Morpholine

Other names: 1,4-oxazine, tetrahydro-

1-Oxa-4-azacyclohexane2H-1,4-Oxazine, tetrahydro-4H-1,4-Oxazine, tetrahydro-

BASF 238

DIETHYLENE IMIDOXIDE
DIETHYLENE OXIMIDE
Diethyleneimide oxide
Diethylenimide oxide

Drewamine NA 2054 NSC 9376

TETRAHYDRO-P-ISOXAZINE

Tetrahydro-1,4-isoxazine Tetrahydro-1,4-oxazine Tetrahydro-2H-1,4-oxazine

Tetrahydro-p-oxazine

UN 2054

p-Isoxazine, tetrahydro-

InChl=1S/C4H9NO/c1-3-6-4-2-5-1/h5H,1-4H2

InchiKey: YNAVUWVOSKDBBP-UHFFFAOYSA-N

Formula: C4H9NO SMILES: C1COCCN1

Mol. weight [g/mol]: 87.12 CAS: 110-91-8

Physical Properties

Property code	Value	Unit	Source
af	0.3700		KDB
affp	924.30	kJ/mol	NIST Webbook
basg	891.20	kJ/mol	NIST Webbook
chl	-2673.60 ± 0.60	kJ/mol	NIST Webbook
dm	1.50	debye	KDB
gf	16.55	kJ/mol	Joback Method
hf	-145.42	kJ/mol	Joback Method
hfl	-186.70 ± 0.60	kJ/mol	NIST Webbook
hfus	14.45	kJ/mol	Joback Method

hvap	45.30 ± 0.50	kJ/mol	NIST Webbook
hvap	45.00 ± 0.40	kJ/mol	NIST Webbook
ie	8.91 ± 0.03	eV	NIST Webbook
ie	8.88 ± 0.05	eV	NIST Webbook
log10ws	1.06		Aqueous Solubility Prediction Method
logp	-0.394		Crippen Method
mcvol	72.210	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=2)		KDB
рс	5470.00	kPa	KDB
rinpol	749.00		NIST Webbook
rinpol	800.00		NIST Webbook
rinpol	779.00		NIST Webbook
rinpol	779.00		NIST Webbook
rinpol	810.00		NIST Webbook
rinpol	779.00		NIST Webbook
rinpol	794.00		NIST Webbook
rinpol	795.00		NIST Webbook
rinpol	766.00		NIST Webbook
rinpol	750.00		NIST Webbook
rinpol	810.00		NIST Webbook
ripol	1330.00		NIST Webbook
ripol	1274.00		NIST Webbook
ripol	1273.00		NIST Webbook
ripol	1303.00		NIST Webbook
ripol	1281.00		NIST Webbook
ripol	1312.00		NIST Webbook
tb	401.24	K	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa
tb	401.40	K	KDB
tc	618.00	K	KDB
tf	268.22	К	Aqueous Solubility Prediction Method
tf	270.10 ± 0.40	K	NIST Webbook
tf	268.00 ± 0.02	K	NIST Webbook
tf	268.40	K	KDB
tf	268.30 ± 0.20	K	NIST Webbook
tf	268.35	K	NIST Webbook
tf	268.35 ± 1.00	K	NIST Webbook
VC	0.253	m3/kmol	KDB
ZC	0.2693290		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	188.90	J/mol×K	609.75	Joback Method
cpg	179.86	J/mol×K	573.23	Joback Method
cpg	170.28	J/mol×K	536.71	Joback Method
cpg	160.16	J/mol×K	500.19	Joback Method
cpg	149.48	J/mol×K	463.68	Joback Method
cpg	138.25	J/mol×K	427.16	Joback Method
cpg	126.44	J/mol×K	390.64	Joback Method
cpl	173.89	J/mol×K	298.00	NIST Webbook
cpl	164.80	J/mol×K	298.15	NIST Webbook
hvapt	45.60 ± 0.40	kJ/mol	288.50	NIST Webbook
hvapt	40.80	kJ/mol	373.50	NIST Webbook
hvapt	42.30	kJ/mol	380.00	NIST Webbook
hvapt	42.30	kJ/mol	359.50	NIST Webbook
hvapt	45.30	kJ/mol	295.50	NIST Webbook
hvapt	44.30	kJ/mol	328.00	NIST Webbook
pvap	72.56	kPa	390.19	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa
pvap	12.93	kPa	343.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K
pvap	15.93	kPa	348.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K

