Tetrahydropyran

Other names: 2H-Pyran, tetrahydro-

Oxacyclohexane

Oxane

Pentamethylene oxide

THP

Tetrahydro-2H-pyran tetrahydropyrane

Inchi: InChI=1S/C5H10O/c1-2-4-6-5-3-1/h1-5H2
InchiKey: DHXVGJBLRPWPCS-UHFFFAOYSA-N

Formula: C5H10O SMILES: C1CCOCC1

Mol. weight [g/mol]: 86.13 **CAS:** 142-68-7

Physical Properties

Property code	Value	Unit	Source
affp	822.80	kJ/mol	NIST Webbook
basg	799.10 ± 0.10	kJ/mol	NIST Webbook
basg	799.20	kJ/mol	NIST Webbook
basg	795.40	kJ/mol	NIST Webbook
chg	-3173.30 ± 0.96	kJ/mol	NIST Webbook
chl	-3137.60 ± 0.84	kJ/mol	NIST Webbook
chl	-3150.00 ± 6.30	kJ/mol	NIST Webbook
chl	-3141.90 ± 1.30	kJ/mol	NIST Webbook
gf	-62.74	kJ/mol	Joback Method
hf	-223.40 ± 1.50	kJ/mol	NIST Webbook
hf	-220.00 ± 3.00	kJ/mol	NIST Webbook
hf	-223.80 ± 1.00	kJ/mol	NIST Webbook
hfl	-255.00 ± 2.00	kJ/mol	NIST Webbook
hfus	7.45	kJ/mol	Joback Method
hvap	35.00	kJ/mol	NIST Webbook
hvap	34.90	kJ/mol	NIST Webbook
hvap	38.20 ± 1.10	kJ/mol	NIST Webbook
hvap	34.67	kJ/mol	NIST Webbook
ie	9.25 ± 0.01	eV	NIST Webbook
ie	9.16	eV	NIST Webbook
ie	9.24 ± 0.05	eV	NIST Webbook

ie	9.25 ± 0.01	eV	NIST Webbook
ie	9.25 ± 0.01 9.26 ± 0.03	eV	NIST Webbook
-	9.26 ± 0.03 9.57	eV eV	NIST Webbook
ie			NIST Webbook
ie	9.46	eV	
ie	9.50	eV	NIST Webbook
ie	9.48	eV	NIST Webbook
log10ws	-0.03		Aqueous Solubility Prediction Method
log10ws	-0.03		Estimated Solubility Method
logp	1.187		Crippen Method
mcvol	76.320	ml/mol	McGowan Method
рс	4770.00 ± 14.18	kPa	NIST Webbook
rhoc	328.37 ± 0.48	kg/m3	NIST Webbook
rinpol	736.00		NIST Webbook
rinpol	740.00		NIST Webbook
rinpol	720.00		NIST Webbook
rinpol	740.00		NIST Webbook
rinpol	714.00		NIST Webbook
rinpol	689.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	709.00		NIST Webbook
rinpol	689.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	689.00		NIST Webbook
rinpol	714.00		NIST Webbook
rinpol	714.00		NIST Webbook
rinpol	729.00		NIST Webbook
rinpol	714.00		NIST Webbook
ripol	988.00		NIST Webbook
ripol	1010.00		NIST Webbook
ripol	930.00		NIST Webbook
ripol	930.00		NIST Webbook
ripol	965.00		NIST Webbook
ripol	972.00		NIST Webbook
ripol	969.00		NIST Webbook
tb		K	
to	361.36	K	Vapor Liquid Equilibrium, Densities, and Interfacial Tensions of the System Ethanol + Tetrahydro-2H-pyran
tb	361.23	К	Study of tetrahydropyran-chlorobutane VLE using the a o and o o approaches
tb	361.00 ± 3.00	K	NIST Webbook
tb	361.20 ± 1.50	K	NIST Webbook

