Methylene chloride

Other names: Aerothene MM

CH2Cl2

Chlorure de methylene DICHLOROMETHANE

F 30

F 30 (chlorocarbon)

FREON 30 HCC 30 Khladon 30

METHYLENE DICHLORIDE

Metaclen

Methane dichloride Methane, dichloro-

Methoklone

Methylene bichloride Metylenu chlorek NCI-C50102 NSC 406122

Narkotil R 30 R-30

Rcra waste number U080

Salesthin Solaesthin Soleana VDA Solmethine UN 1593

InChl=1S/CH2Cl2/c2-1-3/h1H2

InchiKey: YMWUJEATGCHHMB-UHFFFAOYSA-N

Formula: CH2Cl2
SMILES: CICCl
Mol. weight [g/mol]: 84.93
CAS: 75-09-2

Physical Properties

Property code Value Unit Source

o.f	0.1000		KDB
af	0.1990 628.00 ± 8.00	kJ/mol	NIST Webbook
affp	602.00 ± 8.00	kJ/mol	NIST Webbook
basg chl	-605.80 ± 8.40	kJ/mol	NIST Webbook
chl	-602.50	kJ/mol	NIST Webbook
dm	1.80	debye	KDB
gf	-68.91	kJ/mol	KDB
gyrad	2.4320	l. I/aa al	KDB
hf	-95.70 ± 1.30	kJ/mol	NIST Webbook
hf	-95.46	kJ/mol	KDB
hf	-95.10 ± 2.50	kJ/mol	NIST Webbook
hfl	-124.30	kJ/mol	NIST Webbook
hfl	-124.10 ± 2.50	kJ/mol	NIST Webbook
hfus	6.74	kJ/mol	Joback Method
hvap	29.00	kJ/mol	NIST Webbook
hvap	29.03 ± 0.08	kJ/mol	NIST Webbook
hvap	30.60 ± 0.10	kJ/mol	NIST Webbook
hvap	28.80	kJ/mol	NIST Webbook
hvap	28.50 ± 0.42	kJ/mol	NIST Webbook
ie	11.33 ± 0.04	eV	NIST Webbook
ie	11.35 ± 0.02	eV	NIST Webbook
ie	11.36	eV	NIST Webbook
ie	11.33	eV	NIST Webbook
ie	11.28	eV	NIST Webbook
ie	11.40	eV	NIST Webbook
ie	11.40	eV	NIST Webbook
ie	11.32	eV	NIST Webbook
ie	11.32 ± 0.01	eV	NIST Webbook
log10ws	-0.63		Aqueous Solubility Prediction Method
log10ws	-0.63		Estimated Solubility Method
logp	1.421		Crippen Method
mcvol	49.430	ml/mol	McGowan Method
nfpah	%!d(float64=2)		KDB
рс	6100.00	kPa	KDB
рс	6355.00 ± 15.00	kPa	NIST Webbook
rinpol	548.40		NIST Webbook
rinpol	520.00		NIST Webbook
rinpol	528.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	488.00		NIST Webbook
rinpol	480.00		NIST Webbook
rinpol	520.00		NIST Webbook

rinnal	524.00	NIST Webbook
rinpol rinpol	531.60	NIST Webbook
rinpol	512.70	NIST Webbook
rinpol	510.00	NIST Webbook
	514.00	NIST Webbook NIST Webbook
rinpol	531.00	NIST Webbook NIST Webbook
rinpol		
rinpol	513.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	511.00	NIST Webbook
rinpol	527.00	NIST Webbook
rinpol	528.00	NIST Webbook
rinpol	529.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	540.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	512.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	504.00	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	527.00	NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	497.90	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	553.70	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	486.00	NIST Webbook
rinpol	518.00	NIST Webbook
rinpol	506.30	NIST Webbook
rinpol	520.00	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	537.90	NIST Webbook
rinpol	537.80	NIST Webbook
rinpol	515.00	NIST Webbook
rinpol	516.90	NIST Webbook
rinpol	508.00	NIST Webbook
rinpol	504.90	NIST Webbook
rinpol	518.00	NIST Webbook
	3.3.00	

