2-Pyrrolidinone, 1-methyl-

Other names: 1-Methyl-2-Pyrrolidinone

1-Methyl-2-pyrrolidone

1-Methyl-5-pyrrolidinone

1-Methylazacyclopentan-2-one1-Methylazacyclopentane-2-one

1-Methylpyrrolidinone

1-Methylpyrrolidone

1-methylpyrrolidin-2-one

2-Pyrrolidone, 1-methyl-

Agsolex 1

M-Pyrol

Methylpyrrolidone

Micropure ultra

N 0131

N-Methyl-2-pyrrolidinone

N-Methyl-2-pyrrolidone

N-Methyl-gamma-butyrolactam

N-Methyl-«alpha»-pyrrolidinone

N-Methyl-«alpha»-pyrrolidone

N-Methyl-«gamma»-butyrolactam

N-Methyl-«alpha»-pyrrolidinone

N-Methyl-«alpha»-pyrrolidone

N-Methyl-«gamma»-butyrolactam

N-Methylpyrrolid-2-one

N-Methylpyrrolidinone

N-Methylpyrrolidone

N-Methylpyrrolidone-(2)

N-methyl-.alpha.-pyrrolidinone

N-methyl-.alpha.-pyrrolidone

N-methyl-.gamma.-butyrolactam

N-methylpyrrolidin-2-one

NMP

NSC 4594

Inchi: InChl=1S/C5H9NO/c1-6-4-2-3-5(6)7/h2-4H2,1H3

InchiKey: SECXISVLQFMRJM-UHFFFAOYSA-N

Formula: C5H9NO

SMILES: CN1CCCC1=O

Mol. weight [g/mol]: 99.13 CAS: 872-50-4

Physical Properties

Property code	Value	Unit	Source
affp	923.50	kJ/mol	NIST Webbook
basg	891.60	kJ/mol	NIST Webbook
chl	-2988.05 ± 0.46	kJ/mol	NIST Webbook
chl	-2992.00 ± 0.40	kJ/mol	NIST Webbook
chl	-2994.00	kJ/mol	NIST Webbook
hf	-210.85 ± 0.56	kJ/mol	NIST Webbook
hfl	-265.73 ± 0.54	kJ/mol	NIST Webbook
hfus	11.04	kJ/mol	Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the solid-liquid equilibrium and vapou-liquid equilibrium. The Modified UNIFAC (Do) model characterization
hfus	11.04	kJ/mol	(Solid + liquid) phase equilibria of binary mixtures containing N-methyl-2-pyrrolidinone and ethers at atmospheric pressure
hvap	54.88 ± 0.13	kJ/mol	NIST Webbook
hvap	61.90	kJ/mol	NIST Webbook
ie	9.17	eV	NIST Webbook
log10ws	1.00		Aqueous Solubility Prediction Method
logp	0.239		Crippen Method
mcvol	82.000	ml/mol	McGowan Method
pc	4520.00 ± 25.00	kPa	NIST Webbook
rhoc	319.20 ± 5.95	kg/m3	NIST Webbook
rinpol	1012.00		NIST Webbook
rinpol	1045.00		NIST Webbook
rinpol	1045.50		NIST Webbook
rinpol	1002.00		NIST Webbook
rinpol	1083.00		NIST Webbook
rinpol	1043.00		NIST Webbook
rinpol	1034.00		NIST Webbook
rinpol	1042.00		NIST Webbook
rinpol	1009.00		NIST Webbook
rinpol	1083.00		NIST Webbook
rinpol	1034.00		NIST Webbook
rinpol	1045.50		NIST Webbook

rinpol	1002.00		NIST Webbook
ripol	1660.00		NIST Webbook
ripol	1678.00		NIST Webbook
ripol	1652.00		NIST Webbook
ripol	1679.00		NIST Webbook
ripol	1662.00		NIST Webbook
ripol	1646.00		NIST Webbook
ripol	1678.00		NIST Webbook
ripol	1646.00		NIST Webbook
ripol	1665.00		NIST Webbook
ripol	1660.00		NIST Webbook
tb	476.05	K	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements
tb	475.29	K	Measurements and correlation of saturated vapor pressures of diethoxy(methyl)(o-tolyl)silane, diethoxy(methyl)(m-tolyl)silane and diethoxy(methyl)(p-tolyl)silane
tb	475.44	K	Separation of azeotrope (allyl alcohol + water): Isobaric vapour-liquid phase equilibrium measurements and extractive distillation
tb	477.01	K	Isobaric vapor liquid equilibria for water + acetic acid + (N-methyl pyrrolidone or N-methyl acetamide)
tb	475.45	К	Vapor-Liquid Equilibria and Excess Molar Enthalpies for N-Methyl-2-pyrrolidone with Chloroethanes and Chloroethenes
tb	475.20	K	NIST Webbook
tc	721.70 ± 0.50	K	NIST Webbook
tc	721.80 ± 0.40	K	NIST Webbook
tf	249.48	К	Aqueous Solubility Prediction Method
tf	249.68	K	(Solid + liquid) phase equilibria and solid-compound formation in (N-methyl-2-pyrrolidinone + phenol, or 3,5-dimethylphenol)

