2-Pentanol

Other names: (R,S)-2-pentanol

1-Methyl-1-butanol1-Methylbutanol2-Pentyl alcohol

Isoamyl alcohol, secondary

Methylpropylcarbinol

Pentan-2-ol Pentanol-2 dl-2-pentanol

n-C3H7CH(OH)CH3 sec-Amyl alcohol sec-Pentanol

sec-Pentyl alcohol sec-n-Amyl alcohol

InChl=1S/C5H12O/c1-3-4-5(2)6/h5-6H,3-4H2,1-2H3

InchiKey: JYVLIDXNZAXMDK-UHFFFAOYSA-N

Formula: C5H12O SMILES: CCCC(C)O Mol. weight [g/mol]: 88.15

CAS: 6032-29-7

Physical Properties

Property code	Value	Unit	Source
chl	-3315.40 ± 0.67	kJ/mol	NIST Webbook
dvisc	0.0034210	Paxs	Speeds of sound, isentropic compressibilities, viscosities and excess molar volumes of binary mixtures of methylcyclohexane + 2-alkanols or ethanol at T = 298.15 K
gf	-148.04	kJ/mol	Joback Method
hf	-312.70	kJ/mol	NIST Webbook
hf	-314.60 ± 1.50	kJ/mol	NIST Webbook
hf	-313.80 ± 1.10	kJ/mol	NIST Webbook
hfl	-367.10 ± 0.75	kJ/mol	NIST Webbook
hfl	-366.40 ± 1.70	kJ/mol	NIST Webbook

hfl	-365.20 ± 1.10	kJ/mol	NIST Webbook
hfus	9.27	kJ/mol	Joback Method
hvap	53.00	kJ/mol	NIST Webbook
hvap	52.60 ± 1.30	kJ/mol	NIST Webbook
hvap	52.60 ± 1.30	kJ/mol	NIST Webbook
hvap	53.60	kJ/mol	NIST Webbook
hvap	54.20 ± 0.20	kJ/mol	NIST Webbook
ie	9.78 ± 0.03	eV	NIST Webbook
ie	9.78	eV	NIST Webbook
ie	10.27	eV	NIST Webbook
ie	9.78 ± 0.07	eV	NIST Webbook
log10ws	-0.29		Estimated Solubility Method
log10ws	-0.29		Aqueous Solubility Prediction Method
logp	1.167		Crippen Method
mcvol	87.180	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	3710.00 ± 20.00	kPa	NIST Webbook
рс	3640.00 ± 40.00	kPa	NIST Webbook
рс	3680.00 ± 20.00	kPa	NIST Webbook
рс	3675.00	kPa	KDB
рс	3710.00 ± 20.00	kPa	NIST Webbook
rhoc	267.97 ± 20.27	kg/m3	NIST Webbook
rhoc	267.97 ± 1.76	kg/m3	NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	691.00		NIST Webbook
rinpol	662.00		NIST Webbook
rinpol	706.00		NIST Webbook
rinpol	685.00		NIST Webbook
rinpol	703.00		NIST Webbook
rinpol	689.00		NIST Webbook
rinpol	718.00		NIST Webbook
rinpol	685.00		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	710.00		NIST Webbook
rinpol	695.00		NIST Webbook
rinpol	683.00		NIST Webbook
rinpol	671.00		NIST Webbook
rinpol	706.00		NIST Webbook
rinpol	683.00		NIST Webbook
rinpol	700.00		NIST Webbook
rinpol rinpol			NIST Webbook NIST Webbook

rinnol	689.00	NIST Webbook
rinpol rinpol	689.00	NIST Webbook NIST Webbook
	689.00	NIST Webbook NIST Webbook
rinpol		NIST Webbook NIST Webbook
rinpol	700.00	
rinpol	706.00	NIST Webbook
rinpol	701.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	718.00	NIST Webbook
rinpol	699.00	NIST Webbook
rinpol	695.00	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	692.00	NIST Webbook
rinpol	701.00	NIST Webbook
rinpol	704.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	692.00	NIST Webbook
rinpol	701.00	NIST Webbook
rinpol	704.00	NIST Webbook
rinpol	697.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	671.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	687.00	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	705.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	706.00	NIST Webbook
rinpol	702.00	NIST Webbook
- Inipor	. 52.00	

rinnal	720.00	NICT Wohlank
rinpol rinpol	730.00 705.00	NIST Webbook NIST Webbook
•	664.00	NIST Webbook
rinpol		
rinpol	662.00	NIST Webbook
rinpol	687.00	NIST Webbook
rinpol ·	664.00	NIST Webbook
rinpol	717.00	NIST Webbook
rinpol	717.00	NIST Webbook
rinpol	691.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	718.00	NIST Webbook
rinpol	730.00	NIST Webbook
rinpol	712.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	704.00	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	703.00	NIST Webbook
rinpol	706.00	NIST Webbook
rinpol	692.00	NIST Webbook
ripol	1123.00	NIST Webbook
ripol	1107.00	NIST Webbook
ripol	1124.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1123.00	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1110.00	NIST Webbook
ripol	1107.00	NIST Webbook
ripol	1105.00	NIST Webbook
ripol	1091.00	NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1148.00	NIST Webbook
ripol	1124.00	NIST Webbook
ripol	1140.00	NIST Webbook
ripol	1142.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1126.00	NIST Webbook
ripol	1122.00	NIST Webbook
Прог	112100	THO I WODDOOK

ripol	1085.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1100.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1091.00	NIST Webbook
ripol	1120.00	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1119.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1117.00	NIST Webbook
ripol	1094.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1113.00	NIST Webbook
·	1136.00	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1116.00	
ripol		NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1138.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1117.00	NIST Webbook
ripol	1142.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1118.00	NIST Webbook
ripol	1114.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1112.00	NIST Webbook
ripol	1115.00	NIST Webbook
ripol	1117.00	NIST Webbook
ripol	1117.00	NIST Webbook
ripol	1112.00	NIST Webbook
ripol	1113.00	NIST Webbook
ripol	1100.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1138.00	NIST Webbook
ripol	1119.00	NIST Webbook
ripol	1138.00	NIST Webbook
ripol	1100.00	NIST Webbook
ripol	1096.00	NIST Webbook
-		