rinpol	542.20		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	511.00		NIST Webbook
rinpol	512.70		NIST Webbook
rinpol	553.50		NIST Webbook
rinpol	555.90		NIST Webbook
rinpol	516.50		NIST Webbook
rinpol	540.00		NIST Webbook
·	919.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol			
ripol	946.00		NIST Webbook
ripol	935.70		NIST Webbook
ripol	932.62		NIST Webbook
ripol	926.65		NIST Webbook
ripol	933.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	914.00		NIST Webbook
ripol	931.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	905.00		NIST Webbook
ripol	937.20		NIST Webbook
ripol	936.00		NIST Webbook
ripol	927.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	953.00		NIST Webbook
ripol	944.00		NIST Webbook
ripol	932.00		NIST Webbook
ripol	944.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	927.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	948.00		NIST Webbook
ripol	937.20		NIST Webbook
ripol	917.00		NIST Webbook
ripol	914.00		NIST Webbook
ripol	933.00		NIST Webbook
ripol	937.00		NIST Webbook
ripol	912.00		NIST Webbook
ripol	928.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	925.00		NIST Webbook
sl	174.50	J/mol×K	NIST Webbook
tb	313.30 ± 0.30	K	NIST Webbook
	0.0.00 2 0.00		

tb	314.70 ± 0.50	K	NIST Webbook
tb	312.95 ± 0.30	K	NIST Webbook
tb	313.35 ± 0.20	K	NIST Webbook
tb	313.20 ± 1.00	K	NIST Webbook
tb	313.20 ± 0.50	K	NIST Webbook
tb	313.00	K	NIST Webbook
tb	314.95 ± 0.50	K	NIST Webbook
tb	312.95 ± 0.50	K	NIST Webbook
tb	313.00	K	KDB
tb	312.93 ± 0.20	K	NIST Webbook
tb	312.92 ± 0.07	K	NIST Webbook
tb	313.15 ± 1.00	K	NIST Webbook
tc	510.00	K	NIST Webbook
tc	510.00	K	KDB
tc	508.00 ± 0.20	K	NIST Webbook
tf	178.01	K	KDB
tf	176.00 ± 1.50	K	NIST Webbook
tf	198.06 ± 0.40	K	NIST Webbook
tf	176.65 ± 0.40	K	NIST Webbook
tf	177.00 ± 2.00	K	NIST Webbook
tf	177.62	K	Aqueous Solubility Prediction Method
VC	0.190	m3/kmol	Joback Method
zra	0.26		KDB

Temperature Dependent Properties

cpg 55.35 J/molxK 297.14 Joback Method cpg 65.49 J/molxK 448.32 Joback Method cpg 63.64 J/molxK 418.08 Joback Method cpg 61.71 J/molxK 387.85 Joback Method cpg 59.68 J/molxK 357.61 Joback Method cpg 57.56 J/molxK 327.38 Joback Method cpg 67.25 J/molxK 478.55 Joback Method cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook cpl 100.00 J/molxK 298.10 NIST Webbook	Property code	Value	Unit	Temperature [K]	Source
cpg 63.64 J/molxK 418.08 Joback Method cpg 61.71 J/molxK 387.85 Joback Method cpg 59.68 J/molxK 357.61 Joback Method cpg 57.56 J/molxK 327.38 Joback Method cpg 67.25 J/molxK 478.55 Joback Method cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	55.35	J/mol×K	297.14	Joback Method
cpg 61.71 J/molxK 387.85 Joback Method cpg 59.68 J/molxK 357.61 Joback Method cpg 57.56 J/molxK 327.38 Joback Method cpg 67.25 J/molxK 478.55 Joback Method cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	65.49	J/mol×K	448.32	Joback Method
cpg 59.68 J/molxK 357.61 Joback Method cpg 57.56 J/molxK 327.38 Joback Method cpg 67.25 J/molxK 478.55 Joback Method cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	63.64	J/mol×K	418.08	Joback Method
cpg 57.56 J/molxK 327.38 Joback Method cpg 67.25 J/molxK 478.55 Joback Method cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	61.71	J/mol×K	387.85	Joback Method
cpg 67.25 J/molxK 478.55 Joback Method cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	59.68	J/mol×K	357.61	Joback Method
cpl 100.50 J/molxK 292.50 NIST Webbook cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	57.56	J/mol×K	327.38	Joback Method
cpl 100.80 J/molxK 292.50 NIST Webbook cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpg	67.25	J/mol×K	478.55	Joback Method
cpl 102.30 J/molxK 298.15 NIST Webbook cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpl	100.50	J/mol×K	292.50	NIST Webbook
cpl 105.50 J/molxK 303.20 NIST Webbook cpl 100.00 J/molxK 298.00 NIST Webbook	cpl	100.80	J/mol×K	292.50	NIST Webbook
cpl 100.00 J/molxK 298.00 NIST Webbook	cpl	102.30	J/mol×K	298.15	NIST Webbook
·	cpl	105.50	J/mol×K	303.20	NIST Webbook
cpl 100.00 J/mol×K 298.10 NIST Webbook	cpl	100.00	J/mol×K	298.00	NIST Webbook
	cpl	100.00	J/mol×K	298.10	NIST Webbook