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpl	174.83	J/mol×K	298.15 N-r	Thermodynamic properties of mixtures of methyl-2-pyrroliding and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa	one
cpl	307.80	J/mol×K	298.00	NIST Webbook	
cpl	412.40	J/mol×K	298.15	NIST Webbook	
cpl	178.00	J/mol×K	353.15 4 1-N	Molar Heat Capacity of Aqueous Sulfolane, -Formylmorpholine tethyl-2-pyrrolidinol and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	ne,
cpl	177.00	J/mol×K		Molar Heat Capacity of Aqueous Sulfolane, -Formylmorpholine dethyl-2-pyrrolidinol and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	
cpl	176.00	J/mol×K		Molar Heat Capacity of Aqueous Sulfolane, -Formylmorpholine dethyl-2-pyrrolidinol and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	

cpl	175.00	J/mol×K	338.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	174.00	J/mol×K	333.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	172.00	J/mol×K	328.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	170.00	J/mol×K	323.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	169.00	J/mol×K	318.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K

cpl	168.00	J/mol×K	313.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	167.00	J/mol×K	308.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	166.00	J/mol×K	303.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	166.92	J/mol×K	303.15	Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine orpicolines mixtures
cpl	166.22	J/mol×K	298.15	Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine orpicolines mixtures
cpl	165.44	J/mol×K	293.15	Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine orpicolines mixtures
cpl	167.21	J/mol×K	308.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids

cpl	179.94	J/mol×K	318.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	166.92	J/mol×K	303.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids
срІ	166.22	J/mol×K	298.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids
cpl	165.44	J/mol×K	293.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids
срІ	189.27	J/mol×K	348.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	185.78	J/mol×K	338.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	182.77	J/mol×K	328.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa

cpl	177.38	J/mol×K	308.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
dvisc	0.0008080	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0011600	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0013320	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0015540	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure

dvisc	0.0009860	Paxs	338.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures
dvisc	0.0011170	Paxs	328.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone) at Different Temperatures
dvisc	0.0012100	Paxs	318.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures
dvisc	0.0016950	Paxs	298.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0010220	Paxs	333.15	Densities and Viscosities of
				Binary Mixtures of Ethylbenzene +
				N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0009080	Paxs	343.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene
				N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0021620	Paxs	283.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0008130	Paxs	353.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene +
				Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0015544	Paxs	303.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several
				Temperatures

dvisc	0.0013321	Paxs	313.15 Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0011602	Paxs	323.15 Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0010222	Paxs	333.15 Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0009084	Paxs	343.15 Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0016830	Paxs	298.15 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0015580	Paxs	303.15 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures

dvisc	0.0014700	Paxs	308.15 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0013370	Paxs	313.10 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0012480	Paxs	318.15 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0018110	Paxs	293.15 Densities and Viscosities of the Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0016670	Paxs	298.15 Densities and Viscosities of the Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0015430	Paxs	303.15 Densities and Viscosities of the Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K

dvisc	0.0014370	Pa×s	308.15 Densities and Viscosities of the Binary Mixtures of
			1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0013430	Paxs	313.15 Densities and Viscosities of the Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0012580	Paxs	318.15 Densities and Viscosities of the Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0011840	Paxs	323.15 Densities and Viscosities of the Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0015210	Paxs	303.15 Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0013190	Paxs	313.15 Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K

dvisc	0.0011740	Pa×s	323.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0010330	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0009140	Paxs	343.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0013650	Paxs	308.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures
dvisc	0.0016630	Paxs	298.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures

		_		
dvisc	0.0009210	Paxs	343.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0010350	Paxs	333.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0011750	Paxs	323.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0013220	Paxs	313.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0016560	Paxs	298.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0013100	Paxs	313.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl- 2-pyrrolidone
dvisc	0.0013900	Paxs	308.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl-2-pyrrolidone

dvisc	0.0014900	Paxs	303.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl-2-pyrrolidone
dvisc	0.0016600	Paxs	298.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl- 2-pyrrolidone
dvisc	0.0008127	Paxs	353.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0009080	Paxs	343.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0010220	Paxs	333.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0011600	Paxs	323.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure

dvisc	0.0013320	Paxs	313.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0015540	Paxs	303.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0005320	Paxs	423.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0005670	Paxs	413.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0016080	Paxs	303.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0013830	Paxs	313.15	Viscometric and
	5.55.555	. 3.10	0.0.10	volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0012170	Paxs	323.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0010810	Paxs	333.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0010260	Paxs	343.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0009360	Paxs	353.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0008310	Paxs	363.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0007570	Paxs	373.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0007110	Paxs	383.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0006520	Paxs	393.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0006060	Paxs	403.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0018220	Paxs	293.15 Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0008127	Paxs	353.15 Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
hfust	18.10	kJ/mol	248.50 NIST Webbook
hvapt	55.30	kJ/mol	295.00 NIST Webbook
hvapt	53.10	kJ/mol	351.50 NIST Webbook
hvapt	49.30	kJ/mol	403.00 NIST Webbook
hvapt	49.20	kJ/mol	419.00 NIST Webbook
hvapt	47.70	kJ/mol	408.00 NIST Webbook
hvapt	53.40	kJ/mol	408.00 NIST Webbook
hvapt	49.50	kJ/mol	427.50 NIST Webbook
pvap	25.96	kPa	427.56 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	3.44	kPa	373.09 Vapor-Liquid Equilibrium for Propylene Glycol
			2-(2-Hexyloxyethoxy)ethanol
			and 1-Methyl-2-pyrrolidone +
			1-Methoxypropan-2-ol
pvap	3.46	kPa	373.15 Vapor-Liquid Equilibrium for Propylene Glycol
			2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone
			+
			1-Methoxypropan-2-ol

