1,2-Benzenediol

Other names: 1,2-Benzenediol (pyrocatechol)

1,2-Dihydroxybenzene

2-Hydroxyphenol

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-,(2R-trans)-

Benzene, o-dihydroxy-

CATECHOL

Catechol (phenol)
Durafur developer c
Fouramine pch
Fourrine 68

Kachin Katechol NCI-C55856 NSC 1573

O-DIHYDROXYBENZENE

Oxyphenic acid
PYROCATECHOL
Pelagol grey c

Phthalhydroquinone

Pyrocatechine
Pyrokatechin
Pyrokatechol

benzene, 1,2-dihydroxy-

c.i. 76500

c.i. Oxidation base 26

o-Benzenediol o-Dioxybenzene o-Diphenol

o-Hydroquinone o-Hydroxyphenol o-Phenylenediol

o-catecol

InChl=1S/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-4,7-8H

InchiKey: YCIMNLLNPGFGHC-UHFFFAOYSA-N

Formula: C6H6O2 SMILES: Oc1cccc1O

Mol. weight [g/mol]: 110.11 CAS: 120-80-9

Physical Properties

Property code	Value	Unit	Source
chs	-2862.00	kJ/mol	NIST Webbook
chs	-2865.49 ± 0.74	kJ/mol	NIST Webbook
chs	-2874.00	kJ/mol	NIST Webbook
chs	-2856.30 ± 1.10	kJ/mol	NIST Webbook
chs	-2864.50 ± 0.80	kJ/mol	NIST Webbook
gf	-187.56	kJ/mol	Joback Method
hf	-267.50 ± 1.90	kJ/mol	NIST Webbook
hf	-274.80 ± 1.20	kJ/mol	NIST Webbook
hf	-271.60 ± 2.00	kJ/mol	NIST Webbook
hf	-262.50	kJ/mol	NIST Webbook
hfs	-354.10 ± 1.10	kJ/mol	NIST Webbook
hfs	-344.00	kJ/mol	NIST Webbook
hfs	-353.10 ± 1.10	kJ/mol	NIST Webbook
hfs	-362.30 ± 1.10	kJ/mol	NIST Webbook
hfus	22.87	kJ/mol	Di-Hydroxybenzenes: Catechol, Resorcinol, and Hydroquinone. Enthalpies of Phase Transitions Revisited
hsub	86.60 ± 1.60	kJ/mol	NIST Webbook
hsub	86.60	kJ/mol	NIST Webbook
hsub	81.50	kJ/mol	NIST Webbook
hsub	87.50 ± 0.29	kJ/mol	NIST Webbook
hsub	87.50	kJ/mol	NIST Webbook
hsub	87.50 ± 0.30	kJ/mol	NIST Webbook
hsub	86.60 ± 1.60	kJ/mol	NIST Webbook
hvap	71.90 ± 0.80	kJ/mol	NIST Webbook
ie	8.56	eV	NIST Webbook
ie	8.15	eV	NIST Webbook
log10ws	0.62		Estimated Solubility Method
log10ws	0.62		Aqueous Solubility Prediction Method
logp	1.098		Crippen Method
mcvol	83.380	ml/mol	McGowan Method
рс	7561.44	kPa	Joback Method
rinpol	1215.00		NIST Webbook
rinpol	1219.00		NIST Webbook
rinpol	1199.80		NIST Webbook
rinpol	1201.00		NIST Webbook
rinpol	1197.00		NIST Webbook

rinpol	1210.00		NIST Webbook
rinpol	1219.00		NIST Webbook
rinpol	1197.00		NIST Webbook
rinpol	1197.00		NIST Webbook
ripol	2657.00		NIST Webbook
ripol	2661.00		NIST Webbook
tb	518.20	K	NIST Webbook
tb	519.05 ± 0.50	K	NIST Webbook
tb	518.80 ± 0.40	K	NIST Webbook
tb	518.75	K	KDB
tb	513.00	K	NIST Webbook
tc	766.85	K	Joback Method
tf	377.00	K	Enthalpies of formation of dihydroxybenzenes revisited: Combining experimental and high-level ab initio data
tf	377.70 ± 0.10	K	NIST Webbook
tf	376.90 ± 0.30	K	NIST Webbook
tf	378.85	K	Liquid Liquid Equilibria for the Ternary System Methyl Isobutyl Ketone + 1,2-Benzenediol + Water
tf	378.15	K	Liquid pharmaceuticals formulation by eutectic formation
tf	378.35	K	Aqueous Solubility Prediction Method
tf	378.00	K	NIST Webbook
tf	378.00 ± 1.00	K	NIST Webbook
tf	376.55 ± 0.50	K	NIST Webbook
tf	376.35 ± 0.50	K	NIST Webbook
tf	377.15	K	KDB
tt	377.50 ± 0.20	K	NIST Webbook
VC	0.196	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	226.33	J/mol×K	766.85	Joback Method
cpg	215.32	J/mol×K	684.44	Joback Method
cpg	209.18	J/mol×K	643.24	Joback Method
cpg	202.41	J/mol×K	602.03	Joback Method
cpg	194.85	J/mol×K	560.83	Joback Method
cpg	186.33	J/mol×K	519.62	Joback Method

