(-)-D-arginine hydrate

Other names:	D-Arginine
	L-arginine
Inchi:	InChI=1S/C6H14N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h4H,1-3,7H2,(H,11,12)(H4,8,9,10)/t4
InchiKey:	ODKSFYDXXFIFQN-BYPYZUCNSA-N
Formula:	C6H14N4O2
SMILES:	N=C(N)NCCCC(N)C(=O)O
Mol. weight [g/mol]:	174.20
CAS:	157-06-2

Physical Properties

Property code	Value	Unit	Source
chs	-3738.30 ± 1.30	kJ/mol	NIST Webbook
gf	157.35	kJ/mol	Joback Method
hf	-117.88	kJ/mol	Joback Method
hfs	-623.60 ± 1.30	kJ/mol	NIST Webbook
hvap	91.79	kJ/mol	Joback Method
log10ws	-1.51		Crippen Method
logp	-1.338		Crippen Method
mcvol	138.460	ml/mol	McGowan Method
SS	250.60	J/mol×K	NIST Webbook
tb	761.86	K	Joback Method
tf	541.09	K	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	406.74	J/mol×K	761.86	Joback Method	
cpg	82.60	J/mol×K	100.12	Joback Method	
cpg	82.60	J/mol×K	100.12	Joback Method	
cpg	82.60	J/mol×K	100.12	Joback Method	
cpg	82.60	J/mol×K	100.12	Joback Method	
cpg	82.60	J/mol×K	100.12	Joback Method	
cpg	82.60	J/mol×K	100.12	Joback Method	
cps	232.80	J/mol×K	296.80	NIST Webbook	

Sources

Volumetric and viscometric studies of Volumetric and viscometric studies of amino acids in L-ascorbic acid Effects of stathylastathyliggigatelium Bromalectonic Liquid on the Veldinetriber and vision of version of Veldinetriber and vision of version of Veldinetriber and vision of version of version of Veldinetriber and vision of version of versi Acetate in Aqueous Solutions: McGowan Method:

Viscosity Behavior of alpha-Amino Acids in Acetate Salt Solutions at **Persperimenties (303.69 restson59 fit**he Solubility of I-Fucose in Four Binary **USVeWeSPStehis** at the Temperature Banga from 208 45 to 208 45 K Range from 288.15 to 308.15 K: Joback Method:

Volumetric and viscometric study of amino acids in aqueous sorbitol Solumatrat antenia tenetrications ries of amino acids in aqueous maltitol

https://www.doi.org/10.1016/j.jct.2013.11.002 https://www.doi.org/10.1021/je300953u https://www.doi.org/10.1016/j.jct.2012.12.010 https://www.doi.org/10.1021/je500975a https://www.doi.org/10.1021/je100190e http://pubs.acs.org/doi/abs/10.1021/ci990307I http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1007/s10765-011-1111-y https://www.doi.org/10.1021/acs.jced.8b00361 http://webbook.nist.gov/cgi/cbook.cgi?ID=C157062&Units=SI https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.jct.2015.10.002 https://www.doi.org/10.1016/j.jct.2017.02.024 of amino acids in aqueous maltitol Sensitias and viscosits 323 appino acid + xylitol + water solutions at 293.15 Resided another solutions at 293.15 Reside Stiding rating Aqueous Stiding rating Differing Coefficients of https://www.doi.org/10.1021/je049582g Amino Acids in Aqueous Solutions: Crippen Method: https://www.chemeo.com/doc/models/cl https://www.chemeo.com/doc/models/crippen_log10ws

Legend

chs:	Standard solid enthalpy of combustion
срд:	Ideal gas heat capacity
cps:	Solid phase heat capacity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfs:	Solid phase enthalpy of formation at standard conditions
hvap:	Enthalpy of vaporization at standard conditions
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
SS:	Solid phase molar entropy at standard conditions

tb:Normal Boiling Point Temperaturetf:Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/36-044-3/D-arginine-hydrate.pdf

Generated by Cheméo on 2024-05-08 09:59:08.894950153 +0000 UTC m=+17451597.815527465.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.