pvap	4.23	kPa	377.86 Vapor-Liquid Equilibrium for Propylene Glycol
			2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone
			1-Methoxypropan-2-ol
pvap	95.30	kPa	474.01 Activity Coefficients and Excess Gibbs Energies for Binary Mixtures of N-Methyl-2-pyrrolidone with Some Substituted Ethanols
pvap	40.00	kPa	441.80 Isobaric Vapor Liquid Equilibria for Binary Systems Comprising 1-Chloro-2-ethylhexane, 2-Ethyl-1-hexanol, p-Xylene, and N-Methylpyrrolidone (NMP) at 40.0 kPa
pvap	4.74	kPa	380.73 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	5.24	kPa	383.12 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	5.98	kPa	386.38 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	6.36	kPa	387.92 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	6.86	kPa	389.88 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane

pvap	7.78	kPa	393.04 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one,
			and 1,2-Epoxy-3-chloropropane
pvap	10.29	kPa	400.46 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and
			1,2-Epoxy-3-chloropropane
pvap	11.62	kPa	403.85 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	12.87	kPa	406.68 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	13.96	kPa	408.96 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	15.22	kPa	411.42 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	16.50	kPa	413.77 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	18.28	kPa	416.81 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	20.97	kPa	420.94 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	23.65	kPa	424.65 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane

pvap	2.78	kPa	368.27 Vapor-Liquid Equilibrium for Propylene Glycol
			+ 2-(2-Hexyloxyethoxy)ethanol and
			1-Methyl-2-pyrrolidone +
			1-Methoxypropan-2-ol
pvap	30.08	kPa	432.29 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	33.54	kPa	435.85 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	36.99	kPa	439.12 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and
nyon	20.06	kDo	1,2-Epoxy-3-chloropropane
pvap	39.96	kPa	441.74 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and
	40.70	LD-	1,2-Epoxy-3-chloropropane
pvap	42.73	kPa	444.04 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	46.02	kPa	446.64 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	52.18	kPa	451.08 Vapor Pressures
			of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	62.11	kPa	457.46 Vapor Pressures of
			1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and
			1,2-Epoxy-3-chloropropane

pvap	99.40	kPa		Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 2-Epoxy-3-chloropropane
pvap	88.70	kPa	471.15	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	81.20	kPa	467.66	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	2.19	kPa	363.15	Vapor-Liquid Equilibrium for Propylene Glycol
			2-((2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone +
				1-Methoxypropan-2-ol
pvap	1.82	kPa	359.26	Vapor-Liquid Equilibrium for Propylene Glycol
			2-((2-Hexyloxyethoxy)ethanol
				and 1-Methyl-2-pyrrolidone
				+ 1-Methoxypropan-2-ol
pvap	1.34	kPa	353.15	Vapor-Liquid
				Equilibrium for Propylene Glycol
			2-(+ (2-Hexyloxyethoxy)ethanol
				and 1-Methyl-2-pyrrolidone
				+ 1-Methoxypropan-2-ol
pvap	41.30	kPa	442.88	Vapor-liquid
				equilibria and excess molar
				volumes of N-methyl-2-pyrrolidone
				with 2-alkoxyethanols
pvap	1.30	kPa	352.48	Vapor-Liquid
				Equilibrium for Propylene Glycol
			2-1	+ (2-Hexyloxyethoxy)ethanol
			2-(and
				1-Methyl-2-pyrrolidone
				1-Methoxypropan-2-ol

pvap	76.40	kPa	465.29	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	68.60	kPa	461.17	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	60.50	kPa	456.48	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	53.70	kPa	452.13	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	47.90	kPa	448.05	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	1.29	kPa	352.27 2-	Vapor-Liquid Equilibrium for Propylene Glycol + -(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone
				1-Methoxypropan-2-ol
pvap	34.20	kPa	436.50	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	28.10	kPa	430.09	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols

pvap	3.60	kPa	373.15	Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?
pvap	1.30	kPa	353.15	Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?
pvap	0.50	kPa	333.15	Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?
pvap	101.30	kPa	476.05	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements

