2-Pyrrolidinone, 1-methyl-

Other names:	1-Methyl-2-Pyrrolidinone
	1-Methyl-2-pyrrolidone
	1-Methyl-5-pyrrolidinone
	1-Methylazacyclopentan-2-one
	1-Methylazacyclopentane-2-one
	1-Methylpyrrolidinone
	1-Methylpyrrolidone
	1-methylpyrrolidin-2-one
	2-Pyrrolidone, 1-methyl-
	Agsolex 1
	M-Pyrol
	Methylpyrrolidone
	Micropure ultra
	N 0131
	N-Methyl-2-pyrrolidinone
	N-Methyl-2-pyrrolidone
	N-Methyl-gamma-butyrolactam
	N-Methyl-«alpha»-pyrrolidinone
	N-Methyl-«alpha»-pyrrolidone
	N-Methyl-«gamma»-butyrolactam
	N-Methyl-«alpha»-pyrrolidinone
	N-Methyl-«alpha»-pyrrolidone
	N-Methyl-«gamma»-butyrolactam
	N-Methylpyrrolid-2-one
	N-Methylpyrrolidinone
	N-Methylpyrrolidone
	N-Methylpyrrolidone-(2)
	N-methylalphapyrrolidinone
	N-methylalphapyrrolidone
	N-methylgammabutyrolactam
	N-methylpyrrolidin-2-one
	NMP
	NSC 4594
Inchi:	InChI=1S/C5H9NO/c1-6-4-2-3-5(6)7/h2-4H2,1H3
InchiKey:	SECXISVLQFMRJM-UHFFFAOYSA-N
Formula:	C5H9NO
SMILES:	CN1CCCC1=O
Mol. weight [g/mol]:	99.13
CAS:	872-50-4

Physical Properties

Property code	Value	Unit	Source
affp	923.50	kJ/mol	NIST Webbook
basg	891.60	kJ/mol	NIST Webbook
chl	-2992.00 ± 0.40	kJ/mol	NIST Webbook
chl	-2994.00	kJ/mol	NIST Webbook
chl	-2988.05 ± 0.46	kJ/mol	NIST Webbook
hf	-210.85 ± 0.56	kJ/mol	NIST Webbook
hfl	-265.73 ± 0.54	kJ/mol	NIST Webbook
hfus	11.04	kJ/mol	(Solid + liquid) phase equilibria of binary mixtures containing N-methyl-2-pyrrolidinone and ethers at atmospheric pressure
hfus	11.04	kJ/mol	Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the solid-liquid equilibrium and vapou-liquid equilibrium. The Modified UNIFAC (Do) model characterization
hvap	61.90	kJ/mol	NIST Webbook
hvap	54.88 ± 0.13	kJ/mol	NIST Webbook
ie	9.17	eV	NIST Webbook
log10ws	1.00		Aqueous Solubility Prediction Method
logp	0.239		Crippen Method
mcvol	82.000	ml/mol	McGowan Method
рс	4520.00 ± 25.00	kPa	NIST Webbook
rhoc	319.20 ± 5.95	kg/m3	NIST Webbook
rinpol	1012.00		NIST Webbook
rinpol	1034.00		NIST Webbook
rinpol	1083.00		NIST Webbook
rinpol	1009.00		NIST Webbook
rinpol	1042.00		NIST Webbook
rinpol	1002.00		NIST Webbook
rinpol	1034.00		NIST Webbook
rinpol	1045.50		NIST Webbook
rinpol	1043.00		NIST Webbook
rinpol	1002.00		NIST Webbook
rinpol	1045.00		NIST Webbook
rinpol	1045.50		NIST Webbook

rinpol	1083.00		NIST Webbook
ripol	1646.00		NIST Webbook
ripol	1646.00		NIST Webbook
ripol	1678.00		NIST Webbook
ripol	1665.00		NIST Webbook
ripol	1660.00		NIST Webbook
ripol	1660.00		NIST Webbook
ripol	1678.00		NIST Webbook
ripol	1662.00		NIST Webbook
ripol	1679.00		NIST Webbook
ripol	1652.00		NIST Webbook
tb	477.01	К	Isobaric vapor liquid equilibria for water + acetic acid + (N-methyl pyrrolidone or N-methyl acetamide)
tb	475.44	К	Separation of azeotrope (allyl alcohol + water): Isobaric vapour-liquid phase equilibrium measurements and extractive distillation
tb	476.05	К	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements
tb	475.29	К	Measurements and correlation of saturated vapor pressures of diethoxy(methyl)(o-tolyl)silane, diethoxy(methyl)(m-tolyl)silane and diethoxy(methyl)(p-tolyl)silane
tb	475.20	К	NIST Webbook
tb	475.45	K	Vapor-Liquid Equilibria and Excess Molar Enthalpies for N-Methyl-2-pyrrolidone with Chloroethanes and Chloroethenes
tc	721.80 ± 0.40	К	NIST Webbook
tc	721.70 ± 0.50	К	NIST Webbook
tf	249.68	К	(Solid + liquid) phase equilibria and solid-compound formation in (N-methyl-2-pyrrolidinone + phenol, or 3,5-dimethylphenol)
tf	249.48	К	Aqueous Solubility Prediction Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpl	174.83	J/mol×K	298.15 N-I	Thermodynamic properties of mixtures of methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	307.80	J/mol×K	298.00	NIST Webbook
cpl	412.40	J/mol×K	298.15	NIST Webbook
cpl	178.00	J/mol×K	353.15 2 1-N	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	177.00	J/mol×K	348.15 4 1-N	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	176.00	J/mol×K	343.15 2 1-N	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K