ripol	1094.00		NIST Webbook
ripol	1120.00		NIST Webbook
ripol	1122.00		NIST Webbook
ripol	1120.00		NIST Webbook
ripol	1105.00		NIST Webbook
ripol	1127.00		NIST Webbook
ripol	1107.00		NIST Webbook
ripol	1116.00		NIST Webbook
ripol	1107.00		NIST Webbook
ripol	1107.00		NIST Webbook
	1109.00		NIST Webbook
ripol	1110.00		NIST Webbook
ripol	1109.00		NIST Webbook
ripol			
ripol	1109.00		NIST Webbook NIST Webbook
ripol	1116.00		
ripol	1139.00		NIST Webbook
ripol	1142.00		NIST Webbook
ripol	1139.00		NIST Webbook
ripol	1122.00		NIST Webbook
ripol	1109.00		NIST Webbook
ripol	1123.00		NIST Webbook
ripol	1118.00		NIST Webbook
ripol	1153.00		NIST Webbook
ripol	1112.00		NIST Webbook
ripol	1135.00		NIST Webbook
ripol	1136.00		NIST Webbook
ripol	1124.00		NIST Webbook
ripol	1081.00		NIST Webbook
ripol	1112.00		NIST Webbook
ripol	1109.00		NIST Webbook
sg	392.00 ± 0.90	J/mol×K	NIST Webbook
tb	391.65 ± 1.00	K	NIST Webbook
tb	392.40	K	KDB
tb	392.10	K	NIST Webbook
tb	391.40 ± 1.00	K	NIST Webbook
tb	391.15 ± 2.00	K	NIST Webbook
tb	388.20 ± 3.00	K	NIST Webbook
tb	391.15 ± 4.00	K	NIST Webbook
tb	392.45 ± 1.00	K	NIST Webbook
tb	392.45 ± 0.30	K	NIST Webbook
tb	392.15 ± 2.00	K	NIST Webbook
tb	391.15 ± 1.00	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.35 ± 0.50	K	NIST Webbook

tb	392.15 ± 1.00	K	NIST Webbook
tb	390.40 ± 2.00	K	NIST Webbook
tb	392.35 ± 0.50	K	NIST Webbook
tb	392.95 ± 0.50	K	NIST Webbook
tb	364.15 ± 2.00	K	NIST Webbook
tb	392.50 ± 1.00	K	NIST Webbook
tb	392.00 ± 0.50	K	NIST Webbook
tb	392.65 ± 1.00	K	NIST Webbook
tb	392.60 ± 0.50	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.70 ± 0.30	K	NIST Webbook
tb	393.00 ± 0.10	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.45 ± 0.40	K	NIST Webbook
tb	393.65 ± 2.00	K	NIST Webbook
tb	392.15 ± 2.00	K	NIST Webbook
tb	392.45 ± 0.50	K	NIST Webbook
tb	392.00 ± 1.50	K	NIST Webbook
tb	391.00 ± 1.00	K	NIST Webbook
tb	400.65 ± 3.00	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.36 ± 0.20	K	NIST Webbook
tb	392.15 ± 2.00	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.35 ± 0.50	K	NIST Webbook
tb	392.15 ± 1.00	K	NIST Webbook
tb	392.05 ± 0.50	K	NIST Webbook
tb	392.15 ± 2.00	K	NIST Webbook
tb	393.15 ± 2.00	K	NIST Webbook
tb	392.65 ± 0.50	K	NIST Webbook
tc	560.30 ± 0.50	K	NIST Webbook
tc	560.00 ± 0.70	K	NIST Webbook
tc	560.40 ± 0.60	K	NIST Webbook
tc	560.40 ± 0.60	K	NIST Webbook
tc	560.40	K	NIST Webbook
tc	560.30	K	KDB
tc	560.40 ± 0.25	K	NIST Webbook
tf	211.65	K	Aqueous Solubility Prediction Method
tf	200.00	K	KDB
VC	0.329	m3/kmol	KDB
VC	0.329	m3/kmol	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	169.82	J/mol×K	405.54	Joback Method	
cpg	216.94	J/mol×K	570.76	Joback Method	
cpg	209.82	J/mol×K	543.22	Joback Method	
cpg	202.42	J/mol×K	515.68	Joback Method	
cpg	194.72	J/mol×K	488.15	Joback Method	
cpg	186.73	J/mol×K	460.61	Joback Method	
cpg	178.43	J/mol×K	433.08	Joback Method	
cpl	231.18	J/mol×K	295.69	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	154.61	J/mol×K	191.86	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	153.28	J/mol×K	191.11	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	153.79	J/mol×K	193.10	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	155.46	J/mol×K	194.73	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	154.43	J/mol×K	195.09	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	155.04	J/mol×K	197.08	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	156.28	J/mol×K	197.60	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	155.64	J/mol×K	199.07	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	157.17	J/mol×K	200.45	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	152.69	J/mol×K	189.12	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	153.85	J/mol×K	188.97	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	152.22	J/mol×K	187.13	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	153.18	J/mol×K	186.06	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	151.66	J/mol×K	185.13	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	152.41	J/mol×K	183.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	151.22	J/mol×K	183.13	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