cpl	129.30	J/mol×K	298.00	NIST Webbook
dvisc	0.0014784	Paxs	183.58	Joback Method
dvisc	0.0026264	Paxs	160.87	Joback Method
dvisc	0.0006594	Paxs	229.00	Joback Method
dvisc	0.0004912	Paxs	251.72	Joback Method
dvisc	0.0003842	Paxs	274.43	Joback Method
dvisc	0.0003120	Paxs	297.14	Joback Method
dvisc	0.0009444	Paxs	206.29	Joback Method
hfust	6.16	kJ/mol	178.20	NIST Webbook
hfust	6.16	kJ/mol	178.22	NIST Webbook
hfust	6.16	kJ/mol	178.20	NIST Webbook
hvapt	28.06	kJ/mol	313.00	NIST Webbook
hvapt	30.20	kJ/mol	273.00	NIST Webbook
hvapt	29.00	kJ/mol	347.00	NIST Webbook
hvapt	30.30	kJ/mol	287.50	NIST Webbook
hvapt	29.20	kJ/mol	308.00	NIST Webbook
hvapt	29.40	kJ/mol	249.00	NIST Webbook
pvap	45.70	kPa	291.90	Effect of
ртар	10.70	NI C	201.00	Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane
pvap	69.33	kPa	302.67	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)
pvap	197.94	kPa	333.15	Vapor Liquid Equilibrium and Excess Enthalpy Data for Systems Containing N,N-Dimethylacetamide
pvap	70.49	kPa	303.15	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Carbon Tetrachloride, Chloroform, and Dichloromethane at 303.15 K
pvap	79.99	kPa	306.43	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)

pvap	53.33	kPa	296.05	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	58.66	kPa	298.41	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	85.33	kPa	308.17	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	90.66	kPa	309.82	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	95.99	kPa	311.39	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	37.10	kPa	287.00	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
pvap	67.40	kPa	301.80	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
pvap	63.99	kPa	300.61	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	

pvap	37.33	kPa	287.58	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols	
pvap	41.33	kPa	289.94	(C1 - C4) Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols	
pvap	45.33	kPa	292.12	(C1 - C4) Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	49.33	kPa	294.15	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	55.90	kPa	296.80	Effect of Dissolved Poly(lactic acid) on the Solubility of CO2, N2, and He Gases in Dichloromethane	
pvap	34.66	kPa	285.89	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
pvap	74.66	kPa	304.61	Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1 - C4)	
rfi	1.42760		288.15 N,N'-1	Partial Molar Volumes of ,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K	

rfi	1.42190		298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.43050		283.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.42370		293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.42370		293.15 Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents
rfi	1.42510		293.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rhol	1325.67	kg/m3	293.15 Volumetric properties of dichloromethane with aniline or nitrobenzene at
			different temperatures: A theoretical and experimental study

rhol	1307.90	kg/m3	303.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1334.81	kg/m3	288.15	Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study	
rhol	1317.00	kg/m3	298.00	KDB	
rhol	1325.79	kg/m3	293.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1316.75	kg/m3	298.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
rhol	1307.51	kg/m3	303.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	

rhol	1307.60	kg/m3	303.15	Viscosity and Density for Binary Mixtures of Carbon Tetrachloride + Chloroform, Carbon Tetrachloride + Dichloromethane, and Chloroform + Dichloromethane and One Ternary Mixture of Chloroform + 1:1 (Carbon Tetrachloride + Dichloromethane) at 303.15 K	
rhol	1327.00	kg/m3	293.15	Interfacial Properties, Densities, and Contact Angles of Task Specific Ionic Liquids	
rhol	1334.08	kg/m3	288.15	Volumetric properties of binary liquid mixtures: Application of the Prigogine Flory Patterson theory to excess molar volumes of dichloromethane with benzene or toluene	
srf	0.03	N/m	293.20	KDB	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	313.25	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.43555e+01
Coeff. B	-2.65134e+03
Coeff. C	-4.07080e+01
Temperature range (K), min.	229.18
Temperature range (K), max.	510.00

Information Value

pvap
$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
8.08779e+01
-6.03061e+03
-1.00863e+01
9.81251e-06
178.01
510.00