tb 361.15 ± 1.00 K NIST Webbook tb 361.05 ± 0.20 K NIST Webbook tb 361.00 K NIST Webbook tb 361.23 K Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling tb 361.20 K NIST Webbook tb 360.15 ± 1.00 K NIST Webbook tb 361.31 K Experimental Isobaric Vapor-Liquid Equilibrium Data for Binary Mixtures of Cyclic Ethers with (1-Methylethyl)benzene tc 572.20 ± 0.30 K NIST Webbook tf 226.82 K Aqueous Solubility Prediction Method tf 224.00 ± 0.10 K NIST Webbook tf 224.15 ± 1.00 K NIST Webbook tf 223.95 ± 0.30 K NIST Webbook vc 0.271 m3/kmol Joback Method	tb	361.35 ± 0.30	K	NIST Webbook
tb 361.00 K NIST Webbook tb 361.23 K Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling tb 361.20 K NIST Webbook tb 360.15 ± 1.00 K NIST Webbook tb 361.31 K Experimental Isobaric Vapor-Liquid Equilibrium Data for Binary Mixtures of Cyclic Ethers with (1-Methylethyl)benzene tc 572.20 ± 0.30 K NIST Webbook tf 226.82 K Aqueous Solubility Prediction Method tf 224.00 ± 0.10 K NIST Webbook tf 224.15 ± 1.00 K NIST Webbook tf 223.95 ± 0.30 K NIST Webbook	tb	361.15 ± 1.00	K	NIST Webbook
tb 361.23 K Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling tb 361.20 K NIST Webbook tb 360.15 ± 1.00 K NIST Webbook tb 361.31 K Experimental Isobaric Vapor-Liquid Equilibrium Data for Binary Mixtures of Cyclic Ethers with (1-Methylethyl)benzene tc 572.20 ± 0.30 K NIST Webbook tf 226.82 K Aqueous Solubility Prediction Method tf 224.00 ± 0.10 K NIST Webbook tf 224.15 ± 1.00 K NIST Webbook tf 223.95 ± 0.30 K NIST Webbook	tb	361.05 ± 0.20	K	NIST Webbook
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tb	361.00	K	NIST Webbook
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tb	361.23	К	liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tb	361.20	K	NIST Webbook
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	tb	360.15 ± 1.00	K	NIST Webbook
tf 226.82 KAqueous Solubility Prediction Methodtf 224.00 ± 0.10 KNIST Webbooktf 224.15 ± 1.00 KNIST Webbooktf 223.95 ± 0.30 KNIST Webbook	tb	361.31	К	Vapor-Liquid Equilibrium Data for Binary Mixtures of Cyclic Ethers with
Prediction Method tf 224.00 ± 0.10 K NIST Webbook tf 224.15 ± 1.00 K NIST Webbook tf 223.95 ± 0.30 K NIST Webbook	tc	572.20 ± 0.30	K	NIST Webbook
tf 224.15 ± 1.00 K NIST Webbook tf 223.95 ± 0.30 K NIST Webbook	tf	226.82	К	Aqueous Solubility Prediction Method
tf 223.95 ± 0.30 K NIST Webbook	tf	224.00 ± 0.10	K	NIST Webbook
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tf	224.15 ± 1.00	K	NIST Webbook
vc 0.271 m3/kmol Joback Method	tf	223.95 ± 0.30	K	NIST Webbook
	VC	0.271	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
срд	151.60	J/mol×K	433.96	Joback Method
cpg	126.39	J/mol×K	364.97	Joback Method
cpg	139.33	J/mol×K	399.46	Joback Method
cpg	194.46	J/mol×K	571.94	Joback Method
cpg	184.64	J/mol×K	537.44	Joback Method
cpg	174.24	J/mol×K	502.95	Joback Method
cpg	163.23	J/mol×K	468.45	Joback Method
cpl	140.60	J/mol×K	298.00	NIST Webbook

cpl	145.20	J/mol×K	293.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	151.13	J/mol×K	297.62	NIST Webbook
cpl	143.40	J/mol×K	288.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	164.20	J/mol×K	333.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	147.80	J/mol×K	298.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K

