Piperazine, 1-methyl-

Other names: 1-Methylpiperazine

N-Methylpiperazine piperazine, N-methyl-

Inchi: InChl=1S/C5H12N2/c1-7-4-2-6-3-5-7/h6H,2-5H2,1H3

InchiKey: PVOAHINGSUIXLS-UHFFFAOYSA-N

Formula: C5H12N2 SMILES: CN1CCNCC1

Mol. weight [g/mol]: 100.16 CAS: 109-01-3

Physical Properties

Property code	Value	Unit	Source
log10ws	0.43		Crippen Method
logp	-0.479		Crippen Method
mcvol	90.410	ml/mol	McGowan Method
rinpol	852.00		NIST Webbook
rinpol	847.00		NIST Webbook
rinpol	839.00		NIST Webbook
ripol	1262.00		NIST Webbook
ripol	1270.00		NIST Webbook
ripol	1282.00		NIST Webbook
ripol	1274.00		NIST Webbook
ripol	1266.00		NIST Webbook
ripol	1286.00		NIST Webbook
ripol	1262.00		NIST Webbook
ripol	1282.00		NIST Webbook
tb	411.20	K	NIST Webbook
tb	410.65 ± 0.30	K	NIST Webbook
tb	411.15	K	NIST Webbook
tf	267.82 ± 0.20	K	NIST Webbook
tf	266.75	K	NIST Webbook
tf	266.80 ± 0.60	K	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
срІ	218.00	J/mol×K	353.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	213.90	J/mol×K	298.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	215.70	J/mol×K	313.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	216.40	J/mol×K	318.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	215.00	J/mol×K	308.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	216.90	J/mol×K	323.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	217.30	J/mol×K	328.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	215.50	J/mol×K	338.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	216.20	J/mol×K	343.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K

cpl	217.60	J/mol×K	348.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	217.20	J/mol×K	333.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	214.40	J/mol×K	303.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
dvisc	0.0021000	Paxs	293.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
dvisc	0.0016240	Paxs	303.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
dvisc	0.0018540	Paxs	298.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K
dvisc	0.0015830	Paxs	303.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K

dvisc	0.0012580	Paxs	313.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K	
dvisc	0.0010640	Paxs	323.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K	
dvisc	0.0018560	Paxs	298.15	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane	
dvisc	0.0015440	Paxs	303.15	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane	
dvisc	0.0012500	Paxs	313.15	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane	
dvisc	0.0014090	Pa×s	308.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K	

dvisc	0.0018410	Paxs	298.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
hvapt	46.70	kJ/mol	296.50	NIST Webbook
pvap	3.12	kPa	319.47	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	2.23	kPa	313.21	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	1.65	kPa	307.83	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	2.50	kPa	315.32	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols

pvap	1.65	kPa	307.75	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.34	kPa	304.25	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.24	kPa	302.86	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.00	kPa	299.32	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.93	kPa	298.20	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	2.88	kPa	317.91	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.93	kPa	298.15	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.68	kPa	293.21	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.58	kPa	290.75	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.46	kPa	287.23	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.37	kPa	284.39	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.30	kPa	281.27	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.25	kPa	278.91	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.21	kPa	276.72	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.19	kPa	274.99	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

274.39 0.18 kPa pvap Vapor Pressure and Its **Temperature** Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.55432e+01
Coeff. B	-3.88545e+03
Coeff. C	-5.54500e+01
Temperature range (K), min.	310.14
Temperature range (K), max.	435.19

Sources

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C109013&Units=SI

High-Pressure Solubility of Carbon Dioxide (CO2) in Aqueous 1-Methyl Pipensities somethers sites for binary mixtures of N-methylpiperazine with Herikaws, Handinok-pf Janos,

Methanon, emanor; กะคเวอลกับเ, โรคราชเรลาดูเ, n-butanol and iso-butanol ฟู้อใส่รู้ จระคราฐ คุรปลูกกรู เป็นกระที่ for systems of aqueous piperazine ฟลกุจส์ฟูงครรมre and its Temperature Dependence of 28 Organic เปิดคุณฟูเปรียบงิ่วไร Amines, Cyclic

Ethers, and Cyclic and Open Chain Secondary Alconois:

Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to \$32150 lighbility measurement and thermodynamic modeling for Thempolynamic modeling for Thempolynamic interfect and thermodynamic modeling for Thempolynamic is the state of the state atmospheric pressure:

https://www.doi.org/10.1021/je500526m

https://www.doi.org/10.1016/j.fluid.2005.05.012

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Alcohols

https://www.doi.org/10.1016/j.jct.2015.06.006

https://www.doi.org/10.1021/acs.jced.6b00576

https://www.chemeo.com/doc/models/crippen_log10ws

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je400178k

https://www.doi.org/10.1016/j.fluid.2015.03.021

https://www.doi.org/10.1016/j.tca.2012.06.011

https://www.doi.org/10.1021/je900969u

https://www.doi.org/10.1016/j.jct.2011.06.020

http://pubs.acs.org/doi/abs/10.1021/ci990307l

Legend

cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

hvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tf: Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/38-063-0/Piperazine-1-methyl.pdf

Generated by Cheméo on 2024-04-28 03:21:37.04866637 +0000 UTC m=+16563745.969243686.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.