pvap	19.49	kPa	353.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	28.71	kPa	363.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	8.28	kPa	333.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	34.50	kPa	368.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	41.04	kPa	373.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	22.57	kPa	356.46	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	24.96	kPa	359.12	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	

pvap	27.47	kPa	361.70	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	30.02	kPa	364.05	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	32.49	kPa	366.23	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	34.95	kPa	368.27	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	37.52	kPa	370.28	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	40.01	kPa	372.11	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	

pvap	42.47	kPa	373.84	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	45.01	kPa	375.53	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	47.47	kPa	377.10	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	49.95	kPa	378.63	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	52.51	kPa	380.12	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	54.94	kPa	381.51	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	

pvap	57.53	kPa	382.87	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	59.98	kPa	384.16	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	62.51	kPa	385.48	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	65.04	kPa	386.71	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	67.54	kPa	387.90	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	69.99	kPa	389.05	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	

pvap	57.60	kPa	383.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	75.03	kPa	391.28	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	77.49	kPa	392.32	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	80.02	kPa	393.36	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	82.52	kPa	394.38	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	85.07	kPa	395.33	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	

pvap	87.48	kPa	396.32	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	90.03	kPa	397.26	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	92.46	kPa	398.15	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	95.07	kPa	399.11	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	97.49	kPa	399.93	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	
pvap	100.01	kPa	400.78	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa	

pvap	101.32	kPa	401.24	Isobaric vapor-liquid equilibria for binary and ternary mixtures with cyclohexane, cyclohexene, and morpholine at 100 kPa
pvap	13.32	kPa	343.91	Isobaric phase equilibrium of morpholine + 1-decanol, volumetric properties and molar refractivity from 293.15 to 333.15 K of morpholine + 1-decanol and 1-octanol + toluene system with applications of Prigogine-Flory-Patterson theory
pvap	39.99	kPa	372.25	Isobaric phase equilibrium of morpholine + 1-decanol, volumetric properties and molar refractivity from 293.15 to 333.15 K of morpholine + 1-decanol and 1-octanol + toluene system with applications of Prigogine-Flory-Patterson theory
pvap	66.66	kPa	387.57	Isobaric phase equilibrium of morpholine + 1-decanol, volumetric properties and molar refractivity from 293.15 to 333.15 K of morpholine + 1-decanol and 1-octanol + toluene system with applications of Prigogine-Flory-Patterson theory

pvap	94.90	kPa	398.92 Pi	Isobaric phase equilibrium of morpholine + 1-decanol, volumetric properties and molar refractivity from 293.15 to 333.15 K of morpholine + 1-decanol and 1-octanol + toluene system with applications of rigogine-Flory-Pattersor theory	1
pvap	0.25	kPa	273.27	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.37	kPa	278.81	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.53	kPa	283.89	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.72	kPa	288.37	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.94	kPa	292.61	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.28	kPa	297.58	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.33	kPa	298.21	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.73	kPa	302.56	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.29	kPa	307.58	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	2.92	kPa	312.01	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	4.07	kPa	318.26	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	41.00	kPa	373.15	Isothermal Vapor-Liquid Equilibria for Binary Mixtures Composed of the Closely Boiling Compounds 1,2-Dimethoxybenzer and 2-Methoxyphenol with an Adducted Agent: tert-Butanol or Morpholine	ne
pvap	57.60	kPa	383.15	Isothermal Vapor-Liquid Equilibria for Binary Mixtures Composed of the Closely Boiling Compounds 1,2-Dimethoxybenzer and 2-Methoxyphenol with an Adducted Agent: tert-Butanol or Morpholine	ne

pvap	79.00	kPa	393.15	Isothermal Vapor-Liquid Equilibria for Binary Mixtures Composed of the Closely Boiling Compounds 1,2-Dimethoxybenzene and 2-Methoxyphenol with an Adducted Agent: tert-Butanol or Morpholine	
pvap	2.33	kPa	308.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	3.13	kPa	313.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	5.17	kPa	323.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	6.59	kPa	328.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
pvap	79.04	kPa	393.15	Vapor Pressures of Morpholine, Diethyl Methylmalonate, and Five Glycol Ethers at Temperatures up to 473.15 K	
rfi	1.45500		293.15	Experimental Binary VLE Data of Morpholine with 1-Butanol and 3-Methyl-1-butanol Systems	
rhol	1000.00	kg/m3	293.00	KDB	