cpl	157.14	J/mol×K	203.04	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	150.83	J/mol×K	181.14	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	151.84	J/mol×K	180.22	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	150.37	J/mol×K	179.14	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	151.24	J/mol×K	177.27	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	150.03	J/mol×K	177.14	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	149.61	J/mol×K	175.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	150.62	J/mol×K	174.31	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	149.17	J/mol×K	173.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	150.12	J/mol×K	171.34	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	148.98	J/mol×K	171.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	148.62	J/mol×K	169.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	149.64	J/mol×K	168.38	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	148.38	J/mol×K	167.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	149.14	J/mol×K	165.42	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	148.07	J/mol×K	165.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	147.87	J/mol×K	163.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	148.75	J/mol×K	162.46	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.59	J/mol×K	161.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	235.62	J/mol×K	301.07	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	235.81	J/mol×K	299.65	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	233.00	J/mol×K	298.75	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	233.65	J/mol×K	297.66	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	230.08	J/mol×K	296.41	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	148.35	J/mol×K	159.50	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	227.43	J/mol×K	294.06	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	228.63	J/mol×K	293.71	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	226.30	J/mol×K	291.73	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	224.87	J/mol×K	291.70	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	224.09	J/mol×K	289.75	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	222.07	J/mol×K	289.33	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	221.67	J/mol×K	287.77	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	219.25	J/mol×K	286.94	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	219.38	J/mol×K	285.79	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	216.55	J/mol×K	284.54	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	216.99	J/mol×K	283.81	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	213.77	J/mol×K	282.13	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	214.76	J/mol×K	281.83	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	212.62	J/mol×K	279.86	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	211.18	J/mol×K	279.70	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	210.50	J/mol×K	277.88	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	208.61	J/mol×K	277.26	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	208.32	J/mol×K	275.91	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	206.33	J/mol×K	274.80	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	145.03	J/mol×K	136.39	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	206.27	J/mol×K	273.94	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	203.73	J/mol×K	272.33	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	204.25	J/mol×K	271.96	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	202.16	J/mol×K	269.99	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	201.01	J/mol×K	269.84	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	200.17	J/mol×K	268.01	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	198.56	J/mol×K	267.34	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	198.15	J/mol×K	266.04	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	196.18	J/mol×K	264.83	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	196.40	J/mol×K	264.06	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	193.87	J/mol×K	262.30	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	194.51	J/mol×K	262.08	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	192.75	J/mol×K	260.11	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	191.63	J/mol×K	259.75	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	190.90	J/mol×K	258.13	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	189.40	J/mol×K	257.20	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	189.21	J/mol×K	256.15	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	187.26	J/mol×K	254.62	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	187.53	J/mol×K	254.17	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	186.49	J/mol×K	252.19	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	185.96	J/mol×K	252.04	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	184.81	J/mol×K	250.22	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	183.85	J/mol×K	249.45	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	183.24	J/mol×K	248.24	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	181.91	J/mol×K	246.84	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

cpl	181.71	J/mol×K	246.27	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	180.19	J/mol×K	244.29	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	179.98	J/mol×K	244.22	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	178.65	J/mol×K	242.31	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	178.24	J/mol×K	241.59	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.26	J/mol×K	157.16	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	176.57	J/mol×K	238.94	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	176.25	J/mol×K	238.35	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	175.25	J/mol×K	236.37	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	174.82	J/mol×K	236.28	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

cpl	174.28	J/mol×K	234.41	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	173.02	J/mol×K	233.61	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	173.26	J/mol×K	232.46	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	171.38	J/mol×K	230.92	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	172.40	J/mol×K	230.52	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	170.97	J/mol×K	228.58	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	169.75	J/mol×K	228.21	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	169.58	J/mol×K	226.64	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	168.21	J/mol×K	225.50	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	168.30	J/mol×K	224.69	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	166.74	J/mol×K	222.77	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	167.19	J/mol×K	222.74	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	165.86	J/mol×K	220.79	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	165.38	J/mol×K	220.03	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	164.58	J/mol×K	218.83	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	163.98	J/mol×K	217.27	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	163.53	J/mol×K	216.87	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	162.36	J/mol×K	214.90	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	162.60	J/mol×K	214.50	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	161.43	J/mol×K	212.93	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

cpl	161.38	J/mol×K	211.71	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	160.43	J/mol×K	210.96	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	159.59	J/mol×K	208.98	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	160.23	J/mol×K	208.92	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	158.71	J/mol×K	207.00	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	159.16	J/mol×K	206.11	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	157.90	J/mol×K	205.02	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	138.36	J/mol×K	134.18	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	145.14	J/mol×K	134.47	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.40	J/mol×K	135.24	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

cpl	146.52	J/mol×K	136.00	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	138.34	J/mol×K	136.05	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	158.12	J/mol×K	203.28	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.29	J/mol×K	137.22	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	138.35	J/mol×K	137.97	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	145.17	J/mol×K	138.36	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.59	J/mol×K	138.84	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.22	J/mol×K	139.21	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	138.69	J/mol×K	139.90	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	145.48	J/mol×K	140.33	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

срІ	146.34	J/mol×K	141.20	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.74	J/mol×K	141.77	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	139.02	J/mol×K	141.83	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	145.81	J/mol×K	142.30	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.48	J/mol×K	143.19	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	139.32	J/mol×K	143.77	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.91	J/mol×K	144.73	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.45	J/mol×K	145.18	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
срІ	146.59	J/mol×K	147.18	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.17	J/mol×K	147.68	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

cpl	146.66	J/mol×K	149.17	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.42	J/mol×K	150.63	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.74	J/mol×K	151.16	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	146.86	J/mol×K	153.16	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.65	J/mol×K	153.58	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.04	J/mol×K	155.16	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	148.06	J/mol×K	156.54	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	177.32	J/mol×K	240.33	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	147.41	J/mol×K	159.16	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
cpl	156.37	J/mol×K	201.05	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	

dvisc	0.0040010	Paxs	293.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0032730	Paxs	298.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0027740	Paxs	303.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0033200	Paxs	298.15	Studies on physicochemical behavior of binary mixtures containing propanal and Alkan-2-ol	
dvisc	0.0028100	Paxs	303.15	Studies on physicochemical behavior of binary mixtures containing propanal and Alkan-2-ol	
dvisc	0.0023700	Paxs	308.15	Studies on physicochemical behavior of binary mixtures containing propanal and Alkan-2-ol	
dvisc	0.0019900	Paxs	313.15	Studies on physicochemical behavior of binary mixtures containing propanal and Alkan-2-ol	