cpl	150.20	J/mol×K	303.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	159.10	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	152.60	J/mol×K	308.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	156.00	J/mol×K	313.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	149.70	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model

cpl	143.90	J/mol×K	288.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	146.30	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	147.90	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	157.60	J/mol×K	318.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	151.70	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	154.30	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model

cpl	156.50	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell
cpl	159.90	J/mol×K	323.15	model Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	161.60	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	149.21	J/mol×K	298.15	NIST Webbook
cpl	149.60	J/mol×K	298.15	NIST Webbook
dvisc	0.0010047	Paxs	283.15	Excess Enthalpy, Excess Volume, Viscosity Deviation, and Speed of Sound Deviation for the Mixture Tetrahydropyran + 2,2,2-Trifluoroethanol
				at (283.15, 298.15, and 313.15) K
dvisc	0.0008090	Paxs	298.15	Excess Enthalpy, Density, Viscosity, and Speed of Sound for the Mixture Tetrahydropyran + 1-Butanol at (283.15, 298.15 and, 313.15) K

dvisc	0.0010240	Paxs	283.15	Excess Enthalpy, Density, Viscosity, and Speed of Sound for the Mixture Tetrahydropyran + 1-Butanol at (283.15, 298.15 and, 313.15) K
dvisc	0.0006494	Paxs	313.15	Excess Enthalpy, Excess Volume, Viscosity Deviation, and Speed of Sound Deviation for the Mixture Tetrahydropyran + 2,2,2-Trifluoroethanol at (283.15, 298.15, and 313.15) K
dvisc	0.0008005	Paxs	298.15	Excess Enthalpy, Excess Volume, Viscosity Deviation, and Speed of Sound Deviation for the Mixture Tetrahydropyran + 2,2,2-Trifluoroethanol at (283.15, 298.15, and
dvisc	0.0006278	Paxs	313.15	296.15, and 313.15) K Excess Enthalpy, Density, Viscosity, and Speed of Sound for the Mixture Tetrahydropyran + 1-Butanol at (283.15, 298.15
				and, 313.15) K
hvapt	36.00	kJ/mol	293.00	NIST Webbook
hvapt	35.00	kJ/mol	280.50	NIST Webbook
hvapt	33.20	kJ/mol	373.50	NIST Webbook
hvapt	36.00	kJ/mol	323.50	NIST Webbook
hvapt	31.17	kJ/mol	361.00	NIST Webbook
hvapt	35.00	kJ/mol	317.50	NIST Webbook
kvisc	0.0000009	m2/s	298.15	Thermophysical Properties of Mixtures of Tetrahydropyran with Chlorobutanes

kvisc	0.0000011	m2/s	283.15	Experimental and	
INICO	0.0000011		200.10	predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.000009	m2/s	298.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.000008	m2/s	313.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.000008	m2/s	313.15	Thermophysical Properties of Mixtures of Tetrahydropyran with Chlorobutanes	
pvap	1.13	kPa	260.07	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	

pvap	98.66	kPa	360.22	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, nis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	93.33	kPa	358.37	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	79.99	kPa	353.38	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	

pvap	53.33	kPa	341.09	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	40.00	kPa	332.98	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	10.23	kPa	300.01	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	

pvap	6.30	kPa	290.00	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	6.28	kPa	289.94	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, nja-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	3.70	kPa	279.82	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	

pvap	2.16	kPa	270.28	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, 1,3-Butadiene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	66.66	kPa	347.72	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, nimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran	
pvap	9.53	kPa	298.15	Thermodynamic Properties of Binary Mixtures of Tetrahydropyran with Anilines at 308.15 K	
pvap	18.93	kPa	313.73	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	15.69	kPa	309.21	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	13.15	kPa	305.40	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	10.96	kPa	301.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	8.99	kPa	296.98	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	6.90	kPa	291.32	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	4.98	kPa	284.90	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	3.49	kPa	278.41	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.70	kPa	273.74	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	33.95	kPa	328.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	9.56	kPa	298.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	18.66	kPa	313.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	9.56	kPa	298.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	