pvap	95.30	kPa	474.01	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	2.22	kPa	363.36	Vapor-Liquid Equilibrium for Propylene Glycol
			2-	+ -(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone
				1-Methoxypropan-2-ol
rfi	1.46800		298.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone (NMP) + Water + Ethanol from T = (293.15 to 323.15) K
rfi	1.46960		293.10	Liquid liquid equilibria for n-alkanes (C12, C14, C17) + propylbenzene +NMP mixtures at temperatures between 298 and 328K
rfi	1.45590		323.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.45760		323.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K

rfi	1.46030	313.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46210	313.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46470	303.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46640	303.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46910	293.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K

rfi	1.47030	293.15	Vapor Liquid Equilibrium Data for 1-Methyl-2-Pyrrolidone + (1-Butanol or 1-Hexene or Water) Binary Mixtures	
rfi	1.47060	293.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K	
rfi	1.46860	293.10	Liquid-Liquid Equilibria Measurements for Ternary System of Hexadecane + 1,3,5-Trimethylbenzene + N-Methyl-2-pyrrolidone	
rfi	1.46860	293.10	Solubilities of 4-Carboxybenzaldehyde and 1,4-Benzenedicarboxylic Acid in N-Methyl-2-pyrrolidone in the Temperature Range from (343.2 to 468.2) K	
rfi	1.46900	293.15	Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K	
rfi	1.46740	298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 303.15 K	
rfi	1.46740	298.15	Isobaric (vapour + liquid) equilibrium for N-methyl-2-pyrrolidone with branched alcohols	

rfi	1.46770		298.15	A study of densities and volumetric properties of binary mixtures of N-methyl-2-pyrrolidone with xylene at different temperatures and atmospheric pressure
rfi	1.46770		293.10	Densities and volumetric properties of N-methyl-2-pyrrolidone with aromatic hydrocarbon at different temperature
rfi	1.46860		293.10	Extraction of pentylbenzene from high molar mass alkanes (C14 and C17) by N-methyl-2-pyrrolidone
rfi	1.46900		298.15 1-but	Experimental measurement of carbon dioxide solubility in 1-methylpyrrolidin-2-one (NMP) + yl-3-methyl-1H-imidazol-3-ium tetrafluoroborate ([bmim][BF4]) mixtures using a new static-synthetic cell
rfi	1.46876		298.15	Liquid liquid equilibria of lactam containing binary systems
rfi	1.46740		298.15	Excess volumes and excess enthalpies of N-methyl-2-pyrrolidone with branched alcohols
rhol	1019.46	kg/m3	308.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone

rhol	1028.23	kg/m3	298.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1023.46	kg/m3	303.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1018.66	kg/m3	308.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1027.91	kg/m3	298.15 Excess Molar Volumes and Kinematic Viscosities for Binary Mixtures of Dipropylene Glycol Monobutyl Ether and Dipropylene Glycol tert-Butyl Ether with 2-Pyrrolidinone, N-Methyl-2-pyrrolidinone, N,N-Dimethylformamide, and N,N-Dimethylacetamide at 298.15 K
rhol	1028.30	kg/m3	298.15 Density, Speed of Sound, and Viscosity of N-Methyl-2-pyrrolidone + Ethanolamine + Water from T = (293.15 to 323.15) K
rhol	1033.23	kg/m3	293.15 Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents

	rhol	1028.23	kg/m3	298.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents
	rhol	1023.46	kg/m3	303.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents
_	rhol	1018.66	kg/m3	308.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents
	rhol	1033.28	kg/m3	293.15	Excess Heat Capacities for Lactam + Chlorotoluene Binary Mixtures
	rhol	1028.26	kg/m3	298.15	Excess Heat Capacities for Lactam + Chlorotoluene Binary Mixtures
	rhol	1023.49	kg/m3	303.15	Excess Heat Capacities for Lactam + Chlorotoluene Binary Mixtures
	rhol	1037.30	kg/m3	288.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
	rhol	1032.84	kg/m3	293.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
	rhol	1028.38	kg/m3	298.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone

rhol	1023.92	kg/m3	303.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
rhol	1033.23	kg/m3	293.15 1-	Thermodynamic properties of ternary mixtures of ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1015.00	kg/m3	313.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
rhol	1010.53	kg/m3	318.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
rhol	1006.06	kg/m3	323.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
rhol	1023.40	kg/m3	303.15	Excess Molar Enthalpies and Vapor-Liquid Equilibrium for N-Methyl-2-pyrrolidone with Ketones

rhol	1028.17	kg/m3	298.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1032.66	kg/m3	293.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1023.50	kg/m3	303.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene
rhol	1028.30	kg/m3	298.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene
rhol	1033.30	kg/m3	293.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene
rhol	1028.23	kg/m3	298.15	Excess molar enthalpies for [emim][BF4] + pyrrolidin-2-one or 1-methyl pyrrolidin-2-one + pyridine or water mixtures
rhol	1025.90	kg/m3	298.15	Temperature dependence measurements and molecular interactions for ammonium ionic liquid with N-methyl-2-pyrrolidone
rhol	1019.03	kg/m3	308.15	Thermodynamic, transport, and spectroscopic studies for mixtures of isomeric butanediol and N-methyl-2-pyrrolidinone