dvisc	0.0016600	Pa×s	318.15	Studies on physicochemical behavior of binary mixtures containing propanal and Alkan-2-ol	
dvisc	0.0013900	Paxs	323.15	Studies on physicochemical behavior of binary mixtures containing propanal and Alkan-2-ol	
dvisc	0.0034780	Paxs	298.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
dvisc	0.0028010	Paxs	303.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
dvisc	0.0023350	Paxs	308.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
dvisc	0.0019930	Paxs	313.15	Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS	
dvisc	0.0040010	Paxs	293.15	Dynamic Viscosities of 2-Pentanol with Alkanes (Octane, Decane, and Dodecane) at Three Temperatures T) (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO Interaction Parameters	

als si a -	0.000700	Davis	000.45	Dun andia	
dvisc	0.0032730	Paxs	298.15	Dynamic Viscosities of 2-Pentanol with Alkanes (Octane, Decane, and Dodecane) at Three Temperatures T) (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0027080	Pa×s	303.15	Dynamic Viscosities of 2-Pentanol with Alkanes (Octane, Decane, and Dodecane) at Three Temperatures T) (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0027740	Paxs	303.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0040010	Paxs	293.15	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0034990	Pa×s	298.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0019930	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	

dvisc	0.0023340	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0028010	Paxs	303.15	Densities and Viscosities of Binary Mixtures of	
				Cyclohexanone and 2-Alkanols	
dvisc	0.0032730	Paxs	298.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
hfust	8.48	kJ/mol	200.00	NIST Webbook	
hfust	8.48	kJ/mol	200.00	NIST Webbook	
hvapt	54.00	kJ/mol	345.50	NIST Webbook	
hvapt	51.20	kJ/mol	357.50	NIST Webbook	
hvapt	58.90	kJ/mol	333.50	NIST Webbook	
hvapt	52.70 ± 0.20	kJ/mol	313.00	NIST Webbook	
hvapt	50.90 ± 0.20	kJ/mol	328.00	NIST Webbook	
hvapt	49.00 ± 0.20	kJ/mol	343.00	NIST Webbook	
hvapt	46.90 ± 0.10	kJ/mol	358.00	NIST Webbook	
hvapt	45.40 ± 0.10	kJ/mol	368.00	NIST Webbook	
hvapt	53.70	kJ/mol	340.50	NIST Webbook	
hvapt	50.30	kJ/mol	357.50	NIST Webbook	
pvap	20.00	kPa	351.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	21.40	kPa	353.35	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	22.16	kPa	354.12	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	22.83	kPa	354.72	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	23.55	kPa	355.42	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	24.12	kPa	355.92	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	24.44	kPa	356.39	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	24.84	kPa	356.55	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	25.47	kPa	357.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.20	kPa	357.76	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.00	kPa	357.79	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.75	kPa	358.23	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	27.45	kPa	358.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	27.32	kPa	358.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	27.45	kPa	359.01	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	28.19	kPa	359.53	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	28.67	kPa	359.91	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	29.25	kPa	360.35	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	29.41	kPa	360.50	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	30.29	kPa	361.12	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	30.68	kPa	361.45	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	31.59	kPa	362.10	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	32.13	kPa	362.50	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	32.73	kPa	362.93	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	33.35	kPa	363.38	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	34.05	kPa	363.85	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	34.64	kPa	364.28	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	35.47	kPa	364.84	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	35.95	kPa	365.13	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	36.71	kPa	365.62	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	37.32	kPa	366.01	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	37.95	kPa	366.40	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	38.64	kPa	366.86	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	39.31	kPa	367.24	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	39.97	kPa	367.65	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	40.64	kPa	368.06	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	41.27	kPa	368.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	41.96	kPa	368.85	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	42.73	kPa	369.31	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	43.23	kPa	369.58	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	44.05	kPa	370.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	44.75	kPa	370.46	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	45.40	kPa	370.74	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

Pyap						
Pvap 47.45 kPa 371.82 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 47.45 kPa 371.82 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 47.93 kPa 372.15 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 48.64 kPa 372.50 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 49.31 kPa 372.91 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 50.71 kPa 373.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	45.91	kPa	371.07	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	46.64	kPa	371.47	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 50.71 kPa 373.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 50.71 kPa 373.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	47.45	kPa	371.82	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 49.31 kPa 372.91 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 50.71 kPa 373.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 52.03 kPa 374.25 Vapor-Liquid	pvap	47.93	kPa	372.15	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 49.87 kPa 373.16 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 50.71 kPa 373.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 52.03 kPa 374.25 Vapor-Liquid	pvap	48.64	kPa	372.50	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 50.71 kPa 373.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 52.03 kPa 374.25 Vapor-Liquid Pvapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	49.31	kPa	372.91	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 51.25 kPa 373.88 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 52.03 kPa 374.25 Vapor-Liquid	pvap	49.87	kPa	373.16	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 52.03 kPa 374.25 Vapor-Liquid	pvap	50.71	kPa	373.57	Equilibria in Binary Systems Formed by Cyclohexane with	
pvap 52.03 kPa 374.25 Vapor-Liquid	pvap	51.25	kPa	373.88	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	52.03	kPa	374.25	Equilibria in Binary Systems Formed by Cyclohexane with	