cpl	175.00	J/mol×K	338.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	174.00	J/mol×K	333.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	172.00	J/mol×K	328.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	170.00	J/mol×K	323.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	169.00	J/mol×K	318.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K

cpl	168.00	J/mol×K	313.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	
cpl	167.00	J/mol×K	308.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	
cpl	166.00	J/mol×K	303.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	
cpl	166.92	J/mol×K	303.15	Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine orpicolines mixtures	
cpl	166.22	J/mol×K	298.15	Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine orpicolines mixtures	
cpl	165.44	J/mol×K	293.15	Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine orpicolines mixtures	
cpl	167.21	J/mol×K	308.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids	

cpl	166.92	J/mol×K	303.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids	
cpl	166.22	J/mol×K	298.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids	
cpl	165.44	J/mol×K	293.15	Excess heat capacities of (binary + ternary) mixtures containing [emim][BF4] and organic liquids	
cpl	189.27	J/mol×K	348.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa	
cpl	185.78	J/mol×K	338.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa	
cpl	182.77	J/mol×K	328.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa	
cpl	179.94	J/mol×K	318.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa	

cpl	177.38	J/mol×K	308.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
dvisc	0.0009084	Paxs	343.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0008080	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0009140	Pa×s	343.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0010330	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0011740	Paxs	323.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K

dvisc	0.0013190	Paxs	313.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0015210	Paxs	303.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0011840	Paxs	323.15	Densities and Viscosities of the Binary Mixtures
			1 Bis	-Ethyl-3-methylimidazolium (trifluoromethylsulfonyl)imide
				N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0012580	Paxs	318.15	Densities and Viscosities of the Binary Mixtures
			1 Bis	-Ethyl-3-methylimidazolium (trifluoromethylsulfonyl)imide with
				or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0013430	Paxs	313.15	Densities and Viscosities of the Binary Mixtures
			1 Bis	-Ethyl-3-methylimidazolium (trifluoromethylsulfonyl)imide with
				N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0014370	Paxs	308.15	Densities and Viscosities of the Binary Mixtures of
			1 Bis	-Ethyl-3-methylimidazolium (trifluoromethylsulfonyl)imide with N-Methyl-2-pyrrolidone
				or Ethanol at T = (293.15 to 323.15) K

dvisc	0.0015430	Paxs	303.15 Densities and Viscosities of the Binary Mixtures
			1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with
			N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0016670	Paxs	298.15 Densities and Viscosities of the Binary Mixtures of
			1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with
			N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0018110	Paxs	293.15 Densities and Viscosities of the Binary Mixtures of
			1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with
			N-Methyl-2-pyrrolidone or Ethanol at T = (293.15 to 323.15) K
dvisc	0.0012480	Paxs	318.15 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0013370	Paxs	313.10 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0014700	Paxs	308.15 Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures

dvisc	0.0016830	Paxs	298.15 1- Tetraflu	Physical Properties of -Butyl-3-methylimidazolium oroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures
dvisc	0.0008127	Paxs	353.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0005320	Pa×s	423.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0010222	Paxs	333.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0011602	Paxs	323.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0013321	Paxs	313.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures

dvisc	0.0015544	Pa×s	303.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0008130	Pa×s	353.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0009080	Paxs	343.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0010220	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0011600	Pa×s	323.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure

dvisc	0.0013320	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0015540	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0009860	Paxs	338.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures
dvisc	0.0011170	Paxs	328.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, and 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures

dvisc	0.0012100	Paxs	318.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinon and 1-Vinyl-2-pyrrolidinon at Different Temperatures	ne, e)
dvisc	0.0013650	Paxs	308.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinon and 1-Vinyl-2-pyrrolidinon at Different Temperatures	ne, e)
dvisc	0.0016630	Paxs	298.15	Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinon and 1-Vinyl-2-pyrrolidinon at Different Temperatures	ne, e)
dvisc	0.0009210	Paxs	343.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidor Solutions from 25 deg C to 70 deg C	ne
dvisc	0.0010350	Paxs	333.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidor Solutions from 25 deg C to 70 deg C	ne

dvisc	0.0011750	Pa×s	323.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0013220	Paxs	313.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0016560	Paxs	298.15	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 deg C to 70 deg C
dvisc	0.0013100	Paxs	313.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl- 2-pyrrolidone
dvisc	0.0013900	Paxs	308.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl- 2-pyrrolidone
dvisc	0.0014900	Paxs	303.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl- 2-pyrrolidone
dvisc	0.0016600	Paxs	298.15	Influence of temperature on thermophysical properties of ammonium ionic liquids with Nmethyl- 2-pyrrolidone

dvisc	0.0008127	Paxs	353.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0009080	Paxs	343.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0010220	Paxs	333.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0011600	Paxs	323.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0013320	Paxs	313.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure

dvisc	0.0015540	Paxs	303.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0018220	Paxs	293.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0021620	Pa×s	283.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0005670	Paxs	413.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0006060	Paxs	403.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0006520	Paxs	393.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0007110	Paxs	383.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0007570	Pa×s	373.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0008310	Paxs	363.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0009360	Paxs	353.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0010260	Paxs	343.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0010810	Paxs	333.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0012170	Pa×s	323.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0013830	Paxs	313.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0016950	Paxs	298.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0015580	Paxs	303.15 1- Tetraflue	Physical Properties of Butyl-3-methylimidazo oroborate/N-Methyl-2- Mixtures and the Solubility of CO2 in the System at Elevated Pressures	olium pyrrolidone
dvisc	0.0016080	Paxs	303.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K)
hfust	18.10	kJ/mol	248.50	NIST Webbook	
hvapt	49.50	kJ/mol	427.50	NIST Webbook	
hvapt	49.30	kJ/mol	403.00	NIST Webbook	
hvapt	55.30	kJ/mol	295.00	NIST Webbook	
hvapt	49.20	kJ/mol	419.00	NIST Webbook	
hvapt	47.70	kJ/mol	408.00	NIST Webbook	
hvapt	53.40	kJ/mol	408.00	NIST Webbook	
hvapt	53.10	kJ/mol	351.50	NIST Webbook	
рvар	28.10	kPa	430.09	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidor with 2-alkoxyethanols	ne
pvap	88.70	kPa	471.15	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidor with 2-alkoxyethanols	ne
pvap	95.30	kPa	474.01	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidor with 2-alkoxyethanols	ne

pvap	101.30	kPa	476.05 Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements
pvap	1.29	kPa	352.27 Vapor-Liquid Equilibrium for Propylene Glycol + 2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone + 1-Methoxypropan-2-ol
pvap	1.30	kPa	352.48 Vapor-Liquid Equilibrium for Propylene Glycol + 2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone +
pvap	1.34	kPa	353.15 Vapor-Liquid Equilibrium for Propylene Glycol + 2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone + 1-Methoxypropan-2-ol
рvар	1.82	kPa	359.26 Vapor-Liquid Equilibrium for Propylene Glycol + 2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone + 1-Methoxypropan-2-ol
рvар	2.19	kPa	363.15 Vapor-Liquid Equilibrium for Propylene Glycol + 2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone + 1-Methoxypropan-2-ol

pvap	2.22	kPa	363.36	Vapor-Liquid Equilibrium for Propylene Glycol	
			2-(2-Hexyloxyethoxy)ethanol and 1-Methyl-2-pyrrolidone	
				1-Methoxypropan-2-ol	
pvap	2.78	kPa	368.27	Vapor-Liquid Equilibrium for Propylene Glycol	
			2-(2-Hexyloxyethoxy)ethanol	
				1-Methyl-2-pyrrolidone	
				+ 1-Methoxypropan-2-ol	
pvap	3.44	kPa	373.09	Vapor-Liquid Equilibrium for Propylene Glycol	
			2-(2-Hexyloxyethoxy)ethanol	
				1-Methyl-2-pyrrolidone	
				1-Methoxypropan-2-ol	
pvap	3.46	kPa	373.15	Vapor-Liquid Equilibrium for Propylene Glycol	
			2-(+ 2-Hexyloxyethoxy)ethanol	
				and 1-Methyl-2-pyrrolidone	
				+ 1-Methoxypropan-2-ol	
pvap	4.23	kPa	377.86	Vapor-Liquid Equilibrium for Propylene Glycol	
			2-(2-Hexyloxyethoxy)ethanol	
				and 1-Methyl-2-pyrrolidone	
				+ 1-Methoxypropan-2-ol	
рvар	95.30	kPa	474.01	Activity Coefficients and Excess Gibbs Energies for Binary Mixtures	
				N-Methyl-2-pyrrolidone with Some Substituted Ethanols	

pvap	40.00	kPa	441.80 Isobaric Vapor Liquid Equilibria for Binary Systems Comprising 1-Chloro-2-ethylhexane, 2-Ethyl-1-hexanol, p-Xylene, and N-Methylpyrrolidone (NMP) at 40.0 kPa
pvap	4.74	kPa	380.73 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	5.24	kPa	383.12 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	5.98	kPa	386.38 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	6.36	kPa	387.92 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	6.86	kPa	389.88 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	7.78	kPa	393.04 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	10.29	kPa	400.46 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	11.62	kPa	403.85 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane

pvap	12.87	kPa	406.68 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	13.96	kPa	408.96 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	15.22	kPa	411.42 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	16.50	kPa	413.77 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	18.28	kPa	416.81 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	20.97	kPa	420.94 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	23.65	kPa	424.65 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	1.30	kPa	353.15 Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?

pvap	0.50	kPa	333.15 Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?
pvap	33.54	kPa	435.85 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	36.99	kPa	439.12 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	39.96	kPa	441.74 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	42.73	kPa	444.04 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	46.02	kPa	446.64 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	52.18	kPa	451.08 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
рvар	62.11	kPa	457.46 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane

pvap	99.40	kPa kPa	475.72	Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane Vapor-liquid	
				equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols	
рvар	3.60	kPa	373.15	Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?	
рvар	68.60	kPa	461.17	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols	
рvар	60.50	kPa	456.48	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols	
рvар	53.70	kPa	452.13	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols	
рvар	47.90	kPa	448.05	Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols	

pvap	41.30	kPa	442.88 Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
pvap	34.20	kPa	436.50 Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
рvар	25.96	kPa	427.56 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	30.08	kPa	432.29 Vapor Pressures of 1-Methyl-2-pyrrolidone, 1-Methyl-azepan-2-one, and 1,2-Epoxy-3-chloropropane
pvap	76.40	kPa	465.29 Vapor-liquid equilibria and excess molar volumes of N-methyl-2-pyrrolidone with 2-alkoxyethanols
rfi	1.46900		298.15 Experimental measurement of carbon dioxide solubility in 1-methylpyrrolidin-2-one (NMP) + 1-butyl-3-methyl-1H-imidazol-3-ium tetrafluoroborate ([bmim][BF4]) mixtures using a new static-synthetic cell
rfi	1.46800		298.15 Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone (NMP) + Water + Ethanol from T = (293.15 to 323.15) K