cpg	220.99	J/mol×K	725.65	Joback Method	
cps	140.17	J/mol×K	298.15	NIST Webbook	
cps	139.30	J/mol×K	297.90	NIST Webbook	
cps	156.90	J/mol×K	323.00	NIST Webbook	
cps	132.20	J/mol×K	298.00	NIST Webbook	
cps	140.60	J/mol×K	298.15	NIST Webbook	
dvisc	0.0000251	Paxs	519.62	Joback Method	
dvisc	0.0009603	Paxs	394.72	Joback Method	
dvisc	0.0000684	Paxs	477.99	Joback Method	
dvisc	0.0002260	Paxs	436.35	Joback Method	
dvisc	0.0001210	Paxs	457.17	Joback Method	
dvisc	0.0000406	Paxs	498.80	Joback Method	
dvisc	0.0004493	Paxs	415.54	Joback Method	
hfust	22.76	kJ/mol	377.50	NIST Webbook	
hfust	22.76	kJ/mol	337.50	NIST Webbook	
hfust	22.01	kJ/mol	376.90	NIST Webbook	
hfust	18.55	kJ/mol	377.60	NIST Webbook	
hfust	22.87	kJ/mol	377.60	NIST Webbook	
hfust	22.00	kJ/mol	376.85	NIST Webbook	
hfust	22.01	kJ/mol	376.90	NIST Webbook	
hfust	22.54	kJ/mol	377.70	NIST Webbook	
hsubt	81.00 ± 2.00	kJ/mol	309.00	NIST Webbook	
hsubt	80.00 ± 0.50	kJ/mol	302.50	NIST Webbook	
hvapt	61.20	kJ/mol	408.50	NIST Webbook	
hvapt	63.10	kJ/mol	457.00	NIST Webbook	
psub	8.69e-04	kPa	308.60	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	8.03e-04	kPa	307.60	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	8.52e-04	kPa	308.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	

psub 2.19e-04 kPa 295.30 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 295.30 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
nsuh 2.32e-04 kPa 295.90 Vanor Pressure	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub 2.37e-04 kPa 296.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub 9.90e-04 kPa 309.80 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub 2.44e-04 kPa 296.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub 2.73e-04 kPa 297.30 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub 3.01e-04 kPa 298.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	

psub	2.98e-04	kPa	298.30	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	3.47e-04	kPa	299.40	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	3.72e-04	kPa	300.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	3.79e-04	kPa	300.30	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	4.23e-04	kPa	301.40	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	4.68e-04	kPa	302.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	4.63e-04	kPa	302.30	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	

psub	5.43e-04	kPa	303.50	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	5.77e-04	kPa	304.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	5.83e-04	kPa	304.40	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	6.57e-04	kPa	305.60	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	7.19e-04	kPa	306.10	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	6.98e-04	kPa	306.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	2.42e-04	kPa	296.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	

pvap	742.90	kPa	621.80	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	4007.00	kPa	753.50	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	2997.00	kPa	727.90	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	81.47	kPa	511.30	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	147.00	kPa	535.70	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	187.40	kPa	547.00	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	349.10	kPa	577.60	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	

pvap	487.90	kPa	595.60	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	499.40	kPa	597.30	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	3993.00	kPa	754.80	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	988.90	kPa	640.10	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	992.80	kPa	640.90	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	1995.00	kPa	692.70	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	1996.00	kPa	692.70	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	