pvap	52.55	kPa	374.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	53.37	kPa	374.85	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	53.95	kPa	375.14	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	54.67	kPa	375.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	55.37	kPa	375.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	56.01	kPa	376.13	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	56.71	kPa	376.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	57.36	kPa	376.74	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	58.00	kPa	377.07	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	58.64	kPa	377.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	59.32	kPa	377.65	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	59.97	kPa	377.91	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	60.67	kPa	378.22	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	61.40	kPa	378.56	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	61.97	kPa	378.81	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	62.61	kPa	379.04	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	63.39	kPa	379.39	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	63.91	kPa	379.60	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	64.60	kPa	379.89	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	65.20	kPa	380.13	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	65.99	kPa	380.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	66.63	kPa	380.70	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	67.31	kPa	381.00	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	68.01	kPa	381.26	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	68.67	kPa	381.53	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	69.31	kPa	381.76	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	70.21	kPa	382.08	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	70.63	kPa	382.28	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	71.31	kPa	382.55	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	71.95	kPa	382.78	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap 72.65 kPa 383.05 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 73.35 kPa 383.29 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 73.93 kPa 383.53 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 74.63 kPa 383.76 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 75.48 kPa 384.09 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 75.99 kPa 384.26 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 75.99 kPa 384.26 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 76.63 kPa 384.50 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.35 kPa 384.74 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.35 kPa 384.74 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols						
Popular Popular	pvap	72.65	kPa	383.05	Equilibria in Binary Systems Formed by Cyclohexane with	
Post	pvap	73.35	kPa	383.29	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	73.93	kPa	383.53	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 75.99 kPa 384.26 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 76.63 kPa 384.50 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 76.63 kPa 384.50 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.35 kPa 384.74 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 79.27 kPa 385.42 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	74.63	kPa	383.76	Equilibria in Binary Systems Formed by Cyclohexane with	
Binary Systems Formed by Cyclohexane with Alcohols Pvap 76.63 kPa 384.50 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.35 kPa 384.74 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 79.27 kPa 385.42 Vapor-Liquid Equilibria in	pvap	75.48	kPa	384.09	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.35 kPa 384.74 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 79.27 kPa 385.42 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	75.99	kPa	384.26	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 77.93 kPa 384.95 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 79.27 kPa 385.42 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	76.63	kPa	384.50	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 79.27 kPa 385.42 Vapor-Liquid Equilibria in	pvap	77.35	kPa	384.74	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in	pvap	77.93	kPa	384.95	Equilibria in Binary Systems Formed by Cyclohexane with	
Binary Systems Formed by Cyclohexane with Alcohols	pvap	79.27	kPa	385.42	Equilibria in Binary Systems Formed by Cyclohexane with	

pvap	80.00	kPa	385.65	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	80.56	kPa	385.87	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	81.79	kPa	386.24	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	81.88	kPa	386.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	82.68	kPa	386.54	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	83.23	kPa	386.76	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	84.05	kPa	386.96	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	85.27	kPa	387.37	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	86.61	kPa	387.80	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	88.00	kPa	388.23	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

Pyap						
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	89.39	kPa	388.66	Equilibria in Binary Systems Formed by Cyclohexane with	
Popular Popu	pvap	90.69	kPa	389.07	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 94.61 kPa 390.26 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 95.95 kPa 390.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.27 kPa 391.05 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.27 kPa 391.05 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.71 kPa 391.46 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.71 kPa 391.46 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 2.13 kPa 313.15 Vapor-Liquid Equilibria in Binary Systems Formed by Narred by Cyclohexane with Alcohols Pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by Narred Systems Formed by Narred Systems Formed by Narred Binary Systems Formed Binary Binary Systems Formed Binary Bina	pvap	92.16	kPa	389.51	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 95.95 kPa 390.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 95.95 kPa 390.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.27 kPa 391.05 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.71 kPa 391.46 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 2.13 kPa 313.15 Vapor-Liquid Equilibria in Binary Systems Formed by Nervend	pvap	93.44	kPa	389.90	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 97.27 kPa 391.05 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 97.27 kPa 391.05 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 98.71 kPa 391.46 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 2.13 kPa 313.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	pvap	94.61	kPa	390.26	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 98.71 kPa 391.46 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 98.71 kPa 391.46 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 2.13 kPa 313.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with	pvap	95.95	kPa	390.65	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 2.13 kPa 313.15 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 2.13 kPa 313.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols Pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with	pvap	97.27	kPa	391.05	Equilibria in Binary Systems Formed by Cyclohexane with	
pvap 4.16 kPa 323.15 Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols Equilibria in Binary Systems Formed by n-Hexane with	pvap	98.71	kPa	391.46	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by n-Hexane with	pvap	2.13	kPa	313.15	Equilibria in Binary Systems Formed by n-Hexane with	
	pvap	4.16	kPa	323.15	Equilibria in Binary Systems Formed by n-Hexane with	

pvap	7.57	kPa	333.15	Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	
pvap	21.20	kPa	353.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	21.19	kPa	353.10	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	21.12	kPa	353.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	20.96	kPa	352.89	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	20.83	kPa	352.76	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	20.72	kPa	352.70	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	20.65	kPa	352.60	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	18.66	kPa	350.91	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	21.33	kPa	353.74	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	

pvap	24.00	kPa	356.29	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	26.66	kPa	358.61	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	30.00	kPa	361.26	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	33.33	kPa	363.69	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	36.66	kPa	365.92	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	40.00	kPa	368.00	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	44.00	kPa	370.31	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	48.00	kPa	372.45	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	52.00	kPa	374.46	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	55.99	kPa	376.35	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	59.99	kPa	378.13	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	65.33	kPa	380.36	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	

	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	382.45	kPa	70.66	pvap
	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	384.42	kPa	75.99	pvap
	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	386.27	kPa	81.33	pvap
	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	388.47	kPa	87.99	pvap
	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	390.53	kPa	94.66	pvap
	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	391.32	kPa	97.33	pvap
ne	Thermodynamic behaviour of second generation biofuels: Vapour liquid equilibria and excess enthalpies of the binary mixtures 2-pentanol and n-heptane or 2,2,4-trimethylpentar	313.15	kPa	2.29	pvap
	Characterizing second generation biofuels: Excess enthalpies and vapour-liquid equilibria of the binary mixtures containing 1-pentanol or 2-pentanol and n-hexane	313.15	kPa	2.29	pvap
	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	354.47	kPa	22.55	pvap

pvap	25.05	kPa	356.60	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	27.47	kPa	358.86	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	30.03	kPa	360.81	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	32.55	kPa	362.76	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	35.08	kPa	364.38	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	37.56	kPa	366.00	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	40.03	kPa	367.49	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	42.51	kPa	369.03	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	45.07	kPa	370.52	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	47.54	kPa	371.77	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	