rfi	1.45590	323.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.45760	323.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46030	313.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46210	313.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K
rfi	1.46470	303.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K

rfi	1.46640	303.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K	
rfi	1.46910	293.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K	
rfi	1.47060	293.15	Density, Speed of Sound, Viscosity, Refractive Index, and Excess Volume of N-Methyl-2-pyrrolidone + Ethanol (or Water or Ethanolamine) from T = (293.15 to 323.15) K	
rfi	1.46860	293.10	Liquid-Liquid Equilibria Measurements for Ternary System of Hexadecane + 1,3,5-Trimethylbenzene + N-Methyl-2-pyrrolidone	
rfi	1.46860	293.10	Solubilities of 4-Carboxybenzaldehyde and 1,4-Benzenedicarboxylic Acid in N-Methyl-2-pyrrolidone in the Temperature Range from (343.2 to 468.2) K	

rfi	1.46900	293.15	Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K	
rfi	1.46740	298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 303.15 K	
rfi	1.46740	298.15	Isobaric (vapour + liquid) equilibrium for N-methyl-2-pyrrolidone with branched alcohols	
rfi	1.46770	298.15	A study of densities and volumetric properties of binary mixtures of N-methyl-2-pyrrolidone with xylene at different temperatures and atmospheric pressure	
rfi	1.46770	293.10	Densities and volumetric properties of N-methyl-2-pyrrolidone with aromatic hydrocarbon at different temperature	
rfi	1.46860	293.10	Extraction of pentylbenzene from high molar mass alkanes (C14 and C17) by N-methyl-2-pyrrolidone	
rfi	1.47030	293.15	Vapor Liquid Equilibrium Data for 1-Methyl-2-Pyrrolidone + (1-Butanol or 1-Hexene or Water) Binary Mixtures	
rfi	1.46876	298.15	Liquid liquid equilibria of lactam containing binary systems	

rfi	1.46740		298.15	Excess volumes and excess enthalpies of N-methyl-2-pyrrolidon with branched alcohols	e
rfi	1.46960		293.10	Liquid liquid equilibria for n-alkanes (C12, C14, C17) + propylbenzene +NMP mixtures at temperatures between 298 and 328K	
rhol	1023.49	kg/m3	303.15	Excess Heat Capacities for Lactam + Chlorotoluene Binary Mixtures	
rhol	1028.29	kg/m3	288.15 1	Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of -butyl-3-methylimidazol ionic liquids with N-methyl-2-pyrrolidino	ium ne
rhol	1024.76	kg/m3	293.15	Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of -butyl-3-methylimidazol ionic liquids with N-methyl-2-pyrrolidino	ium 1e
rhol	1019.79	kg/m3	298.15 1	Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of -butyl-3-methylimidazol ionic liquids with N-methyl-2-pyrrolidino	ium ne
rhol	1015.48	kg/m3	303.15 1	Application of Prigogine Flory Patterson theory to excess molar volume of mixtures of -butyl-3-methylimidazol ionic liquids with N-methyl-2-pyrrolidino	ium ne

rhol	1019.03	kg/m3	308.15	Thermodynamic, transport, and spectroscopic studies for mixtures of isomeric butanediol and N-methyl-2-pyrrolidinone
rhol	1025.90	kg/m3	298.15	Temperature dependence measurements and molecular interactions for ammonium ionic liquid with N-methyl-2-pyrrolidone
rhol	1028.23	kg/m3	298.15	Excess molar enthalpies for [emim][BF4] + pyrrolidin-2-one or 1-methyl pyrrolidin-2-one + pyridine or water mixtures
rhol	1023.40	kg/m3	303.15	Excess Molar Enthalpies and Vapor-Liquid Equilibrium for N-Methyl-2-pyrrolidone with Ketones
rhol	1006.06	kg/m3	323.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
rhol	1010.53	kg/m3	318.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone
rhol	1015.00	kg/m3	313.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone

rhol	1019.46	kg/m3	308.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone	
rhol	1023.92	kg/m3	303.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone	
rhol	1028.38	kg/m3	298.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone	
rhol	1032.84	kg/m3	293.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone	
rhol	1037.30	kg/m3	288.15	Volumetric and Viscometric Behavior of Binary Systems 2-Butanol + PEG 200, + PEG 400, + Tetraethylene Glycol Dimethyl Ether, and + N-Methyl-2-pyrrolidone	
rhol	1028.55	kg/m3	298.15	Excess enthalpies and isothermal (vapour + liquid) equilibria of (1-methyl-2-pyrrolidone + 1-chloroalkane or +,?-dichloroalkane) mixtures	

rhol	1028.26	kg/m3	298.15	Excess Heat Capacities for Lactam + Chlorotoluene Binary Mixtures	
rhol	1033.28	kg/m3	293.15	Excess Heat Capacities for Lactam + Chlorotoluene Binary Mixtures	
rhol	1018.66	kg/m3	308.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents	
rhol	1023.46	kg/m3	303.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents	
rhol	1028.23	kg/m3	298.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents	
rhol	1033.30	kg/m3	293.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-or chlorotoluenes and benzene	ıe,
rhol	1033.23	kg/m3	293.15	Thermodynamic Properties of Ternary Mixtures Containing Ionic Liquids and Organic Solvents	
rhol	1028.30	kg/m3	298.15	Density, Speed of Sound, and Viscosity of N-Methyl-2-pyrrolidon + Ethanolamine + Water from T = (293.15 to 323.15) K	e