rhol	1015.48	kg/m3	303.15 Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone
rhol	1019.79	kg/m3	298.15 Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone
rhol	1024.76	kg/m3	293.15 Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone
rhol	1028.29	kg/m3	288.15 Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone
rhol	1028.55	kg/m3	298.15 Excess enthalpies and isothermal (vapour + liquid) equilibria of (1-methyl-2-pyrrolidone + 1-chloroalkane or +,?-dichloroalkane) mixtures

rhol	1030.45	kg/m3	298.15	Experimental measurements and modelling of volumetric properties, refractive index and viscosity of binary systems of ethyl lactate with methyl ethyl ketone, toluene and n-methyl-2-pirrolidone at 288.15 323.15 K and atmospheric pressure. New UNIFAC VISCO and ASOG VISCO interaction parameters
rhol	1006.06	kg/m3	323.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes
rhol	1010.53	kg/m3	318.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes
rhol	1015.00	kg/m3	313.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes
rhol	1019.46	kg/m3	308.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes

rhol	1023.93	kg/m3	303.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1028.38	kg/m3	298.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1032.84	kg/m3	293.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1037.30	kg/m3	288.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1018.00	kg/m3	308.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures	
rhol	1022.00	kg/m3	303.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures	

rhol	1026.00	kg/m3	298.00	Densities,
				ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures
rhol	1004.79	kg/m3	323.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs
rhol	1013.72	kg/m3	313.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs
rhol	1018.18	kg/m3	308.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs
rhol	1022.64	kg/m3	303.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs
rhol	1027.10	kg/m3	298.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs

rhol	1005.89	kg/m3	323.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1010.20	kg/m3	318.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1014.74	kg/m3	313.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1019.49	kg/m3	308.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1009.25	kg/m3	318.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs
rhol	1023.60	kg/m3	303.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
speedsl	1565.52	m/s		Thermodynamic and Topological Studies of -Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures

speedsl	1478.00	m/s	318.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1501.00	m/s	313.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1526.40	m/s	308.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1552.80	m/s	303.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1508.00	m/s	308.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K	

speedsl	1546.00	m/s	298.15 Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K
speedsl	1531.45	m/s	298.15 Isentropic compressibilities of (amide + water) mixtures: A comparative study
speedsl	1546.02	m/s	298.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures
speedsl	1527.24	m/s	303.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one
speedsl	1507.41	m/s	Mixtures 308.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures
srf	0.04	N/m	293.15 Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K

srf	0.04	N/m	303.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	313.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	323.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	298.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	287.80	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	297.81	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	307.85	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	317.85	Surface Tension of Pure Liquids and Binary Liquid Mixtures

srf	0.04	N/m	327.89 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	337.88 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	293.15 Density, Speed
srf	0.04	N/m	to 323.15) K 303.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone +
			1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	303.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	313.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K

srf	0.04	N/m	313.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	323.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	323.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	277.84 Surface Tension of Pure Liquids and Binary Liquid Mixtures

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	354.70	K	1.30	NIST Webbook

Correlations

Information	Value
-------------	-------

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.37367e+01
Coeff. B	-3.14760e+03
Coeff. C	-1.30008e+02
Temperature range (K), min.	364.05
Temperature range (K), max.	503.60

Datasets

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
288.15	100.00	1036.8
288.15	500.00	1036.9
288.15	1000.00	1037.2
288.15	1500.00	1037.4
288.15	2000.00	1037.7
288.15	2500.00	1037.9
288.15	3000.00	1038.2
288.15	3500.00	1038.4
288.15	4000.00	1038.7
288.15	4500.00	1038.9
288.15	5000.00	1039.2
288.15	5500.00	1039.4
288.15	6000.00	1039.6
288.15	6500.00	1039.9
288.15	7000.00	1040.2
288.15	7500.00	1040.4
288.15	8000.00	1040.7
288.15	8500.00	1041.0
288.15	9000.00	1041.2
288.15	9500.00	1041.4

288.15	10000.00	1041.7
288.15	10500.00	1042.0
288.15	11000.00	1042.2
288.15	11500.00	1042.5
288.15	12100.00	1042.7
288.15	12500.00	1042.9
288.15	13000.00	1043.1
288.15	13500.00	1043.4
288.15	14000.00	1043.6
288.15	14500.00	1043.8
288.15	15000.00	1044.1
288.15	15500.00	1044.3
288.15	16000.00	1044.5
288.15	16500.00	1044.8
288.15	17000.00	1045.0
288.15	17500.00	1045.2
288.15	18000.00	1045.4
288.15	18600.00	1045.7
288.15	19000.00	1046.0
288.15	19500.00	1046.2
288.15	20000.00	1046.4
298.15	100.00	1028.0
298.15	500.00	1028.1
298.15	1000.00	1028.4
298.15	1500.00	1028.7
298.15	2000.00	1028.9
298.15	2500.00	1029.2
298.15	3000.00	1029.4
298.15	3500.00	1029.7
298.15	4000.00	1030.0
298.15	4500.00	1030.2
298.15	5000.00	1030.5
298.15	5500.00	1030.7
298.15	5900.00	1031.0
298.15	6500.00	1031.3
298.15	6900.00	1031.5
298.15	7500.00	1031.8
298.15	8000.00	1032.0
298.15	8500.00	1032.3
298.15	9000.00	1032.5
298.15	9600.00	1032.9
298.15	10000.00	1033.1
298.15	10500.00	1033.3
298.15	11000.00	1033.6