pvap	50.02	kPa	373.05	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	52.58	kPa	374.33	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	55.03	kPa	375.51	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	57.48	kPa	376.68	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	60.03	kPa	377.81	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	62.45	kPa	378.95	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	65.05	kPa	379.97	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	67.58	kPa	381.01	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	70.03	kPa	381.96	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	72.56	kPa	382.90	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	

pvap	75.05	kPa	383.88	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	77.59	kPa	384.79	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	80.03	kPa	385.64	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	82.58	kPa	386.56	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	85.01	kPa	387.35	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	87.55	kPa	388.19	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	90.09	kPa	389.00	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	92.52	kPa	389.76	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	95.02	kPa	390.55	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane
pvap	97.55	kPa	391.31	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane

pvap	100.03	kPa	392.07	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	101.38	kPa	392.26	Solvent Effects on Vapor Liquid Equilibria of the Binary System 1-Hexene + n-Hexane	
pvap	4.16	kPa	323.84	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	4.41	kPa	324.19	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	4.39	kPa	324.55	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	4.67	kPa	325.09	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	4.93	kPa	326.00	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	4.89	kPa	326.22	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	5.27	kPa	326.99	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	5.20	kPa	327.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	5.43	kPa	327.64	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.71	kPa	328.19	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.64	kPa	328.23	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.91	kPa	329.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.95	kPa	329.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	6.04	kPa	329.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	6.16	kPa	329.66	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	6.33	kPa	329.90	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	6.71	kPa	330.86	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	7.08	kPa	331.78	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	7.17	kPa	332.29	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	7.40	kPa	332.55	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	7.31	kPa	332.61	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	7.43	kPa	332.92	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	7.52	kPa	333.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	7.76	kPa	333.37	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	7.99	kPa	333.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	8.33	kPa	334.61	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	8.77	kPa	335.52	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	9.17	kPa	336.34	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	9.19	kPa	336.37	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	9.59	kPa	337.20	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	9.95	kPa	337.85	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	10.43	kPa	338.74	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	10.81	kPa	339.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.21	kPa	340.10	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.67	kPa	340.82	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.11	kPa	341.54	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.52	kPa	342.20	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.77	kPa	342.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	12.97	kPa	342.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	13.00	kPa	343.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	13.07	kPa	343.26	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	13.11	kPa	343.30	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	13.16	kPa	343.38	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	13.99	kPa	344.38	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	14.65	kPa	345.27	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	15.31	kPa	346.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	15.96	kPa	347.02	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	16.63	kPa	347.80	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	17.32	kPa	348.68	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	17.95	kPa	349.38	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	18.63	kPa	350.16	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	19.31	kPa	350.93	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	19.96	kPa	351.64	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	9.99	kPa	338.15	Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	
pvap	20.43	kPa	352.33	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
rfi	1.40320		298.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Methyl Ethyl Ketone + Pentanol Isomers at Different Temperatures	
rfi	1.40490		298.20	Experimental and modeling study of liquid phase equilibria for (water + phosphoric acid + sec-alcohols) systems	

rfi	1.40600	293.15 Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.40450	298.15 Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.37240	303.15 Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	
rfi	1.37030	308.15 Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: Experimental results and application of the Prigogine Flory Patterson theory	

rfi	1.40450		298.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Acetophenone and 2-Alkanols
rfi	1.39900		308.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Methyl Ethyl Ketone + Pentanol Isomers at Different Temperatures
rfi	1.40216		303.15 bis{(tri	Liquid-liquid equilibria for ternary mixtures of 1-alkyl-3-methyl imidazolium ifluoromethyl)sulfonyl}imides, n-hexane and organic compounds at 303.15 K and 0.1 MPa
rfi	1.39500		318.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Methyl Ethyl Ketone + Pentanol Isomers at Different Temperatures
rhol	775.07	kg/m3	333.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa
rhol	797.00	kg/m3	308.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory

rhol	801.20	kg/m3	303.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory
rhol	805.30	kg/m3	298.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory
rhol	809.30	kg/m3	293.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory
rhol	792.60	kg/m3	313.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling
rhol	796.90	kg/m3	308.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling
rhol	800.90	kg/m3	303.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling
rhol	805.40	kg/m3	298.15	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling

rhol	806.57	kg/m3	298.15	Isobaric Vapor Liquid Equilibria of Binary Systems (Propyl Acetate + n-Pentanol), (Propyl Acetate + 1-Methyl-1-butanol), and (Propyl Acetate + 3-Methyl-1-butanol) at 101.3 kPa
rhol	779.46	kg/m3	328.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa
rhol	783.99	kg/m3	323.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa
rhol	788.42	kg/m3	318.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa
rhol	792.78	kg/m3	313.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa
rhol	797.05	kg/m3	308.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa
rhol	801.24	kg/m3	303.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa

rhol	805.35	kg/m3	298.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	809.38	kg/m3	293.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	813.34	kg/m3	288.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	770.37	kg/m3	338.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	792.70	kg/m3	313.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
rhol	779.67	kg/m3	328.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	

rhol	784.19	kg/m3	323.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	788.63	kg/m3	318.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	792.98	kg/m3	313.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	797.25	kg/m3	308.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	801.44	kg/m3	303.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	

rhol	805.55	kg/m3	298.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa
rhol	809.59	kg/m3	293.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa
rhol	813.55	kg/m3	288.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa
rhol	784.00	kg/m3	323.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	788.40	kg/m3	318.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	792.70	kg/m3	313.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures
rhol	797.00	kg/m3	308.15	Influence of Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures

