs free energy of formation
gyrad:	Radius of Gyration
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpah:	NFPA Health Rating
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
sl:	Liquid phase molar entropy at standard conditions
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tbp:	Boiling point at given pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point
VC:	Critical Volume
zra:	Rackett Parameter

Latest version available from: https://www.chemeo.com/cid/31-051-0/Methylene-chloride.pdf Generated by Cheméo on 2024-04-29 15:32:25.847406713 +0000 UTC m=+16693994.767984026. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.