rhol	965.90	kg/m3	333.15	Densities and Excess and Partial Molar Volumes of Aqueous Pyrrolidine at 25 and 50 C and Aqueous Morpholine at 25 and 60 C	
rhol	996.00	kg/m3	298.15	Densities and Excess and Partial Molar Volumes of Aqueous Pyrrolidine at 25 and 50 C and Aqueous Morpholine at 25 and 60 C	
srf	0.04	N/m	308.15	Surface Thermodynamics of Aqueous Solutions of Morpholine and Methylmorpholine	
srf	0.04	N/m	298.15	Surface Thermodynamics of Aqueous Solutions of Morpholine and Methylmorpholine	
srf	0.03	N/m	328.15	Surface Thermodynamics of Aqueous Solutions of Morpholine and Methylmorpholine	
srf	0.04	N/m	318.15	Surface Thermodynamics of Aqueous Solutions of Morpholine and Methylmorpholine	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.25144e+01
Coeff. B	-3.04377e+03
Coeff. C	-4.86400e+01
Temperature range (K), min.	270.05

Information

Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	6.44713e+01
Coeff. B	-7.16809e+03
Coeff. C	-7.09931e+00
Coeff. D	3.52998e-06
Temperature range (K), min.	270.05
Temperature range (K), max.	618.00

Sources

Vapor Pressures of Morpholine, Diethyl https://www.doi.org/10.1021/je049627d

https://www.doi.org/10.1021/acs.jced.6b00576

https://www.doi.org/10.1021/acs.jced.5b00175

https://www.doi.org/10.1021/je0302349

https://www.cheric.org/files/research/kdb/mol/mol1466.mol

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.tca.2016.12.010

https://www.doi.org/10.1021/je0340250

https://www.doi.org/10.1016/j.jct.2015.06.006

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

http://webbook.nist.gov/cgi/cbook.cgi?ID=C110918&Units=SI

https://www.doi.org/10.1016/j.fluid.2010.04.008

https://www.doi.org/10.1021/acs.jced.8b00271

https://en.wikipedia.org/wiki/Joback_method

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1466

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1466

https://www.doi.org/10.1021/je9010097

Methylmalonate, and Five Glycol Ethers
Experimental មើរគ្រាស់ ៤៩ ឯកនិត្ត https://www.doi.org/10.1021/acs.jced.7b01128
Morpholine with 1-Butanol and ទំណាមការទទិញ https://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDataset002.xlsx/35182602.xlxx/35182602.xlxx/35182602.xlxx/35182602.xlxx/35182602.x

Vapor Pressure and Its Temperature Dependence of 28 Organic Chargo Ended boom Systems, Cyclic

Morphsoling Content of Chain Soling Burney March 1988 (Assorbing Soling Policy March 1988) The Morphsol of the **6** Bely Boiling Compounds 1.2-Dimethoxybenzene and 2-Methoxypheh8P with an Adducted

Agent: tert-Butanoling Morpholine: morpholine + 1-decanol, volumetric

morpholine + 1-decanol, Volumetric Surfered Sarra deviations of Agunous Southered Sarra de la companie de la co

Isobaric vapor-liquid equilibria for The first of the field of the

The system of the ternary system of the ternary system of the period of the ternary system of the ternary syst Mixtures of (Cyclohexane, 1,4-Dioxane and Piperiume) of (Cyclonexane,

Morpholine and Piperidine) at 308.15 K Correlations of Excess Molar

Enthalpies for the Binary and Ternary Mixtures of (Cyclohexane, Tetrahydropyran, and Morpholine) or (Cyclohexane, 1,4-Dioxane, and Morpholine) at 308.15 K and

Atmospheric Pressure:

Legend

af: Acentric Factoraffp: Proton affinitybasg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dm: Dipole Moment

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/32-977-2/Morpholine.pdf

Generated by Cheméo on 2024-05-04 10:15:50.6470565 +0000 UTC m=+17106999.567633810.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.