Sources

Study of Ether-, Alcohol-, or https://www.doi.org/10.1021/je900838a

Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Wsasylreness and Oricelation of place of place

dichloromethane + Ռուսթութ թույլերի Restigation :Method: http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa **Conductivities of Binary Mixtures of**

https://www.doi.org/10.1021/je800468h https://www.doi.org/10.1021/je4001334

https://www.doi.org/10.1021/acs.jced.7b00244

https://www.doi.org/10.1021/je060138i

Activity Coefficients of Several Organic solutions of Several Organic solutions of Several Organic solutions of Several Organic solutions of Several Organic Several Organic Several Organic Several Organic Several Organic Organic Several Organic O https://www.doi.org/10.1016/j.jct.2012.11.021

https://www.doi.org/10.1021/je200822w

https://www.doi.org/10.1021/je100890f

Compounds with the Ionic Liquid คนเม่น https://www.doi. เพิ่มผู้เม่าคละเก็บโดยเก็บโด

Acid S-2-Benzothiazolyl Ester in Different Pure Solvents and Binary Mixtures of Tetrahydrofuran +

lonic Liquids with Polar Solvents: Solubilities of Rutaecarpine in Twelve Organic Solvents from (283.2 to 323.2) Retermination of Infinite Dilution

Dichloromethane or 1,2-Dichloroethane:

```
High-Pressure Vapor-Liquid Equilbria
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je0498560
 of Some Carbon Dioxide + Organic

Evelve to នៃ ស្រីស្រី Performance of

Trigeminal Tricationic Ionic Liquids for

Sepunitios profilemy phosphinic Acid,
                                                                                                                                                                                                                                https://www.doi.org/10.1021/je201129y
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je1009812
Settabilitias pro Plenylphosphinic Acid, Methylphenylphosphinic Acid, Methylphosphinic Acid, Methylp
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2018.05.017
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900540d
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je800218g
                                                                                                                                                                                                                                https://www.doi.org/10.1021/je049907t
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900694m
                                                                                                                                                                                                                                http://webbook.nist.gov/cgi/cbook.cgi?ID=C75092&Units=SI
Activity Coefficients at Infinite Dilution of Polar Solutes in Infinite Dilution in Infinite 
  Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je900704b
  Containing Linear Perfluoroalkanes:
Solubilities of Phosphorus-Containing
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je100341q
 Compounds in Selected Solvents:
Gas Solubilities (CO2, O2, Ar, N2, H2,
and He) in Liquid Chlorinated
Werrandsynamics and activity
coefficients at infinite dilution for
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je800200j
                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2017.07.012
Solubility disperses antiaxide Gorigination https://www.doi.org/10.1021/je020150k

January Harris Francisco Control of the Con
   Sejuhilityd Masure antang เดือาสาสาร์ ion https://www.doi.org/10.1021/acs.jced.6b00664
                                                                                                                                                                                                                               http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
   Thermodynamic Studies of Solubility
                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.9b00064
for Naphthalene in 12 Solvents from pronsities of Excess Molar Volumes for Binary Mixtures of Ionic Liquid Measurement of institute properficients at
                                                                                                                                                                                                                               https://www.doi.org/10.1021/je1002237
                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2007.01.004
 https://www.doi.org/10.1021/acs.jced.6b00164
                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.5b00268
                                                                                                                                                                                                                                https://www.doi.org/10.1021/je900784v
                                                                                                                                                                                                                                 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526
                                                                                                                                                                                                                                https://www.doi.org/10.1021/je0341530
For 2-Ethoxyethanol with Carbon Solutoinity of Gravolin Adjunt https://www.doi.org/10.1021/je050242k https://www.doi.org/10.1021/je050242k https://www.doi.org/10.1016/j.jct.2015.02.023 https://www.doi.org/10.1016/j.jct.2015.02.023 parangers solutes in Petryninason of the tlased of maid parangers solutes in Petryninason of the tlased of maid parangers solutes in Petryninason of the tlased of maid parangers in the silver of the tlased of maid parangers in the silver of the si
                                                                                                                                                                                                                                http://link.springer.com/article/10.1007/BF02311772
 1,2-dichloroethane:
Determination of Activity Coefficients
                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.8b00635
  at Infinite Dilution of Solutes in
  N,N'-Di(2-ethylhexyl)isobutyramide
```