pvap	0.98	kPa	257.96	Henry s Law Constants and Infinite Dilution Activity Coefficients of Propane, Propene, Butane, 2-Methylpropane, 1-Butene, 2-Methylpropene, trans-2-Butene, cis-2-Butene, Dimethylether, Chloroethane, 1,1-Difluoroethane, and Hexane in Tetrahydropyran
pvap	33.95	kPa	328.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane
rfi	1.42000		298.15	Experimental determination and theoretical modeling of the vapor liquid equilibrium and densities of the binary system butan-2-ol + tetrahydro-2H-pyran
rfi	1.41864		298.15	(Vapour + liquid) equilibria for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane at P = 101.3 kPa
rfi	1.42004		298.15	Atmospheric densities and interfacial tensions for 1- alkanol (1-butanol to 1-octanol) + water and ether (MTBE, ETBE, DIPE, TAME and THP) + water demixed mixtures.
rfi	1.42000		298.15	Vapor-liquid equilibrium and interfacial tensions of the system ethanol + hexane + tetrahydro-2H-Pyran

rfi	1.42000		298.15	Experimental determination and theoretical modeling of the vapor-liquid equilibrium and surface tensions of hexane + tetrahydro-2H-pyran	
rhol	879.13	kg/m3	298.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities	
rhol	879.00	kg/m3	298.15	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
rhol	868.83	kg/m3	308.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities	
rhol	873.99	kg/m3	303.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities	
rhol	878.81	kg/m3	298.15	Surface Tension of Mixtures of Tetrahydrofuran or Tetrahydropyran with Isomeric Chlorobutanes	
rhol	878.80	kg/m3	298.15	Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions	

rhol	868.83	kg/m3	308.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	873.99	kg/m3	303.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	879.13	kg/m3	298.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	863.43	kg/m3	313.15	Volumetric Properties of Binary Mixtures of N-Ethylformamide with Tetrahydropyran, 2-Pentanone, and Propylacetate from (293.15 to 313.15) K	
rhol	868.67	kg/m3	308.15	Volumetric Properties of Binary Mixtures of N-Ethylformamide with Tetrahydropyran, 2-Pentanone, and Propylacetate from (293.15 to 313.15) K	
rhol	873.79	kg/m3	303.15	Volumetric Properties of Binary Mixtures of N-Ethylformamide with Tetrahydropyran, 2-Pentanone, and Propylacetate from (293.15 to 313.15) K	

rhol	878.95	kg/m3	298.15	Volumetric Properties of Binary Mixtures of N-Ethylformamide with Tetrahydropyran, 2-Pentanone, and Propylacetate from (293.15 to 313.15) K
rhol	884.08	kg/m3	293.15	Volumetric Properties of Binary Mixtures of N-Ethylformamide with Tetrahydropyran, 2-Pentanone, and Propylacetate from (293.15 to 313.15) K
rhol	878.82	kg/m3	298.15	Study of the Surface Tension of Chlorocyclohexane or Bromocyclohexane with Some Cyclic Ethers
rhol	873.99	kg/m3	303.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons
rhol	868.75	kg/m3	308.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones
rhol	873.91	kg/m3	303.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones

_	rhol	879.09	kg/m3	298.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
	rhol	884.23	kg/m3	293.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
	rhol	868.81	kg/m3	308.15	Excess molar volumes and isentropic compressibilities changes of mixing of tetrahydropyran + benzene + cyclo or n-alkanes ternary mixtures at 308.15 K	
	rhol	868.83	kg/m3	308.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	
	rhol	879.13	kg/m3	298.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	

rhol	879.14	kg/m3	298.15	Thermodynamic and topological investigations of ternary mixtures with o-toluidine, tetrahydropyran, and picolines: Excess molar volume and excess isentropic compressibility
rhol	868.83	kg/m3	308.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons
rhol	879.16	kg/m3	298.15	Isothermal Vapor-Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane
rhol	879.13	kg/m3	298.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons
rhol	873.99	kg/m3	303.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures
speedsl	1246.83	m/s	303.15	Topological investigations of molecular interactions of binary and ternary mixtures containing tetrahydropyran, o-toluidine and N-methyl formamide

speedsl	1269.88	m/s	298.15	Topological investigations of molecular interactions of binary and ternary mixtures containing tetrahydropyran, o-toluidine and N-methyl formamide	
speedsl	1224.47	m/s	308.15	Thermodynamic properties of binary mixtures of tetrahydropyran with pyridine and isomeric picolines: Excess molar volumes, excess molar enthalpies and excess isentropic compressibilities	
speedsl	1246.83	m/s	303.15	Thermodynamic properties of binary mixtures of tetrahydropyran with pyridine and isomeric picolines: Excess molar volumes, excess molar enthalpies and excess isentropic compressibilities	
speedsl	1269.88	m/s	298.15	Thermodynamic properties of binary mixtures of tetrahydropyran with pyridine and isomeric picolines: Excess molar volumes, excess molar enthalpies and excess isentropic compressibilities	
speedsl	1272.00	m/s	298.15	Isentropic Compressibilities Changes of Mixing of Tetrahydropyran and Aromatic Hydrocarbons Ternary Mixtures at 308.15 K	

speedsl	1224.47	m/s	308.15	Topological investigations of molecular interactions of binary and ternary mixtures containing tetrahydropyran, o-toluidine and N-methyl	
				formamide	

Correlations

Information Value

Property code	pvap	
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$	
Coeff. A	1.03083e+02	
Coeff. B	-7.40540e+03	
Coeff. C	-1.35698e+01	
Coeff. D	1.49079e-05	
Temperature range (K), min.	273.15	
Temperature range (K), max.	314.15	

Datasets

Refractive index (Na D-line)

Temperature, K - Liquid	Pressure, kPa - Liquid	Refractive index (Na D-line) - Liquid
298.15	101.33	1.4186
293.15	101.00	1.39161
303.15	101.00	1.3866
313.15	101.00	1.38143
323.15	101.00	1.37627
293.15	101.00	1.42109
303.15	101.00	1.41599
313.15	101.00	1.41092
323.15	101.00	1.40554

Sources

compressibilities changes of mixing:

Partial molar volumes of organic https://www.doi.org/10.1016/j.jct.2009.11.005 solutes in water. XXII. Cyclic ethers at temperasเกียร์ปุ่วย์ชาย ซาวัย หังอกฟ้ethod: pressures up to 30 MPa: (Vapour + liquid) equilibria for binary https://www.doi.org/10.1016/j.jct.2011.10.025 and ternary mixtures of 2-propanol, Gripapy and physics, and http://pubs.acs.org/doi/abs/10.1021/ci990307l temanydropyran; and
2.2.4-trimethylpentane at P = 101.3 kPa: Isentropic Compressibilities Changes of Mixing of Tetrahydropyran and Afmannographic เป็น เลือน เลือ https://www.doi.org/10.1007/s10765-011-0997-8 https://www.doi.org/10.1016/j.fluid.2015.03.040 https://www.doi.org/10.1007/s10765-007-0169-z https://www.doi.org/10.1021/acs.jced.7b01091 https://www.doi.org/10.1016/j.fluid.2006.10.024 https://www.doi.org/10.1016/j.fluid.2010.04.017 properties of mixtures containing a https://www.doi.org/10.1016/j.jct.2014.06.030 isentropic compressibilities of binary have riginian of cyclic attack with least on the result of the https://www.doi.org/10.1016/j.fluid.2007.05.013 inserentions of an pary and ternary 1984 न शास्त्र के किया के अपने के स्टाइन के किए के स्टाइन के स्टाइन के किए के स्टाइन के स्टाइन के किए के स्टाइन के स्टा https://www.doi.org/10.1016/j.fluid.2014.06.024 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1038 hydrocarbons: Volumetric Properties of Binary Nydrocarbons:
Volumetric Properties of Binary
Mixtures of N-Ethylformamide with
Tenanghysicah propertias of dimethyl
Pulioniste and propertias of the vapor-liquid
Pulioniste and propertias of the vapo https://www.doi.org/10.1021/je300974g The straints of the part of th Colinorotiquenta per estruntaria of binary enixht excensiais and opic binary enixht excensiais and opic binary enixht excensial content of the same entry of https://www.doi.org/10.1016/j.fluid.2004.11.006 https://www.doi.org/10.1016/j.fluid.2009.01.010 https://www.doi.org/10.1016/j.tca.2011.02.002 https://www.doi.org/10.1016/j.tca.2008.11.009 https://www.doi.org/10.1016/j.fluid.2012.12.021 https://www.doi.org/10.1007/s10765-006-0100-z https://www.doi.org/10.1016/j.tca.2010.03.028 Excess molar volumes, Excess molar enthalpies and isentropic