298.15	11500.00	1033.8
298.15	12000.00	1034.1
298.15	12500.00	1034.3
298.15	13000.00	1034.6
298.15	13500.00	1034.8
298.15	14000.00	1035.1
298.15	14400.00	1035.3
298.15	14900.00	1035.5
298.15	15500.00	1035.8
298.15	16000.00	1036.0
298.15	16500.00	1036.3
298.15	17000.00	1036.5
298.15	17500.00	1036.7
298.15	17900.00	1037.0
298.15	18500.00	1037.2
298.15	19000.00	1037.4
298.15	19500.00	1037.7
298.15	20000.00	1037.9
308.15	100.00	1019.3
308.15	500.00	1019.5
308.15	1000.00	1019.8
308.15	1500.00	1020.0
308.15	2000.00	1020.3
308.15	2500.00	1020.6
308.15	3000.00	1020.9
308.15	3500.00	1021.1
308.15	4000.00	1021.4
308.15	4500.00	1021.6
308.15	5000.00	1021.8
308.15	5500.00	1022.2
308.15	6000.00	1022.4
308.15	6400.00	1022.6
308.15	7100.00	1023.0
308.15	7500.00	1023.1
308.15	8100.00	1023.5
308.15	8500.00	1023.7
308.15	9000.00	1024.0
308.15	9500.00	1024.3
308.15	10000.00	1024.6
308.15	10400.00	1024.8
308.15	11100.00	1025.1
308.15	11500.00	1025.3
308.15	12000.00	1025.5

308.15	13000.00	1026.0
308.15	13500.00	1026.3
308.15	14000.00	1026.5
308.15	14500.00	1026.8
308.15	15000.00	1027.0
308.15	15500.00	1027.3
308.15	16000.00	1027.5
308.15	16500.00	1027.7
308.15	17000.00	1028.0
308.15	17500.00	1028.3
308.15	18000.00	1028.5
308.15	18500.00	1028.7
308.15	19000.00	1029.0
308.15	19500.00	1029.2
308.15	20000.00	1029.4
318.15	100.00	1011.0
318.15	500.00	1011.1
318.15	1000.00	1011.4
318.15	1500.00	1011.7
318.15	2000.00	1012.1
318.15	2500.00	1012.4
318.15	3000.00	1012.7
318.15	3500.00	1012.9
318.15	4000.00	1013.2
318.15	4500.00	1013.5
318.15	5000.00	1013.8
318.15	5500.00	1014.0
318.15	6000.00	1014.4
318.15	6500.00	1014.6
318.15	7000.00	1014.9
318.15	7500.00	1015.2
318.15	8000.00	1015.5
318.15	8500.00	1015.8
318.15	9000.00	1016.0
318.15	9500.00	1016.3
318.15	10000.00	1016.6
318.15	10500.00	1016.9
318.15	11000.00	1017.3
318.15	11400.00	1017.6
318.15	12000.00	1017.8
318.15	12500.00	1018.0
318.15	12900.00	1018.3
318.15	13500.00	1018.5
318.15	14000.00	1018.8

318.15	14500.00	1019.1
318.15	15000.00	1019.4
318.15	15500.00	1019.7
318.15	16000.00	1019.9
318.15	16500.00	1020.2
318.15	17000.00	1020.4
318.15	17500.00	1020.7
318.15	18000.00	1021.0
318.15	18500.00	1021.3
318.15	19000.00	1021.5
318.15	19600.00	1021.9
318.15	20000.00	1022.0

Reference

https://www.doi.org/10.1021/je7003758

Sources

Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Bethelling Follows, Viscosity, Surface Tension, and Bethelling Volume of Ethylbenzoyl) benzoic Markin Fleyen Ordenie Solvents
Index, Viscosity, Surface Tension, and Bethelling Follows of Solvents
Index Fleyen Ordenie Ordenie Solvents
Index Fleyen Ordenie Ordenie Ordenie Index Fleyen Index Index, Viscosity, Surface Tension, and

