tin

Inchi: InChl=1S/Sn

InchiKey: ATJFFYVFTNAWJD-UHFFFAOYSA-N

 Formula:
 Sn

 SMILES:
 [Sn]

 Mol. weight [g/mol]:
 118.71

 CAS:
 7440-31-5

Physical Properties

Property code	Value	Unit	Source
ea	1.11 ± 0.02	eV	NIST Webbook
ea	1.15 ± 0.15	eV	NIST Webbook
ea	1.11	eV	NIST Webbook
ea	1.11 ± 0.00	eV	NIST Webbook
hf	301.20 ± 1.50	kJ/mol	NIST Webbook
hfus	7.13	kJ/mol	Odd even effect in melting properties of 12 alkane-a,x-diamides
ie	7.34 ± 0.00	eV	NIST Webbook
ie	7.87	eV	NIST Webbook
ie	7.28 ± 0.07	eV	NIST Webbook
ie	7.34	eV	NIST Webbook
ie	7.34	eV	NIST Webbook
ie	7.30 ± 0.20	eV	NIST Webbook
ie	7.34	eV	NIST Webbook
ie	7.40 ± 0.30	eV	NIST Webbook
sgb	168.49 ± 0.00	J/mol×K	NIST Webbook
SS	51.18 ± 0.08	J/mol×K	NIST Webbook
tf	504.87 ± 0.30	K	NIST Webbook
tf	505.11 ± 0.00	K	NIST Webbook
tf	505.15 ± 1.00	K	NIST Webbook

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

dvisc	0.0012530	Paxs	873.00	A Novel Vibrating	
UVISC		raxs	673.00	Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0011420	Paxs	973.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
dvisc	0.0010870	Paxs	1073.00	A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys	
speedsl	2470.00	m/s	608.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2408.00	m/s	804.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2416.00	m/s	814.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2379.00	m/s	919.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2366.00	m/s	1012.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2332.00	m/s	1025.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	

speedsl	2306.00	m/s	1218.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2234.00	m/s	1453.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
speedsl	2242.00	m/s	1463.00	Temperature Dependence of the Velocity of Sound in Liquid Metals of Group XIV	
tcondl	33.00	W/m×K	603.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	32.00	W/m×K	571.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	30.70	W/m×K	534.30	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	33.50	W/m×K	630.00	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	34.30	W/m×K	678.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	

tcondl	34.50	W/m×K	703.00	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	35.00	W/m×K	730.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	27.30	W/m×K	523.10	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	28.00	W/m×K	549.20	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	28.60	W/m×K	580.00	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	29.10	W/m×K	603.70	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	

tcondl	30.00	W/m×K	634.90	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	30.60	W/m×K	657.00	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	31.40	W/m×K	683.80	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	31.90	W/m×K	707.60	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	32.50	W/m×K	733.20	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	

Sources

A Novel Vibrating Finger Viscometer https://www.doi.org/10.1007/s10765-016-2104-7 for High-Temperature Measurements in Repeat Meilins and Reference of a https://www.doi.org/10.1007/s10765-006-0124-4 Transient Hot-wire Instrument for Medial and Instrument for https://www.doi.org/10.1016/j.tca.2011.04.032 miximg for Medial and Instrument for https://www.doi.org/10.1016/j.tca.2011.04.032 miximg for melting properties of https://www.doi.org/10.1016/j.jct.2006.04.004 12 alkane-a,x-diamides: Thermal conductivities of solid and https://www.doi.org/10.1016/j.tca.2007.01.009 liquid phases in Pb Cd and Sn Zn Thermedweeme நுருerties of liquid Au-Cu-Sn alloys determined from https://www.doi.org/10.1016/j.tca.2011.08.011 Wagenolinguid of horse equalibries ne shisary https://www.doi.org/10.1016/j.fluid.2016.02.012 tineantimony system in vacuum https://www.doi.org/10.1016/j.tca.2008.01.014 ந்து வருக்கு நடிகள் system: Thermophysical properties of the liquid https://www.doi.org/10.1016/j.fluid.2018.03.001 Ga-Sn-Zn éutectic allov A Novel Instrument for the https://www.doi.org/10.1007/s10765-006-0057-y Measurement of the Thermal Measurement of the Thermal Conductivity includes the conductivity of the conductivity https://www.doi.org/10.1016/j.jct.2015.01.010 https://www.doi.org/10.1016/j.jct.2013.11.010 https://www.doi.org/10.1016/j.fluid.2018.07.008 https://www.doi.org/10.1016/j.tca.2013.06.039 https://www.doi.org/10.1016/j.tca.2010.10.010 Find the soldering: Cu-Sb-Sn system for lead free soldering: Cu-Sb-Sn system for the soldering: Cu-Sb-Sn Alloys:
The measurement of thermal https://www.doi.org/10.1016/j.tca.2012.02.024 https://www.doi.org/10.1016/j.tca.2012.12.012 conductivity variation with http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440315&Units=SI โปเคิโวปไลโปค์อัจได้ Sn-20 wt.% In based lead-free ternary solders: Thermophysical Properties of the https://www.doi.org/10.1021/je400882q Liquid Ga-In-Sn Eutectic Alloy: Temperature Dependence of the https://www.doi.org/10.1007/s10765-007-0151-9 Velocity of Sound in Liquid Metals of Chermodynamics of uranium in (Ga + https://www.doi.org/10.1016/j.jct.2015.09.023 Sn) eutectic alloy: Enthalpies of mixing of liquid Bi Cu and https://www.doi.org/10.1016/j.tca.2008.02.023 Bi Cu Sn alloys relevant for lead-free Epthologof mixing of liquid systems for lead free soldering: The Ni-Sb-Sn Eystempies of Mixing of Liquid In-Sn https://www.doi.org/10.1016/j.tca.2012.01.024 https://www.doi.org/10.1016/j.tca.2010.02.008 and In-Sn-Zn Alloys: Thermal conductivities of solid and https://www.doi.org/10.1016/j.fluid.2010.07.015 liquid phases for pure AI, pure Sn and

Legend

their binary alloys:

dvisc: Dynamic viscosity **ea:** Electron affinity

hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

ie: Ionization energy

sgb: Molar entropy at standard conditions (1 bar)

speedsl: Speed of sound in fluid

ss: Solid phase molar entropy at standard conditions

tcondl: Liquid thermal conductivity
tf: Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/38-081-0/tin.pdf

Generated by Cheméo on 2025-12-05 08:30:23.992946925 +0000 UTC m=+4671621.522987588.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.