Properties of Servarder (Properties of Servarder) Properties of Servard					
Temperature and Carbon Chain on Thermophysical Properties of Benzaldefhyde/Alkan-2-ol Binary Mixtures Services of Binary Mixtures Containing Alcohols and Aniline Services of Binary Mixtures Containing Alcohols and Binary Mixtures Containing Alcohols and Binary Mixtures Containing Alcohols and Aniline Services of Binary Mixtures Containing Alcohols and Binary Mixtures Containing Alcohols and Aniline Services of Binary Mixtures Containing Alcohols and Aniline Services Ordinary Mixtures Containing Alcohols and Aniline Services Or	rhol	801.20	kg/m3	303.15	Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol
Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol Binary Mixtures Thol 784.00 kg/m3 323.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 788.40 kg/m3 318.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 792.70 kg/m3 313.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 792.70 kg/m3 313.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 801.20 kg/m3 308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline	rhol	805.30	kg/m3	298.15	Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol
Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline rhol 788.40 kg/m3 318.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline rhol 792.70 kg/m3 313.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline rhol 797.00 kg/m3 308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline rhol 801.20 kg/m3 308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline rhol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Anilline rhol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Nitures Containing Alcohols and Alcohols and Containing Alcohols and Alcohols	rhol	809.30	kg/m3	293.15	Temperature and Carbon Chain on Thermophysical Properties of Benzaldehyde/Alkan-2-ol
Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 792.70 kg/m3 313.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 797.00 kg/m3 308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Representation of Binary Mixtures Containing Alcohols and Alcohols and Alcohols and Alcohols and Alcohols and	rhol	784.00	kg/m3	323.15	Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and
Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 797.00 kg/m3 308.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline Thol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Alcohols and Alcohols and Alcohols and	rhol	788.40	kg/m3	318.15	Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and
Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline rhol 801.20 kg/m3 303.15 Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Alcohols and	rhol	792.70	kg/m3	313.15	Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and
Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and	rhol	797.00	kg/m3	308.15	Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and
	rhol	801.20	kg/m3	303.15	Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and

rhol	805.30	kg/m3	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	809.30	kg/m3	293.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures Containing Alcohols and Aniline	
rhol	784.00	kg/m3	323.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	788.40	kg/m3	318.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	792.70	kg/m3	313.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	797.00	kg/m3	308.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	801.20	kg/m3	303.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	805.30	kg/m3	298.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	788.40	kg/m3	318.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	

rhol	792.70	kg/m3	313.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	796.97	kg/m3	308.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	801.16	kg/m3	303.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	805.27	kg/m3	298.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	809.30	kg/m3	293.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	
rhol	813.27	kg/m3	288.15	Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure	

rhol	806.48	kg/m3	298.15	Excess volumes and partial molar volumes of binary liquid mixtures of furfural or 2-methylfuran with alcohols at 298.15 K
rhol	810.10	kg/m3		Effect of ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5-hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride
rhol	797.08	kg/m3	308.15	Acoustic, volumetric and spectral studies of binary liquid mixtures of aliphatic dialkylamine and 2-alkanols at different temperatures
rhol	805.37	kg/m3	298.15	Acoustic, volumetric and spectral studies of binary liquid mixtures of aliphatic dialkylamine and 2-alkanols at different temperatures
rhol	809.40	kg/m3	293.15	Acoustic, volumetric and spectral studies of binary liquid mixtures of aliphatic dialkylamine and 2-alkanols at different temperatures
rhol	824.00	kg/m3	273.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	823.60	kg/m3	274.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers

rhol	823.20	kg/m3	274.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	822.80	kg/m3	275.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	822.50	kg/m3	275.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	822.10	kg/m3	276.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	821.70	kg/m3	276.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	821.30	kg/m3	277.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	820.90	kg/m3	277.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	820.60	kg/m3	278.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	820.20	kg/m3	278.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	819.80	kg/m3	279.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	819.40	kg/m3	279.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	819.10	kg/m3	280.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers

rhol	818.70	kg/m3	280.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers	
rhol	818.30	kg/m3	281.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers	
rhol	817.90	kg/m3	281.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers	
rhol	817.50	kg/m3	282.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers	
rhol	805.37	kg/m3	298.20	Liquid-liquid equilibrium in systems used for the production of 5-hydroxymethylfurfural from biomass using alcohols as solvents	
rhol	779.17	kg/m3	328.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15)	
rhol	788.38	kg/m3	318.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15)	
rhol	796.95	kg/m3	308.15	The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T = (298.15-328.15) K	

rhol	805.37	kg/m3	298.15	The study of
				physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at
				T = (298.15-328.15) K
rhol	784.00	kg/m3	323.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model
rhol	788.40	kg/m3	318.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model
rhol	792.70	kg/m3	313.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model
rhol	797.00	kg/m3	308.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model
rhol	801.20	kg/m3	303.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model
rhol	805.30	kg/m3	298.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model
rhol	809.30	kg/m3	293.15	Thermodynamic and transport properties of binary mixtures; friction theory coupled with PC-SAFT model

rhol	798.00	kg/m3	308.15	Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of pentanol) at T = (298.15 and 308.15) K	
rhol	806.11	kg/m3	298.15	Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of pentanol) at T = (298.15 and 308.15) K	
rhol	792.62	kg/m3	313.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
rhol	784.00	kg/m3	323.15	Densities and Viscosities of Binary Mixtures Containing Ethyl Formate and 2-Alkanols: Friction Theory and Free Volume Theory	
rhol	800.88	kg/m3	303.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
rhol	805.05	kg/m3	298.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
rhol	801.27	kg/m3	303.15	Acoustic, volumetric and spectral studies of binary liquid mixtures of aliphatic dialkylamine and 2-alkanols at different temperatures	

rhol	809.30	kg/m3	293.15	Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model	
rhol	796.89	kg/m3	308.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
speedsl	1232.60	m/s	298.15	Excess Molar Enthalpy, Density, and Speed of Sound for the Mixtures a-Pinene + 1- or 2-Pentanol at (283.15, 298.15, and 313.15) K	
speedsl	1168.10	m/s	313.15	Excess Molar Enthalpy, Density, and Speed of Sound for the Mixtures a-Pinene + 1- or 2-Pentanol at (283.15, 298.15, and 313.15) K	
speedsl	1286.70	m/s	283.15	Excess Molar Enthalpy, Density, and Speed of Sound for the Mixtures a-Pinene + 1- or 2-Pentanol at (283.15, 298.15, and 313.15) K	
srf	0.02	N/m	323.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	298.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	303.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	308.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	

srf	0.02	N/m	313.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	318.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	
srf	0.02	N/m	293.15	Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.42610e+01
Coeff. B	-2.72373e+03
Coeff. C	-1.09535e+02
Temperature range (K), min.	304.46
Temperature range (K), max.	413.88