Temperatures:

https://www.doi.org/10.1021/je200121f https://www.doi.org/10.1021/je700426k https://www.doi.org/10.1016/j.fluid.2005.06.017 https://www.doi.org/10.1021/je300542s https://www.doi.org/10.1016/j.fluid.2005.01.012 https://www.doi.org/10.1016/j.jct.2008.08.003 https://www.doi.org/10.1021/je2009973 https://www.doi.org/10.1021/je0498560 https://www.doi.org/10.1021/je800428r https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1016/j.fluid.2012.08.009 https://www.doi.org/10.1016/j.jct.2019.06.025 https://www.doi.org/10.1016/j.jct.2005.06.012 https://www.doi.org/10.1021/acs.jced.9b00659 https://www.doi.org/10.1021/je049706p https://www.doi.org/10.1021/je201128n https://www.doi.org/10.1016/j.fluid.2018.08.017 https://www.doi.org/10.1021/je3002078 https://www.doi.org/10.1021/je034073k https://www.doi.org/10.1016/j.fluid.2015.03.042 https://www.doi.org/10.1016/j.fluid.2017.12.035 https://www.doi.org/10.1021/acs.jced.9b00201 https://www.doi.org/10.1016/j.jct.2008.01.024 https://www.doi.org/10.1021/je049776w

```
Physical Properties of
                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je200886j
     1-Butyl-3-methylimidazolium
      ริษท์สนัย ว่าจางว่าย์แสทุดในอาการ เลือนที่ (10.1021/je034062r
  The sires of Rimers are the country by the country 
                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je0201323
                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.12.019
    CO2 solubility in
   Rokktility 2) ptermination (สเทษ Modeling
of p-Nitrobenzamide Dissolved in
เริงผู้เดีย พ่อมเชื่อผู้เลละ คุณที่เวียว คราย
                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00065
  https://www.doi.org/10.1016/j.fluid.2005.03.027
                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je050513r
                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je800999s
                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je0301545
                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2019.07.001
                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je700453v
                                                                                                                                                                                                                                                       http://link.springer.com/article/10.1007/BF02311772
   effect and preferential solvation
Solubility Determination, Correlation,
and Solute-Solvent Molecular
                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.9b00385
     ดิดผมลัยไม่เหมือสรรมสภาคาชะลาส £ดผาคlation https://www.doi.org/10.1021/acs.jced.6b00664
     idirious Pure Solvents;
Dornis,ន)d0)ឈ្នាំ ខែរងស់ហេចp2/4 នៃស្កាល់,12-hexaazaisowddໝែងតមា/en/EED/VLE/VLE%20Acetone%3BN-Methyl-2-pyrrolidone.php
  Parint in the control of the control
 Isothermal Vapor Liquid Equilibrium of Excose Malar Valumphann Vacenatine, https://www.doi.org/10.1021/je049657g Viscose Malar Valumphann Vacenatine, https://www.doi.org/10.1021/je049657g Viscose Malar Valumphann Vacenatine, https://www.doi.org/10.1016/j.jct.2007.05.015 Https://www.doi.org/10.1016/j.jct.2018.05.012 isothermal Valumphann in https://www.doi.org/10.1016/j.jct.2004.11.007 https://www.doi.org/10.1016/j.jct.2004.11.007 https://www.doi.org/10.1021/je900235s https://www.doi.org/10.1021/je900235s
   Experimental Tesums and modelling of the Bianting of the Biant
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.10.019
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.07.023
 https://www.doi.org/10.1021/je200922s

https://www.doi.org/10.1021/je200922s

https://www.doi.org/10.1021/je049572f

https://www.doi.org/10.1021/je049572f

https://www.doi.org/10.1016/j.jct.2016.03.029

https://www.doi.org/10.1016/j.jct.2016.03.029

https://www.doi.org/10.1021/je3009842

https://www.doi.org/10.1021/je3009842
                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je200922s
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2015.08.003
   ริสานุเรียร Measurement อาการ เกาะการ เกาะการ
https://www.doi.org/10.1016/j.jct.2016.02.006
                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2014.07.014
                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.07.043
                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je6005357
                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je201268b
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.tca.2013.04.011
```

pyrrolidin-2-one or pyrrolidin-2-one +

water:

```
Comparative Study of the Solubilities of SO2 in Five Low Volatile Organic Belvbility (Burtalling, Bolyente Godand prefeyential selvating of allopurinol in publishes of the Solubility (Burtalling, Bolyente Godand prefeyential selvating of allopurinol in publishes of the Solubility (Burtalling, Bolyente Godand prefeyential selvating of allopurinol in publishes of the Solubility (Burtalling, Bolyente Godand prefeyential selvations) and the Solubility (Burtalling, Bolyente Godand prefeyential selvations) and the Solubility (Burtalling, Bolyente Solubility) (Burtalling, Burtalling, Burtalling
      Comparative Study of the Solubilities
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je4007713
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2014.01.007
                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2014.12.031
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2004.11.006
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.09.028
                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2015.04.017
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2008.02.023
       matures of Nemotowh Dang olidinone
พิทิฟ ยิ่งชี้เดิดยิ่งสิต เชื้อกั่งene, toluene at
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.9b00778
     with eyolonexane, wenzene, toluene at Grown poly 080 ms. If and atmospheric and the street of the st
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2008.09.003
                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2017.11.009
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je800138b
     N.N-Dimethylformamide +
Nimethylformamide +
Ni
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je301353z
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.07.032
  Measure prepy and Conselation of Phase squilibries for 19 pages of the property of the propert
                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.9b00458
                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je400408w
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.11.019
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.11.017
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je020065c
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je500092v
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2008.02.008
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2018.02.002
   Equilibrium solubility, dissolution thermodynamics and preferential solution thermodynamics and preferential solution of the property of the p
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je700561p
                                                                                                                                                                                                                                                                                                                       https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.5b00747
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je1002016
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2013.02.006
  Activity coefficients at infinite dilution of organic solutes in Notwitien pholine and Optablicities pholine p
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je400199m
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2019.06.026
                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.9b00229
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/acs.jced.9b00275
       Carbohydrazide Salt (CBNT) in Various
```