Estimated Solubility Method: http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

Study of the Surface Tension of

Chlorocyclohexane or provide the system ethanol + https://www.doi.org/10.1016/j.fluid.2013.10.060 https://wwbbook.nist.gov/cgi/cbook.cgi?ID=C1420 http://webbook.nist.gov/cgi/cbook.cgi?ID=C1420 http://webbook.nist.gov/cgi/cbook.c

https://www.doi.org/10.1021/je0500577

http://webbook.nist.gov/cgi/cbook.cgi?ID=C142687&Units=SI

https://www.doi.org/10.1016/j.jct.2010.07.016 Excess molar volumes, excess molar enthalpies, and excess isentropic sewly restating and excess isentropic sewly restating and excess isentropic sewly restating and excess is entropic sewly restating and except and except

https://www.doi.org/10.1016/j.fluid.2005.02.014

https://www.doi.org/10.1021/acs.jced.6b00606

https://www.doi.org/10.1021/je400722h

http://link.springer.com/article/10.1007/BF02311772

https://www.cheric.org/files/research/kdb/mol/mol1038.mol

https://www.doi.org/10.1021/je600557n

https://www.doi.org/10.1016/j.tca.2010.03.012

https://www.doi.org/10.1021/je900347f

https://www.doi.org/10.1021/je800145h

https://www.doi.org/10.1016/j.jct.2011.10.002

https://www.doi.org/10.1021/je1005196

https://www.doi.org/10.1021/je9010097

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2010.08.019

https://www.doi.org/10.1021/je900077g

Interactions in Mixtures Containing Pensition Speads 194 Soutch Excess Modate Rethologies, and Heat Capacities प्रश्नितः पर्वातम्बद्धः , and near उद्युक्तिः Wird of Grand and Cyclic Ether

Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Experimental production of Experimental production of Experimental productions of ternary mixtures with Experimental productions of Excess Molar Experimental productions of Excess Molar Experimental Method to Excess Molar Experimental Method Experimental Productions of Excess Molar Experimental Method Entering and Ternary Mixtures of (Cyclohexane, Molar Heat Capacities, Densities,

Mixtures of (Cyclohexane, Perially and Terriary Mixtures of (Cyclohexane, Perially the North Mixtures of Cyclohexane, Perially the State of Cyclohexane, Perially the Mixtures of Cyclohexane, Perially the Mixtures of Cyclohexane, Perially the Mixtures of Cyclohexane at 308.15 K and Atmospheric Pressure: **Experimental Measurements and**

Legend

affp: Proton affinity Gas basicity basg:

Standard gas enthalpy of combustion chg: chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy kvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/36-564-6/Tetrahydropyran.pdf

Generated by Cheméo on 2025-12-23 06:14:27.334223117 +0000 UTC m=+6218664.864263783.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.