rhol	1027.91	kg/m3	298.15 Excess Molar Volumes and Kinematic Viscosities for Binary Mixtures of Dipropylene Glycol Monobutyl Ether and Dipropylene Glycol tert-Butyl Ether with 2-Pyrrolidinone, N-Methyl-2-pyrrolidinone, N,N-Dimethylformamide, and N,N-Dimethylacetamide at 298.15 K
rhol	1018.66	kg/m3	308.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1023.46	kg/m3	303.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1028.23	kg/m3	298.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water
rhol	1033.23	kg/m3	293.15 Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water

rhol	1006.06	kg/m3	323.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1010.53	kg/m3	318.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1015.00	kg/m3	313.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1019.46	kg/m3	308.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1023.93	kg/m3	303.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1028.38	kg/m3	298.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1032.84	kg/m3	293.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	

rhol	1037.30	kg/m3	288.15	Volumetric and viscometric properties of binary liquid mixtures as potential solvents for flue gas desulfurization processes	
rhol	1018.00	kg/m3	308.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures	
rhol	1022.00	kg/m3	303.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures	
rhol	1026.00	kg/m3	298.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures	
rhol	1004.79	kg/m3	323.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs	

rhol	1009.25	kg/m3	318.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs	
rhol	1013.72	kg/m3	313.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs	
rhol	1018.18	kg/m3	308.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs	
rhol	1022.64	kg/m3	303.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs	
rhol	1027.10	kg/m3	298.15	Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs	
rhol	1005.89	kg/m3	323.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidon with .gammabutyrolacton and propylene carbonate	ie

rhol	1010.20	kg/m3	318.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1014.74	kg/m3	313.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1019.49	kg/m3	308.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1023.60	kg/m3	303.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1028.17	kg/m3	298.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1032.66	kg/m3	293.15	Volumetric and viscosimetric properties of N-methyl-2-pyrrolidone with .gammabutyrolactone and propylene carbonate
rhol	1023.50	kg/m3	303.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene
rhol	1028.30	kg/m3	298.15	Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene

rhol	1030.45	kg/m3	298.15 Experimental measurements and modelling of volumetric properties, refractive index and viscosity of binary systems of ethyl lactate with methyl ethyl ketone, toluene and n-methyl-2-pirrolidone at 288.15 323.15 K and atmospheric pressure. New UNIFAC VISCO and ASOG VISCO interaction parameters
speedsl	1507.41	m/s	308.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures
speedsl	1527.24	m/s	303.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures
speedsl	1546.02	m/s	298.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures
speedsl	1565.52	m/s	293.15 Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures

speedsl	1478.00	m/s	318.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1501.00	m/s	313.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1526.40	m/s	308.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1552.80	m/s	303.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1508.00	m/s	308.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K	

speedsl	1546.00	m/s	298.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K
speedsl	1531.45	m/s	298.15	Isentropic compressibilities of (amide + water) mixtures: A comparative study
srf	0.04	N/m	298.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	293.15 Bis	Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or s(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	303.15 Bis	Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or s(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K

srf	0.04	N/m	303.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	313.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	337.88 Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	323.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	323.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K
srf	0.04	N/m	327.89 Surface Tension of Pure Liquids and Binary Liquid Mixtures

srf	0.04	N/m	317.85	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	307.85	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	297.81	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	287.80	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	277.84	Surface Tension of Pure Liquids and Binary Liquid Mixtures
srf	0.04	N/m	323.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	313.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
srf	0.04	N/m	303.15	Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K

srf	0.04	N/m	293.15 Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K	
srf	0.04	N/m	313.15 Density, Speed of Sound, Refractive Index, Viscosity, Surface Tension, and Excess Volume of N-Methyl-2-pyrrolidone + 1-Amino-2-propanol {or Bis(2-hydroxypropyl)amine} from T = (293.15 to 323.15) K	

Pressure Dependent Properties

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.37367e+01
Coeff. B	-3.14760e+03
Coeff. C	-1.30008e+02
Temperature range (K), min.	364.05
Temperature range (K), max.	503.60

Datasets

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
288.15	100.00	1036.8
288.15	500.00	1036.9
288.15	1000.00	1037.2
288.15	1500.00	1037.4
288.15	2000.00	1037.7
288.15	2500.00	1037.9
288.15	3000.00	1038.2
288.15	3500.00	1038.4
288.15	4000.00	1038.7
288.15	4500.00	1038.9
288.15	5000.00	1039.2
288.15	5500.00	1039.4
288.15	6000.00	1039.6
288.15	6500.00	1039.9
288.15	7000.00	1040.2
288.15	7500.00	1040.4
288.15	8000.00	1040.7
288.15	8500.00	1041.0
288.15	9000.00	1041.2
288.15	9500.00	1041.4
288.15	10000.00	1041.7
288.15	10500.00	1042.0
288.15	11000.00	1042.2
288.15	11500.00	1042.5
288.15	12100.00	1042.7
288.15	12500.00	1042.9
288.15	13000.00	1043.1
288.15	13500.00	1043.4
288.15	14000.00	1043.6
288.15	14500.00	1043.8
288.15	15000.00	1044.1
288.15	15500.00	1044.3
288.15	16000.00	1044.5
288.15	16500.00	1044.8
288.15	17000.00	1045.0

