3-Hexanol, 2-methyl-

Other names: 1-Isopropyl-1-butanol

2-Methyl-3-hexanol 2-Methylhexan-3-ol 5-Methyl-4-hexanol

InChl=1S/C7H16O/c1-4-5-7(8)6(2)3/h6-8H,4-5H2,1-3H3

InchiKey: RGRUUTLDBCWYBL-UHFFFAOYSA-N

Formula: C7H16O

SMILES: CCCC(O)C(C)C

Mol. weight [g/mol]: 116.20 CAS: 617-29-8

Physical Properties

Property code	Value	Unit	Source	
gf	-133.64	kJ/mol	Joback Method	
hf	-350.60	kJ/mol	Joback Method	
hfus	10.93	kJ/mol	Joback Method	
hvap	47.08	kJ/mol	Joback Method	
log10ws	-1.89		Crippen Method	
logp	1.803		Crippen Method	
mcvol	115.360	ml/mol	McGowan Method	
рс	3149.09	kPa	Joback Method	
rinpol	858.00		NIST Webbook	
rinpol	858.00		NIST Webbook	
rinpol	854.00		NIST Webbook	
rinpol	852.00		NIST Webbook	
rinpol	858.00		NIST Webbook	
rinpol	858.00		NIST Webbook	
rinpol	853.00		NIST Webbook	
rinpol	858.00		NIST Webbook	
rinpol	858.00		NIST Webbook	
tb	417.00 ± 3.00	K	NIST Webbook	
tb	413.90 ± 2.00	K	NIST Webbook	
tb	414.65 ± 3.00	K	NIST Webbook	
tb	427.15 ± 5.00	K	NIST Webbook	
tb	414.65 ± 3.00	K	NIST Webbook	
tb	418.65 ± 3.00	K	NIST Webbook	
tc	618.05	K	Joback Method	

tf	199.47	K	Joback Method
VC	0.434	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	248.03	J/mol×K	450.86	Joback Method	
cpg	259.20	J/mol×K	478.73	Joback Method	
cpg	269.95	J/mol×K	506.59	Joback Method	
cpg	280.27	J/mol×K	534.46	Joback Method	
cpg	290.18	J/mol×K	562.32	Joback Method	
cpg	299.70	J/mol×K	590.19	Joback Method	
cpg	308.82	J/mol×K	618.05	Joback Method	
cpl	270.50	J/mol×K	261.93	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	270.20	J/mol×K	262.30	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	273.80	J/mol×K	265.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	274.50	J/mol×K	265.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	280.80	J/mol×K	270.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	281.30	J/mol×K	270.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	288.30	J/mol×K	275.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	288.80	J/mol×K	275.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	295.90	J/mol×K	280.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	296.40	J/mol×K	280.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	303.70	J/mol×K	285.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	304.20	J/mol×K	285.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	311.90	J/mol×K	290.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	312.50	J/mol×K	290.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	319.90	J/mol×K	295.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	320.60	J/mol×K	295.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	327.40	J/mol×K	300.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	328.40	J/mol×K	300.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	334.80	J/mol×K	305.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	335.60	J/mol×K	305.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	341.80	J/mol×K	310.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	342.60	J/mol×K	310.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	348.60	J/mol×K	315.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	349.10	J/mol×K	315.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	353.90	J/mol×K	320.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	354.60	J/mol×K	320.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	372.30	J/mol×K	380.00	Calorimetric and FTIR study of selected aliphatic heptanols
срІ	359.50	J/mol×K	325.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	362.80	J/mol×K	330.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	363.70	J/mol×K	330.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	366.10	J/mol×K	335.00	Calorimetric and FTIR study of selected aliphatic heptanols
срІ	367.20	J/mol×K	335.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	368.40	J/mol×K	340.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	369.60	J/mol×K	340.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	370.50	J/mol×K	345.00	Calorimetric and FTIR study of selected aliphatic heptanols
срІ	371.70	J/mol×K	345.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	372.50	J/mol×K	350.00	Calorimetric and FTIR study of selected aliphatic heptanols
cpl	373.70	J/mol×K	350.00	Calorimetric and FTIR study of selected aliphatic heptanols

cpl	373.90	J/mol×K	355.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	375.10	J/mol×K	355.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	374.50	J/mol×K	360.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	375.70	J/mol×K	360.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	374.60	J/mol×K	365.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	370.80	J/mol×K	382.85	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	374.20	J/mol×K	370.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	375.30	J/mol×K	370.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	373.10	J/mol×K	375.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	374.20	J/mol×K	375.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	371.60	J/mol×K	380.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	358.70	J/mol×K	325.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	370.50	J/mol×K	382.83	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	375.80	J/mol×K	365.00	Calorimetric and FTIR study of selected aliphatic heptanols	
dvisc	0.4386858	Paxs	199.47	Joback Method	
dvisc	0.0395574	Paxs	241.37	Joback Method	
dvisc	0.0072680	Paxs	283.27	Joback Method	

dvisc	0.0020664	Paxs	325.16	Joback Method
dvisc	0.0007829	Paxs	367.06	Joback Method
dvisc	0.0003619	Paxs	408.96	Joback Method
dvisc	0.0001931	Paxs	450.86	Joback Method
hvapt	55.70	kJ/mol	371.50	NIST Webbook

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	415.20	K	102.00	NIST Webbook

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.54383e+01
Coeff. B	-3.59470e+03
Coeff. C	-8.57700e+01
Temperature range (K), min.	323.03
Temperature range (K), max.	440.74

Sources

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C617298&Units=SI

The Yaws Handbook of Vapor https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Pressure:
Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Calorimetric and FTIR study of selected https://www.doi.org/10.1016/j.fluid.2016.04.003 aliphatic heptanols: https://en.wikipedia.org/wiki/Joback_method

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

Legend

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/31-651-4/3-Hexanol-2-methyl.pdf

Generated by Cheméo on 2024-04-19 16:22:40.200493544 +0000 UTC m=+15833009.121070856.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.