Using Inverse Gas-Liquid Chromatography:

```
Solubility of
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je4005992
 3,4-Bis(3-nitrofurazan-4-yl)furoxan in
theminoialsonopatisea. Tempisianusso
Contach Angles of Just Spesific Ionic
Thurways Handbook of Vapor
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je900502s
                                                                                                                                                                                                                            https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
  Pressure:
Viscosity and Density for Binary
Viscosity and Density for Binary

Mixtures of Carbon Tetrachloride +
Calid Large English of the +
Did Large English of the +
Did Large English of the through the phosphoramidic of the phosphoramidic
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je020067x
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je4010917
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je7007389
                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.9b00432
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je700640r
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je700664g
                                                                                                                                                                                                                           https://www.doi.org/10.1021/je1005517
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je049616k
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2014.06.021
 FAthanou 4 Dismonomerations a servicely system in the service of t
                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.6b00970
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je8005826
Volupartriar properties of dichloromethane with aniline or highbertriar properties of dichloromethane with aniline or highbertriar with aniline or highbertriar with aniline or highbertriar with aniline or highbertriar with a sent which are incorrected and sent with a sent of an incorrected with the sent of the sent o
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2008.08.013
                                                                                                                                                                                                                           https://www.doi.org/10.1021/je101130e
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2013.09.023
                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b00590
                                                                                                                                                                                                                           https://www.doi.org/10.1021/je060305e
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je3010535
                                                                                                                                                                                                                           https://www.doi.org/10.1021/je700560s
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2011.09.028
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2007.03.032
Co-solvent effects in LLE of
1-hydroxyethyl-3-methylimidazolium
Siedy of Metalagitan-perpensional of the Company of the Compan
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2007.02.020
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2014.11.020
                                                                                                                                                                                                                           https://www.doi.org/10.1021/je800754w
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.tca.2017.05.005
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2014.04.020
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je500678z
                                                                                                                                                                                                                            https://en.wikipedia.org/wiki/Joback_method
  Mixed Solvents:
Determination and correlation of
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2015.02.022
 https://www.doi.org/10.1021/acs.jced.9b00445
                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b00581
  PronCpsq178115 to 323.85 K:
Vapor Liquid Equilibrium and Excess
                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.7b00119
 Enthalpy Data for Systems Containing Manning M
                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.7b00160
                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.7b01085
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je4000982
     §elubilities of
4-Amino-4?-nitrodiphenyl Sulfide in Six
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.tca.2012.06.025
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2015.08.016
                                                                                                                                                                                                                           https://www.doi.org/10.1021/je800658v
                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2014.06.021
                                                                                                                                                                                                                            https://www.doi.org/10.1021/je700069g
     Temperatures:
```

Partition Coefficients of Organic https://www.doi.org/10.1021/je200637v Compounds in Four New Sepatationanhinanhmixtures based on https://www.doi.org/10.1016/j.jct.2017.12.012 The second of th https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526 Carbon Dioxide: Infinite dilution activity coefficients of Carbon Dioxide:
Infinite dilution activity coefficients of volatile organic compounds in two lattice organic solutes in s https://www.doi.org/10.1016/j.jct.2013.05.035 ww.doi.org/10.1021/acs.jced.7b00585 https://www.doi.org/10.1016/j.fluid.2012.05.006 https://www.doi.org/10.1021/acs.jced.8b01193 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1526 นายเลือก แต่นโป อาการเลือกลาง หา Experimental Determination and พิเศลร์ Higher and Corienation of Solubilities of Indole-2-carboxylic Acid คิดโนค์ เป็นเอริง ได้เลือก เลือก คิดโนค์ เป็นเอริง ได้เลือก คิดโนค์ เมื่อเลือก โดก เลือก เลือก โดก เลือก เลือก เลือก โดก เลือก เลือก เลือก โดก เลือก เลือก เลือก เลือก เลือก เลือก เลือก โดก เลือก เ https://www.doi.org/10.1021/je400813d https://www.doi.org/10.1021/je8007815 https://www.doi.org/10.1021/je4001894 this in the content of the content o https://www.doi.org/10.1021/je7004038 https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1021/acs.jced.8b01017 https://www.doi.org/10.1021/acs.jced.5b00007 https://www.doi.org/10.1016/j.fluid.2015.11.037 https://www.doi.org/10.1016/j.fluid.2018.06.008 https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1016/j.fluid.2008.07.016 Poterio natáro ลางได้ ตาเหลือ system: Solubility of N<u>-t</u>ertbutylacrylamide in https://www.doi.org/10.1021/acs.jced.5b00135 https://www.doi.org/10.1021/je500396b **Sevenilitýrfanch Tlaunnoi dy**natmic Tungionale (sativite rupe Sotvents: setubility of Rifapentine in Different Organic Solvents: https://www.doi.org/10.1021/je7007457

Legend

af: Acentric Factoraffp: Proton affinitybasg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

cpl: Liquid phase heat capacity

dm: Dipole Momentdvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices ripol: Polar retention indices

sl: Liquid phase molar entropy at standard conditions

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/31-051-0/Methylene-chloride.pdf

Generated by Cheméo on 2025-12-23 01:17:09.787638629 +0000 UTC m=+6200827.317679283.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.