288.15	17500.00	1045.2
288.15	18000.00	1045.4
288.15	18600.00	1045.7
288.15	19000.00	1046.0
288.15	19500.00	1046.2
288.15	20000.00	1046.4
298.15	100.00	1028.0
298.15	500.00	1028.1
298.15	1000.00	1028.4
298.15	1500.00	1028.7
298.15	2000.00	1028.9
298.15	2500.00	1029.2
298.15	3000.00	1029.4
298.15	3500.00	1029.7
298.15	4000.00	1030.0
298.15	4500.00	1030.2
298.15	5000.00	1030.5
298.15	5500.00	1030.7
298.15	5900.00	1031.0
298.15	6500.00	1031.3
298.15	6900.00	1031.5
298.15	7500.00	1031.8
298.15	8000.00	1032.0
298.15	8500.00	1032.3
298.15	9000.00	1032.5
298.15	9600.00	1032.9
298.15	10000.00	1033.1
298.15	10500.00	1033.3
298.15	11000.00	1033.6
298.15	11500.00	1033.8
298.15	12000.00	1034.1
298.15	12500.00	1034.3
298.15	13000.00	1034.6
298.15	13500.00	1034.8
298.15	14000.00	1035.1
298.15	14400.00	1035.3
298.15	14900.00	1035.5
298.15	15500.00	1035.8
298.15	16000.00	1036.0
298.15	16500.00	1036.3
298.15	17000.00	1036.5
298.15	17500.00	1036.7
298.15	17900.00	1037.0
298.15	18500.00	1037.2

298.15	19000.00	1037.4
298.15	19500.00	1037.7
298.15	20000.00	1037.9
308.15	100.00	1019.3
308.15	500.00	1019.5
308.15	1000.00	1019.8
308.15	1500.00	1020.0
308.15	2000.00	1020.3
308.15	2500.00	1020.6
308.15	3000.00	1020.9
308.15	3500.00	1021.1
308.15	4000.00	1021.4
308.15	4500.00	1021.6
308.15	5000.00	1021.8
308.15	5500.00	1022.2
308.15	6000.00	1022.4
308.15	6400.00	1022.6
308.15	7100.00	1023.0
308.15	7500.00	1023.1
308.15	8100.00	1023.5
308.15	8500.00	1023.7
308.15	9000.00	1024.0
308.15	9500.00	1024.3
308.15	10000.00	1024.6
308.15	10400.00	1024.8
308.15	11100.00	1025.1
308.15	11500.00	1025.3
308.15	12000.00	1025.5
308.15	12500.00	1025.8
308.15	13000.00	1026.0
308.15	13500.00	1026.3
308.15	14000.00	1026.5
308.15	14500.00	1026.8
308.15	15000.00	1027.0
308.15	15500.00	1027.3
308.15	16000.00	1027.5
308.15	16500.00	1027.7
308.15	17000.00	1028.0
308.15	17500.00	1028.3
308.15	18000.00	1028.5
308.15	18500.00	1028.7
308.15	19000.00	1029.0
308.15	19500.00	1029.2
308.15	20000.00	1029.4

318.15	100.00	1011.0
318.15	500.00	1011.1
318.15	1000.00	1011.4
318.15	1500.00	1011.7
318.15	2000.00	1012.1
318.15	2500.00	1012.4
318.15	3000.00	1012.7
318.15	3500.00	1012.9
318.15	4000.00	1013.2
318.15	4500.00	1013.5
318.15	5000.00	1013.8
318.15	5500.00	1014.0
318.15	6000.00	1014.4
318.15	6500.00	1014.6
318.15	7000.00	1014.9
318.15	7500.00	1015.2
318.15	8000.00	1015.5
318.15	8500.00	1015.8
318.15	9000.00	1016.0
318.15	9500.00	1016.3
318.15	10000.00	1016.6
318.15	10500.00	1016.9
318.15	11000.00	1017.3
318.15	11400.00	1017.6
318.15	12000.00	1017.8
318.15	12500.00	1018.0
318.15	12900.00	1018.3
318.15	13500.00	1018.5
318.15	14000.00	1018.8
318.15	14500.00	1019.1
318.15	15000.00	1019.4
318.15	15500.00	1019.7
318.15	16000.00	1019.9
318.15	16500.00	1020.2
318.15	17000.00	1020.4
318.15	17500.00	1020.7
318.15	18000.00	1021.0
318.15	18500.00	1021.3
318.15	19000.00	1021.5
318.15	19600.00	1021.9
318.15	20000.00	1022.0

https://www.doi.org/10.1021/je7003758

Reference

Sources

Experimental measurement and Rease Wextures: Surface Tension of Pure Liquids and Binary Liquid Mixtures: Thermodynamic, transport, and spectroscopic studies for mixtures of Beneficiation and Madeling of Histicipe Solution on Several Pure Benefics from 200 metrics properties of N-methyl-2-pyrrolidone with aromatic Principal Studies of Namethyl Space. And IR Studies of N-methyl-2-solution of Wareobtolic Atamine, Squerus high and Cyropic and the studies of N-methyl-2-https://www.doi.org/10.1021/je700635r https://www.doi.org/10.1021/je400408w Chocotologia Planary Mixtures: Thermodynamic Properties and Crystal https://www.doi.org/10.1021/je2009973 Solubaji in Manaseura appis and Ooricelation https://www.doi.org/10.1021/acs.jced.6b Grystallization with N.N-Dimethyl All Fight Partice and Solution and Solut Enversion of the sense of the s

volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone:

Experimental measurement and thermodynamic modeling of propylene in the source of the theory of the https://www.doi.org/10.1016/j.fluid.2014.12.031 https://www.doi.org/10.1016/j.fluid.2012.08.009 https://www.doi.org/10.1016/j.fluid.2008.02.023 https://www.doi.org/10.1016/j.fluid.2014.09.031