pvap	2496.00	kPa	711.50	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
pvap	2993.00	kPa	727.50	Critical Point and Vapor Pressure Measurements for Four Compounds by a Low Residence Time Flow Method	
rhos	1346.00	kg/m3	298.15	Liquid Liquid Equilibria for the Ternary System n-Butyl Acetate + Pyrocatechol + Water at Different Temperatures at 101.3 kPa	
sfust	60.30	J/mol×K	337.50	NIST Webbook	
sfust	58.00	J/mol×K	376.85	NIST Webbook	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	412.20	К	2.95	Vapour pressure data for 2-n-propylresorcino 4-ethylresorcinol and 4-hexylresorcinol near their normal boiling points measured by differential scanning calorimetry
tbp	418.60	К	3.93	Vapour pressure data for 2-n-propylresorcino 4-ethylresorcinol and 4-hexylresorcinol near their normal boiling points measured by differential scanning calorimetry

tbp	423.80	К	4.93	Vapour pressure data for 2-n-propylresorcinol, 4-ethylresorcinol and 4-hexylresorcinol near their normal boiling points measured by differential scanning	
				calorimetry	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.80971e+01
Coeff. B	-7.00435e+03
Coeff. C	1.50900e+00
Temperature range (K), min.	377.60
Temperature range (K), max.	546.32

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	1.05944e+02
Coeff. B	-1.15782e+04
Coeff. C	-1.29321e+01
Coeff. D	6.78528e-06
Temperature range (K), min.	377.60
Temperature range (K), max.	764.00

Sources

https://www.doi.org/10.1021/acs.jced.7b00887

https://www.doi.org/10.1016/j.fluid.2016.11.005

https://www.doi.org/10.1016/j.fluid.2017.04.022

https://www.cheric.org/files/research/kdb/mol/mol862.mol

The Yaws Handbook of Vapor Pressure:

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Solubilities of resorcinol and pyrocathecol and their mixture in stipotorical real transfer is mixtured in the control of the c

SUBSTERMICE REPORTS SOURCES ON SOURCES ON SOLUTION DE NAVIOUR OF SOURCES ON THE PROPERTY OF TH

Measurements and Thermodynamic Modeling of Liquid-Liquid Equilibria
Biperionental centility amendappropyl
getalation of liquid-liquid equilibrium
talibrib (1888) dans (1886) at 1886 at 1886
with the second control of the second c

Phase equilibria of phenolic compounds in water or ethanol: Joback Method:

2-n-propylresorcinol, 4-ethylresorcinol https://www.doi.org/10.1016/j.jct.2019.03.008

2-n-propylresorcinol, 4-ethylresorcinol https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008

https://www.doi.org/10.1016/j.jct.2019.03.008 Vapour pressure data for

Dihydroxybenzene + Water at Butterens BenybeltayuPeselexiger Method: Data and Thermodynamic Modeling: Vapor Pressure Characterization of

Several Phenolics and Polyhydric Cismiol-Guide Devil Development of the Bernary Mestern Methyl Isobutyl Ketone + Lighed Light of 2-Pentanone/Mesityl Oxide Fighed Physics of 2-Pentanone/Mesityl Oxide Physics of 2-Pentanone gifayziroxybenzenes revisited:

Combining experimental and high-level ab initio data:

https://www.doi.org/10.1016/j.tca.2011.04.002

https://www.doi.org/10.1016/j.jct.2010.04.018

https://www.doi.org/10.1021/acs.jced.6b00280

https://www.doi.org/10.1021/je0602465

https://www.doi.org/10.1016/j.fluid.2017.05.009

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=862

https://www.doi.org/10.1021/acs.jced.9b00633

https://www.doi.org/10.1016/j.jct.2018.08.041

http://pubs.acs.org/doi/abs/10.1021/ci990307l

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.fluid.2017.09.008

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2019.03.008

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

http://webbook.nist.gov/cgi/cbook.cgi?ID=C120809&Units=SI

Liquid Liquid Equilibria for Octan-2-one https://www.doi.org/10.1021/acs.jced.9b00506

https://www.doi.org/10.1021/je050293h https://www.doi.org/10.1021/je5005559

https://www.doi.org/10.1021/acs.jced.8b00380

https://www.doi.org/10.1016/j.jct.2013.10.032

Legend

chs: Standard solid enthalpy of combustion

cpg: Ideal gas heat capacity Solid phase heat capacity cps:

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditions hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions Enthalpy of vaporization at a given temperature hvapt:

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp:

mcvol: McGowan's characteristic volume

pc: Critical Pressure

psub: Sublimation pressure

pvap: Vapor pressurerhos: Solid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

tb: Normal Boiling Point Temperature

tbp: Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/31-457-0/1-2-Benzenediol.pdf

Generated by Cheméo on 2025-12-23 02:29:30.34092906 +0000 UTC m=+6205167.870969713.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.