Azocine, octahydro-

Other names: Azacyclooctane

Heptamethyleneimine Heptamethylenimine Octahydroazocine Perhydroazocine

Inchi: InChi=1S/C7H15N/c1-2-4-6-8-7-5-3-1/h8H,1-7H2

InchiKey: QXNDZONIWRINJR-UHFFFAOYSA-N

Formula: C7H15N

SMILES: C1CCCNCCC1

Mol. weight [g/mol]: 113.20 CAS: 1121-92-2

Physical Properties

Property code	Value	Unit	Source
gf	103.73	kJ/mol	Joback Method
hf	-87.66	kJ/mol	Joback Method
hfus	10.04	kJ/mol	Joback Method
hvap	39.02	kJ/mol	Joback Method
log10ws	-1.84		Crippen Method
logp	1.540		Crippen Method
mcvol	108.610	ml/mol	McGowan Method
рс	4021.02	kPa	Joback Method
rinpol	938.00		NIST Webbook
tb	440.87	K	Joback Method
tc	670.82	K	Joback Method
tf	278.26	K	Joback Method
VC	0.383	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	213.04	J/mol×K	440.87	Joback Method
cpg	231.55	J/mol×K	479.20	Joback Method
cpg	249.13	J/mol×K	517.52	Joback Method

cpg	265.79	J/mol×K	555.85	Joback Method	
cpg	281.54	J/mol×K	594.17	Joback Method	
cpg	296.38	J/mol×K	632.50	Joback Method	
cpg	310.31	J/mol×K	670.82	Joback Method	
cpl	230.00	J/mol×K	298.00	NIST Webbook	
hvapt	46.50	kJ/mol	293.00	NIST Webbook	
pvap	0.42	kPa	299.20	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.11	kPa	279.60	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.13	kPa	281.30	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.17	kPa	285.20	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.22	kPa	288.30	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.28	kPa	292.10	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.27	kPa	292.30	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.33	kPa	295.20	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.42	kPa	299.00	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.09	kPa	276.10	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.52	kPa	302.10	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.69	kPa	306.10	Vapour pressure and enthalpy of vaporization of cyclic imines	

pvap	0.83	kPa	309.00	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.79	kPa	309.00	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	1.02	kPa	313.00	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	1.31	kPa	317.00	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	1.44	kPa	319.80	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	1.58	kPa	322.00	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	1.97	kPa	324.90	Vapour pressure and enthalpy of vaporization of cyclic imines	
pvap	0.07	kPa	273.22	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.12	kPa	279.40	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.16	kPa	284.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers,
				and Cyclic and Open Chain Secondary Alcohols
pvap	0.21	kPa	287.87	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	0.30	kPa	293.35	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	0.40	kPa	297.82	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	0.56	kPa	302.95	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols

pvap	0.75	kPa	308.09	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.01	kPa	313.50	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	325.20	K	2.00	NIST Webbook

Sources

Vapor Pressure and Its Temperature Dependence of 28 Organic USA PROBLES Syclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Airco Study of heptane + amine mixtures. V. Excess and Scipago Method energies:

Thermodynamic study of (heptane + amine) mixtures. III: Excess and partial Manary Mana

Joback Method:

McGowan Method:

https://www.doi.org/10.1021/acs.jced.6b00576

http://webbook.nist.gov/cgi/cbook.cgi?ID=C1121922&Units=SI

https://www.doi.org/10.1016/j.fluid.2014.12.017 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.jct.2011.04.017

https://www.doi.org/10.1016/j.tca.2018.07.016

https://www.chemeo.com/doc/models/crippen_log10ws

https://en.wikipedia.org/wiki/Joback_method

http://link.springer.com/article/10.1007/BF02311772

Legend

cpg: Ideal gas heat capacity

cpl: Liquid phase heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/37-515-9/Azocine-octahydro.pdf

Generated by Cheméo on 2025-12-05 07:55:32.193038944 +0000 UTC m=+4669529.723079609.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.