Pure Solvents and a Binary Mixture (Dimethyl Sulfoxide + Water) from

298.15 to 343.15 K:

https://www.doi.org/10.1016/j.fluid.2015.01.005 with a mixture of N-methyl-2Persituin need with Pound i disc quite as https://www.doi.org/10.1021/je201152j
Herachian hidex, and Excess Volume of Nametries, and Excess Volume of Nametries, and Excess Volume of https://www.doi.org/10.1016/j.jct.2006.05.006
Nametries 200 Note to the transfer of the tr Solvation of action of the many formamide, propylene glycol shapping the propylene glycological shapping propylene glycological shapping shappin https://www.doi.org/10.1021/acs.jced.8b01250 Foxebility of (M, Sphitigen hylformamide, https://www.doi.org/10.1016/j.jct.2017.07.023 https://www.doi.org/10.1021/acs.jced.9b00560 https://www.doi.org/10.1021/acs.jced.9b00844 https://www.doi.org/10.1021/acs.jced.5b00782 https://www.doi.org/10.1021/je900262t https://www.doi.org/10.1021/je7003758 https://www.doi.org/10.1021/acs.jced.8b01126 http://webbook.nist.gov/cgi/cbook.cgi?ID=C872504&Units=SI Excess heat capacities of 1-methyl https://www.doi.org/10.1016/j.tca.2013.06.033 pyrrolidin-2-one and pyridine https://www.doi.org/10.1016/j.jct.2017.01.006 Excess volumes and excess enthalpies https://www.doi.org/10.1016/j.fluid.2006.12.012 Excess volumes and excess enthalpies of N-methyl-2-pyrrolidone with Isohatie d'aponiciquid Equilibria for Binary Systems Comprising Sofind in Systems Comprising Systems Comprising Sofind In Systems Comprising or Alkipic Brobens's Neat Solvents:
Solubilities of carbon dioxide in
2-methoxyethyl acetate,
Solubilities of Carbon dioxide in
3-methoxyethyl acetate,
Solubilities of Carbon dioxide in
3-me Preferential Solvation of Peregituha and Instantial Preferential Solvation of Peregituha and Instantial Preference of Peregituha Instantial Preference of Peregituha Instantial Preference of Peregituha Instantial Preference of Preference https://www.doi.org/10.1021/je100967k https://www.doi.org/10.1016/j.jct.2018.05.007 https://www.doi.org/10.1016/j.tca.2014.06.026 pyrrolidone with Cyclohexylamine,

Separation of benzene and thiophene

Cyclohexanol, and Cyclohexene at

different Temperatures.:

A study of densities and volumetric

https://www.doi.org/10.1016/j.jct.2006.11.003 nttps://www.doi.org/10.1016/j.jct.2006.11.003
properties of binary mixtures of
korternya?-Yapponicioned himilitarian of
the deprocess of binary mixtures of
the deprocess of b https://www.doi.org/10.1016/j.fluid.2006.02.002 https://www.doi.org/10.1021/je03440b
https://www.doi.org/10.1021/je03440b
https://www.doi.org/10.1016/j.jct.2016.06.019
https://www.doi.org/10.1016/j.jct.2016.06.019
https://www.doi.org/10.1016/j.jct.2009.01.006
https://www.doi.org/10.1016/j.jct.2009.01.006
https://www.doi.org/10.1016/j.jct.2009.01.006
https://www.doi.org/10.1016/j.jct.2014.12.022
https://www.doi.org/10.1016/j.jct.2014.12.022
https://www.doi.org/10.1016/j.jct.2014.12.022
https://www.doi.org/10.1016/j.jct.2014.12.022
https://www.doi.org/10.1016/j.jct.2014.12.022
https://www.doi.org/10.1016/j.jct.2014.12.022
https://www.doi.org/10.1016/j.jct.2013.09.015
https://www.doi.org/10.1016/j.jct.2013.09.015
https://www.doi.org/10.1016/j.jct.2013.09.015
https://www.doi.org/10.1021/je034096z
https://www.doi.org/10.1021/je034096z https://www.doi.org/10.1016/j.fluid.2009.05.005

Legend

Proton affinity affp: basg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

Log10 of Water solubility in mol/l log10ws: logp: Octanol/Water partition coefficient McGowan's characteristic volume mcvol:

pc: Critical Pressure pvap: Vapor pressure rfi: Refractive Index rhoc: Critical density rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices Speed of sound in fluid speedsl:

srf: Surface Tension tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/35-901-2/2-Pyrrolidinone-1-methyl.pdf

Generated by Cheméo on 2025-12-05 09:10:24.285597498 +0000 UTC m=+4674021.815638163.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.