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	1.30709e+02
Coeff. B	-1.10289e+04
Coeff. C	-1.66000e+01
Coeff. D	7.56865e-06
Temperature range (K), min.	200.00
Temperature range (K), max.	552.00

Sources

Temperature of maximum density for aqueous mixtures of three pentanol ExpressMolar Enthalpy, Density, and Speed of Sound for the Mixtures MShellebooks 2-Pentanol at (283.15, 298.15, and 313.15) K: Estimated Solubility Method:

KDB:

Liquid-liquid equilibrium in systems used for the production of sapor biguidenty illiprin arreform quantum assumes and laies to light specific arreform quantum and the production of sapor biguidenty illiprin arreform quantum assumes and laies to light specific arreform assumes and the production of sapor biguident production production of sapor big Liquid-liquid equilibrium in systems Measure Hydroxyphenylglycine Dane Salt Measureneohard Sewelation of hord Yanok-Liquid Equilibria for Water + Measureneohard দেওতিয়াকেওা, and Waltepues នាមួយស្រីប្រជាជា ប្រជាជា ប្ Pressure: Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers From (2004) A CONTROL OF THE PARTY His (Prithe Systems) Sentity phones in the systems of the systems Mixtures Containing Ethyl Formate and Surfice of sprintion Tiller จึงเหย็บครองโ บนาร์ Arochole in Benzyl Alcohol: Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equipment is solid and in the solid and in bensities, viscosities, and Refractive Indices of Binary Mixtures of Abershirk Mixtures of Abershirk Mixtures and Abershirk Mixtures of Abershirk Mix properties of binary systems

bensiting visitors/level of experimental bensition visitors/level of experimental bensity visitors/level Different Temperatures: The influence of cation, anion and Provinges of Bentane of Propage of State biowich leg bick are illevitate france in account of the contraction o

https://www.doi.org/10.1016/j.jct.2017.07.011 https://www.doi.org/10.1021/je060210c http://webbook.nist.gov/cgi/cbook.cgi?ID=C6032297&Units=SI http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=826 https://www.doi.org/10.1016/j.jct.2017.03.019 https://www.doi.org/10.1016/j.fluid.2017.12.031 https://www.doi.org/10.1016/j.jct.2015.04.017 https://www.doi.org/10.1016/j.jct.2019.04.010 https://www.doi.org/10.1016/j.fluid.2016.05.031 https://www.doi.org/10.1016/j.tca.2012.12.008 https://www.doi.org/10.1021/je0501336 https://www.doi.org/10.1016/j.jct.2010.12.018 https://www.doi.org/10.1016/j.fluid.2010.06.020 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1021/acs.jced.8b00979 https://www.doi.org/10.1016/j.jct.2016.08.033 https://www.doi.org/10.1016/j.fluid.2015.09.035 https://www.doi.org/10.1016/j.jct.2015.03.021 https://www.doi.org/10.1021/je900050z https://www.doi.org/10.1021/je500848q https://www.doi.org/10.1021/je0500431 https://www.doi.org/10.1016/j.jct.2019.01.001 https://www.doi.org/10.1021/je060411g http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/je9005823 https://www.doi.org/10.1016/j.jct.2017.02.023 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.fluid.2011.03.018 temperature on the liquid-liquid detirmined to reduction of the result of the reduction of https://www.doi.org/10.1021/je030175z https://www.doi.org/10.1016/j.jct.2004.11.005 https://www.doi.org/10.1016/j.fluid.2018.07.034 the state of the s

KDB Pure (Korean Thermophysical Properties Databank): Henry's law constants and infinite Henry's law constants and infinite dilution activity coefficients of here is increased directed in the first of his increased in the first of his increase of his increased in the first of his increase of his incr phosphonosia Trise Calibriologia youngs:of binary liquid mixtures of birtues อาวไทยเทศทาลาพังเศษเองก่อเร โรงกระที่ Properties of Binary Mixtures ของสมักเทียในจะอีกอเร and Aniline:

Acoustic, volumetric and spectral studies of binary liquid mixtures of byparanic diarcontinuous particular definition and personal diarcontinuous particular definition and personal diarcontinuous particular definition and personal diarcontinuous particular diarcontinuous partic Acoustic, volumetric and spectral Ting the second second

Studies on physicochemical behavior of binary mixtures containing propanal volumes, and refractive indices of ชองเอาเม็ตเปล่องเล่าเป็นเล่าเป็น เล่า with https://www.doi.org/10.1016/j.fluid.2005.11.023 annones of anternologic protestor of the state of the sta compressibilities, viscosities and wiscosities and https://www.doi.org/10.1016/j.jct.2005.12.010 excess yioner wouthers spaniary sound finally level provide a time ary and learns darwin boolds मु€ 7294,293 N.5, 298.15, and 303.15) K:

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=826

https://www.doi.org/10.1016/j.jct.2005.08.004

https://www.doi.org/10.1021/je300827f

https://www.doi.org/10.1021/je4007184

https://www.doi.org/10.1016/j.jct.2013.09.043

https://www.doi.org/10.1016/j.jct.2019.04.005

https://www.doi.org/10.1016/j.jct.2019.02.027

https://www.doi.org/10.1021/acs.jced.6b00210

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2018.12.012

https://www.doi.org/10.1021/je020216b

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=826

https://www.doi.org/10.1016/j.jct.2017.07.004 https://www.doi.org/10.1016/j.tca.2009.06.015

https://www.doi.org/10.1016/j.tca.2014.07.022

https://www.doi.org/10.1016/j.jct.2005.04.019

Legend

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation qf: hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp:

mcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating

nfpah: NFPA Health Rating

pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhoc: Critical density
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sg: Molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/32-700-8/2-Pentanol.pdf

Generated by Cheméo on 2025-12-24 00:47:30.417042201 +0000 UTC m=+6285447.947082868.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.