Piperazine, 1-methyl-

Other names: 1-Methylpiperazine

N-Methylpiperazine piperazine, N-methyl-

Inchi: InChl=1S/C5H12N2/c1-7-4-2-6-3-5-7/h6H,2-5H2,1H3

InchiKey: PVOAHINGSUIXLS-UHFFFAOYSA-N

Formula: C5H12N2 SMILES: CN1CCNCC1

Mol. weight [g/mol]: 100.16 CAS: 109-01-3

Physical Properties

Property code	Value	Unit	Source
log10ws	0.43		Crippen Method
logp	-0.479		Crippen Method
mcvol	90.410	ml/mol	McGowan Method
rinpol	847.00		NIST Webbook
rinpol	852.00		NIST Webbook
rinpol	839.00		NIST Webbook
ripol	1262.00		NIST Webbook
ripol	1270.00		NIST Webbook
ripol	1282.00		NIST Webbook
ripol	1274.00		NIST Webbook
ripol	1282.00		NIST Webbook
ripol	1266.00		NIST Webbook
ripol	1262.00		NIST Webbook
ripol	1286.00		NIST Webbook
tb	410.65 ± 0.30	K	NIST Webbook
tb	411.15	K	NIST Webbook
tb	411.20	K	NIST Webbook
tf	267.82 ± 0.20	K	NIST Webbook
tf	266.75	K	NIST Webbook
tf	266.80 ± 0.60	K	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
срІ	217.60	J/mol×K	348.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	214.40	J/mol×K	303.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	215.00	J/mol×K	308.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	215.70	J/mol×K	313.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	216.40	J/mol×K	318.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	216.90	J/mol×K	323.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	217.30	J/mol×K	328.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	217.20	J/mol×K	333.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
срІ	215.50	J/mol×K	338.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K

cpl	216.20	J/mol×K	343.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	218.00	J/mol×K	353.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
cpl	213.90	J/mol×K	298.15	Molar Heat Capacity (Cp) of Aqueous Cyclic Amine Solutions from (298.15 to 353.15) K
dvisc	0.0012500	Paxs	313.15	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane
dvisc	0.0015440	Paxs	303.15	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane
dvisc	0.0018560	Paxs	298.15	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane
dvisc	0.0010640	Paxs	323.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K

dvisc	0.0014090	Paxs	308.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K
dvisc	0.0015830	Paxs	303.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K
dvisc	0.0018540	Paxs	298.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K
dvisc	0.0016240	Paxs	303.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
dvisc	0.0018410	Paxs	298.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K

dvisc	0.0012580	Paxs	313.15	Thermodynamic study of Binary Mixtures of Tricyclo [5.2.1.0(2.6)] Decane with N-Methylpiperazine or Triethylamine at T = (298.15 to 323.15) K
dvisc	0.0021000	Paxs	293.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
hvapt	46.70	kJ/mol	296.50	NIST Webbook
pvap	1.00	kPa	299.32	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	1.34	kPa	304.25	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	1.65	kPa	307.75	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols

pvap	1.65	kPa	307.83	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.23	kPa	313.21	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.50	kPa	315.32	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.88	kPa	317.91	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	3.12	kPa	319.47	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.93	kPa	298.15	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain	
pvap	0.68	kPa	293.21	Secondary Alcohols Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.58	kPa	290.75	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.46	kPa	287.23	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.37	kPa	284.39	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	0.30	kPa	281.27	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.25	kPa	278.91	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.21	kPa	276.72	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.19	kPa	274.99	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.18	kPa	274.39	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	1.24	kPa	302.86	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	0.93	kPa	298.20	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.55432e+01
Coeff. B	-3.88545e+03
Coeff. C	-5.54500e+01
Temperature range (K), min.	310.14
Temperature range (K), max.	435.19

Sources

NIST Webbook:

Thermodynamic study of Binary
Mixtures of Tricyclo [5.2.1.0(2.6)]
Mecanyani Mayndethylpiperazine or
Triethylamine at T = (298.15 to 323.15)
Yolumetric and Viscous Properties at
Several Temperatures for Binary
Mixtures of Internal Properties or n-Heptane:
Molar excess enthalpy (Hm E) for
systems of aqueous piperazine
Geippan Method:

Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols: http://webbook.nist.gov/cgi/cbook.cgi?ID=C109013&Units=SI

https://www.doi.org/10.1016/j.tca.2012.06.011

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je900969u

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.jct.2015.06.006

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/acs.jced.6b00576

High-Pressure Solubility of Carbon Dioxide (CO2) in Aqueous 1-Methyl Pripepazintessandion:

Physicochemical properties of 41-methyl piperazine (1) + water (2)}

Systemitær ancydersites acresine with
minusen of housely lepperazine with
Methan entermostry (500) pan Aqueous
Gyclico mine adutiona trom (500 fan de 1500)

Exclico mine adutiona trom (500 fan de 1500)

Exclico mine adutiona trom (500 fan de 1500)

A methyl piperazine water (500) 1-methylpiperazine/water/CO2:

https://www.doi.org/10.1021/je500526m

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.jct.2011.06.020

https://www.doi.org/10.1016/j.fluid.2005.05.012

https://www.doi.org/10.1021/je400178k

https://www.doi.org/10.1016/j.fluid.2015.03.021

Legend

Liquid phase heat capacity cpl:

dvisc: Dynamic viscosity

Enthalpy of vaporization at a given temperature hvapt:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

Vapor pressure pvap:

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tf: Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/38-063-0/Piperazine-1-methyl.pdf

Generated by Cheméo on 2025-12-05 11:32:05.990191047 +0000 UTC m=+4682523.520231701.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.