tetramethylammonium bromide

Inchi:	InChI=1S/C4H12N.BrH/c1-5(2,3)4;/h1-4H3;1H/q+1;/p-1
InchiKey:	DDFYFBUWEBINLX-UHFFFAOYSA-M
Formula:	C4H12BrN
SMILES:	C[N+](C)(C)C.[Br-]
Mol. weight [g/mol]:	154.05
CAS:	64-20-0

Physical Properties

Property code	Value	Unit	Source
SS	200.79	J/mol×K	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cps	159.40	J/mol×K	298.00	NIST Webbook	
cps	161.67	J/mol×K	298.15	NIST Webbook	

Sources

Electrical Conductance of Some Tetraalkylammonium Bromide Salts in Sustaes vand Miselar-Properties of lonic in wird S De the sustaining a t emperatures: Apparent Molar Volumes and Isentropic https://www.doi.org/10.1021/acs.jced.5b00964 Apparent Molar Volumes and Isentropic Apparent Molar Volumes and Isentropic Compressibilities of Yetsametra intervention glycing alanine, alyce all senteness along all senteness allong allon a and D2O at Temperatures in the Range (283.15 to 338.15) K:

https://www.doi.org/10.1021/je4004405 https://www.doi.org/10.1016/j.jct.2006.08.010 http://webbook.nist.gov/cgi/cbook.cgi?ID=C64200&Units=SI https://www.doi.org/10.1016/j.fluid.2018.03.002

Legend

cps:Solid phase heat capacityss:Solid phase molar entropy at standard conditions

Latest version available from:

https://www.chemeo.com/cid/31-378-8/tetramethylammonium-bromide.pdf

Generated by Cheméo on 2024-05-04 00:38:49.183763053 +0000 UTC m=+17072378.104340368.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.