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/je049/06p

 Imps://www.doi.org/10.1021/acs.jced.8b00430

 Imps://www.doi.org/10.1016/j.jct.2013.09.015

 Imps://www.doi.org/10.1016/j.jct.2013.09.015

 Imps://www.sciencedirect.com/book/978012802

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1021/je0201323 https://www.doi.org/10.1016/j.jct.2009.06.006 https://www.doi.org/10.1021/acs.jced.9b00659 https://www.doi.org/10.1016/j.jct.2006.05.006 https://www.doi.org/10.1016/j.tca.2014.06.026 https://www.doi.org/10.1021/je400408w Structures of the Adductive Sound its Manseumans and Active lation https://www.doi.org/10.1021/acs.jced.6b00664 https://www.doi.org/10.1016/j.jct.2013.02.006 https://www.doi.org/10.1016/j.fluid.2013.12.019 https://www.doi.org/10.1016/j.jct.2017.01.006 2-nitro-p-phenylenediamine in nine paperine the solution of th https://www.doi.org/10.1016/j.jct.2014.01.019 https://www.doi.org/10.1021/je300848z https://www.doi.org/10.1016/j.fluid.2014.02.029 https://www.doi.org/10.1021/je034254m https://www.doi.org/10.1021/acs.jced.8b00952 https://www.doi.org/10.1021/je9000153

https://www.doi.org/10.1021/acs.jced.9b00661 https://www.doi.org/10.1016/j.jct.2008.09.003

water): Isobaric vapour-liquid phase

water): Isobaric vapour-liquid phase Equilibrium Relacitiem class clution https://w Network of adenosine in aqueous solution of adenosine in aqueous solution of a second content of a second NALENGE OF A second content of a second suboride and Manager of Mathematical average of the second content of the second and second content of the second cont Some and the second sec

the solid-liquid equilibrium and vapou-liquid equilibrium. The Modified UNIFAC (Do) model characterization:

Separation of azeotrope (allyl alcohol + https://www.doi.org/10.1016/j.jct.2017.11.009

https://www.doi.org/10.1016/j.jct.2018.02.002

https://www.doi.org/10.1021/je049657g

https://www.doi.org/10.1021/acs.jced.9b00275 https://www.doi.org/10.1016/j.fluid.2009.05.005 https://www.doi.org/10.1016/j.jct.2019.07.001 https://www.doi.org/10.1016/j.jct.2019.06.026 https://www.doi.org/10.1021/acs.jced.9b00201 https://www.doi.org/10.1021/je400199m https://www.doi.org/10.1021/je4007713 https://www.doi.org/10.1016/j.jct.2016.09.033 https://www.doi.org/10.1021/je200922s https://www.doi.org/10.1021/acs.jced.9b00028 https://www.doi.org/10.1016/j.jct.2007.05.015 https://www.doi.org/10.1016/j.jct.2017.07.023 https://www.doi.org/10.1021/je900235s http://webbook.nist.gov/cgi/cbook.cgi?ID=C872504&Units=SI

 Extractives of mixtures
 https://www.doi.org/10.1021/je201268b

 Point ing 1-methylpyrrolidin-2-one,
 https://www.doi.org/10.1021/je201268b

 A-(2-(Diethylamino)ethoxy)-3,5-diiodophenyl
 https://www.doi.org/10.1021/je700561p

 Ketwel-LipycitoEntwilderAntibetarone
 https://www.doi.org/10.1021/je700561p

 Methyler +
 https://www.doi.org/10.1021/je4007822

 Methyler Provide Filly and F https://www.doi.org/10.1016/j.jct.2014.12.022 https://www.doi.org/10.1021/je800138b https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1021/acs.jced.9b00844 https://www.doi.org/10.1016/j.fluid.2008.01.008 https://www.doi.org/10.1016/j.jct.2016.06.019 https://www.doi.org/10.1016/j.jct.2009.01.006 https://www.doi.org/10.1021/je201128n https://www.doi.org/10.1021/je200121f https://www.doi.org/10.1016/j.fluid.2018.08.017 https://www.doi.org/10.1021/je034062r https://www.doi.org/10.1016/j.jct.2017.01.018 https://www.doi.org/10.1021/je050513r https://www.doi.org/10.1021/acs.jced.8b00931 https://www.doi.org/10.1021/acs.jced.9b00229 https://www.doi.org/10.1016/j.fluid.2017.05.005 **Example 2 and a provide and solutions of Numerical Solutions of Solutions of Numerical Solutions of Solutions of Numerical Solutions of So** https://www.doi.org/10.1021/acs.jced.8b01051

Vapor Liquid Equilibrium Data for 1-Methyl-2-Pyrrolidone + (1-Butanol or Isotexemetyl watch) Build Squikkriagf Binary Mixtures of Nitrogen with Binkenity Sumo Saletion

Solutivity survoice light of the survoice of t

molar mass alkanes (C14 and C17) by Neasureprent and C17) by Griseofulvin Solubility in Different ទី១៤សូរ៉ាង ជាចំពោះព្រះពេលខេទាំំស្រី។ 2016 of potition denzamide Dissolved in The Weiner South to the total south the total south to the total south total south to the total south total south to the total south to the total southet total southet

of politinular namide Dissolved in Yaleve Network Sewith Sewith Service Store Nenethys. 2Vise stillen Sone as a social system of Nenethys. 2Vise estillen Sone as a social system Nenethys. 2Vise estillen Sone as a social system Source, and Arabative Permittivities for Water International and the solution of the soluti

