Carbonic acid, dimethyl ester

Other names: CH3OCOOCH3; Dimethyl carbonate; Dimethyl ester of carbonic acid; Methyl carbonate; Methyl carbonate ((MeO)2CO); UN 1161.

InChI: InChI=1S/C3H6O3/c1-5-3(4)6-2/h1-2H3

InChI Key: IEJIGPNLZYLBP-UHFFFAOYSA-N

Formula: C3H6O3

SMILES: COC(=O)OC

Molecular Weight: 90.08

CAS: 616-38-6

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAff</td>
<td>830.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>BasG</td>
<td>799.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Δ_G°</td>
<td>-364.54</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_H^\circ_{gas}$</td>
<td>-482.27</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{fus}H^\circ$</td>
<td>7.50</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{vap}H^\circ$</td>
<td>38.00 ± 0.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{vap}H^\circ$</td>
<td>37.70 ± 0.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>11.00</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>11.20</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>11.00</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\log P_{oct/wat}$</td>
<td>0.40</td>
<td></td>
<td>Crippen Method</td>
</tr>
<tr>
<td>P_c</td>
<td>4800.00 ± 150.00</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.60 ± 0.10</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.70</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.60 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.60 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.40 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.50 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.50 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>363.50 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>557.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>557.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>267.55 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>V_{c}</td>
<td>0.25</td>
<td>m³/kg-mol</td>
<td>Joback Method</td>
</tr>
</tbody>
</table>

Temperature Dependent Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Temperature (K)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{p,\text{gas}}$</td>
<td>116.81</td>
<td>J/mol×K</td>
<td>366.75</td>
<td>Joback Method</td>
</tr>
<tr>
<td>η</td>
<td>0.00</td>
<td>Pa×s</td>
<td>366.75</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>11.58</td>
<td>kJ/mol</td>
<td>278.2</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>36.40</td>
<td>kJ/mol</td>
<td>368.5</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>

Sources

- **NIST Webbook**: http://webbook.nist.gov/cgi/inchi/InChI=1S/C3H6O3/c1-5-3(4)6-2/h1-2H3

Legend

- **PAff**: Proton affinity (kJ/mol).
- **BasG**: Gas basicity (kJ/mol).
- $C_{p,\text{gas}}$: Ideal gas heat capacity (J/mol×K).
- η: Dynamic viscosity (Pa×s).
- ΔG°: Standard Gibbs free energy of formation (kJ/mol).
- $\Delta H^\circ_{\text{gas}}$: Enthalpy of formation at standard conditions (kJ/mol).
\(\Delta_{\text{fus}} H^\circ \): Enthalpy of fusion at standard conditions (kJ/mol).
\(\Delta_{\text{fus}} H \): Enthalpy of fusion at a given temperature (kJ/mol).
\(\Delta_{\text{vap}} H^\circ \): Enthalpy of vaporization at standard conditions (kJ/mol).
\(\Delta_{\text{vap}} H \): Enthalpy of vaporization at a given temperature (kJ/mol).
IE: Ionization energy (eV).

\(\log P_{\text{oct/wat}} \): Octanol/Water partition coefficient.
\(P_c \): Critical Pressure (kPa).
\(T_{\text{boil}} \): Normal Boiling Point Temperature (K).
\(T_c \): Critical Temperature (K).
\(T_{\text{fus}} \): Normal melting (fusion) point (K).
\(V_c \): Critical Volume (m\(^3\)/kg-mol).

Latest version available from:
https://www.chemeo.com/cid/32-123-9/Carbonic%20acid%2C%20dimethyl%20ester
Generated by Cheméo on Mon, 11 May 2020 14:50:24 +0000.
Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.