https://www.doi.org/10.1021/je500092v https://www.doi.org/10.1021/je6005357 https://www.doi.org/10.1021/acs.jced.9b00778 https://www.doi.org/10.1016/j.jct.2017.12.023 https://www.doi.org/10.1021/je301353z https://www.doi.org/10.1021/je900262t https://www.doi.org/10.1016/j.fluid.2015.04.017 modelling of volumetric properties, Part Active in a part of a case with methyl Phylore is a character with methyl Phylore is a character with methyl Phylore is and the properties is an intervention of the phylore is a comparison of the phylore is comparison of the phylore is a comparison of the phylore i http://www.ddbst.com/en/EED/VLE/VLE%20Acetone%3BN-Methyl-2-pyrrolidone.php https://www.doi.org/10.1021/je100030j https://www.doi.org/10.1021/acs.jced.9b00065 https://www.doi.org/10.1016/j.fluid.2012.08.030 https://www.doi.org/10.1021/je0340809 https://www.doi.org/10.1016/j.jct.2018.05.030 https://www.doi.org/10.1016/j.fluid.2015.03.042 https://www.doi.org/10.1021/je100967k https://www.doi.org/10.1021/je500542j https://www.doi.org/10.1021/acs.jced.9b00320 https://www.doi.org/10.1021/je034096z https://www.doi.org/10.1021/acs.jced.9b00117 https://www.doi.org/10.1021/je700453v https://www.doi.org/10.1021/je300542s https://www.doi.org/10.1021/je400486p Image of water is a constrained by portrolition of the sector of the s http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1016/j.fluid.2006.02.002 https://www.doi.org/10.1016/j.fluid.2015.01.005 https://www.doi.org/10.1016/j.fluid.2015.08.003

(Solid + liquid) phase equilibria of Selublica and Solution

Preneric a libertorscient Thermodynamics of Solvenstaviternetionideservith 278.15 Solvenstaviterneting, solvent effect and preferential solvation of allopurinol in Densities ultrasonic speeds and

Rundaining bingers of CO2 in industriation at the bayes of CO2 in acid in binary solvent mixtures of

N-Methyl-2-pyrrolidone: Measurement and Correlation of Isothermal Vapor Liquid Equilibrium of Fluoroethane + Dimethyl Ether Triethylene Glycol, 1,1-Difluoroethane + Dimethyl Ether Triethylene Glycol, and 1,1-Difluoroethane + N-Methyl-2-pyrrolidone Systems:

https://www.doi.org/10.1016/j.fluid.2004.11.006 binary mixtures containing Solutility 200 Polkting Ference and pyridine system with the set of th https://www.doi.org/10.1021/acs.jced.8b01250 https://www.doi.org/10.1016/j.jct.2008.09.021 https://www.doi.org/10.1016/j.jct.2018.11.028 AlternationAlternationpreferential solvation of allopurinol in
referential solvation of allopurinol in
referential solvation of allopurinol in
https://www.doi.org/10.1016/j.jct.2016.07.032preferential solvation of allopurinol in
referential solvation of allopurinol in
https://www.doi.org/10.1016/j.jct.2016.03.029preferential solvation of allopurinol in
referential solvation of allopurinol in
https://www.doi.org/10.1021/je3009842preferential solvation of allopurinol in
referential solvation of allopurinol in
referential solvation of allopurinol in
https://www.doi.org/10.1016/j.jct.2018.05.007preferential solvation of allopurinol in
referential solvation of allopurinol in
preferential solvation of allopurinol in
preferential solvation of allopurinol in
referential solvation of allopurinol in
referential solvation of allopurinol in the solvation of allopurinol in
referential solvation of allopurinol in
referentia Intrastilic serie diversity of a relation of mixtures of a relation of mixtures of a relation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of p-Xylene with Cyclohexane, Meanure reputate deformation of phase series of ternary maxime a convivolitor of the series of ternary maxime and converting of the series of ternary maxime a convivolitor of the series of ternary maxime a convivolitor of the series of ternary maxime a convivolitor of the series of ternary maxime a converse of the series of ternary maxime a converse of the series of ternary maxime and the series of ternary maxime a converse of the series of ternary maxime and the series of ternary maxime and the series of ternary maxime and the series of ternary maxime a converse of the series of ternary maxime and the series of ternary maxime and the series of ternary maxime and the series of ternary maxime a converse of the series of ternary maxime and the series of ter https://www.doi.org/10.1016/j.jct.2016.10.019 Mixtures of Ethylbenzene + NGM-Hilly Zeparoinolio, Ethylbenzene + Https://www.doi.org/10.1016/j.jct.2016.07.023 https://www.doi.org/10.1016/j.fluid.2013.09.028 https://www.doi.org/10.1016/j.fluid.2013.09.028 https://www.doi.org/10.1016/j.fluid.2013.09.028 https://www.doi.org/10.1016/j.fluid.2013.09.028 https://www.doi.org/10.1016/j.fluid.2017.12.035 https://www.doi.org/10.1016/j.fluid.2017.12.035 https://www.doi.org/10.1021/je3002078 https://www.doi.org/10.1021/je3002078 https://www.doi.org/10.1021/je060454x https://www.doi.org/10.1021/je060454x https://www.doi.org/10.1021/je060454x https://www.doi.org/10.1016/j.fluid.2013.09.028 https://www.doi.org/10.1016/j.fluid.2017.12.035 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/acs.jced.5b00782

Legend

affp:	Proton affinity
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpl:	Liquid phase heat capacity
dvisc:	Dynamic viscosity
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
рс:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhoc:	Critical density
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
speedsl:	Speed of sound in fluid
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tbrp:	Boiling point at reduced pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/35-901-2/2-Pyrrolidinone-1-methyl.pdf

Generated by Cheméo on 2024-04-30 14:35:43.174449915 +0000 UTC m=+16776992.095027227. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.