Carbamic acid, phenyl-, methyl ester

Other names: Carbanilic acid, methyl ester

Methyl N-phenylurethane

Methyl carbanilate

Methyl phenylurethane

N-Phenylcarbamic acid methyl ester

methyl N-phenylcarbamate methyl phenylcarbamate

InChl=1S/C8H9NO2/c1-11-8(10)9-7-5-3-2-4-6-7/h2-6H,1H3,(H,9,10)

InchiKey: IAGUPODHENSJEZ-UHFFFAOYSA-N

Formula: C8H9NO2

SMILES: COC(=O)Nc1ccccc1

Mol. weight [g/mol]: 151.16 CAS: 2603-10-3

Physical Properties

Property code	Value	Unit	Source
chs	-4248.00 ± 2.00	kJ/mol	NIST Webbook
gf	-15.64	kJ/mol	Joback Method
hf	-163.25	kJ/mol	Joback Method
hfus	18.40	kJ/mol	Joback Method
hvap	51.27	kJ/mol	Joback Method
log10ws	-1.74		Crippen Method
logp	1.865		Crippen Method
mcvol	117.240	ml/mol	McGowan Method
рс	3925.85	kPa	Joback Method
rinpol	1320.00		NIST Webbook
rinpol	1330.00		NIST Webbook
rinpol	1340.00		NIST Webbook
rinpol	1317.00		NIST Webbook
rinpol	1313.00		NIST Webbook
rinpol	1336.00		NIST Webbook
rinpol	1315.00		NIST Webbook
ripol	1995.00		NIST Webbook
ripol	1995.00		NIST Webbook
tb	535.58	K	Joback Method
tc	755.73	K	Joback Method
tf	325.00 ± 1.00	K	NIST Webbook

vc 0.434 m3/kmol Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	317.41	J/mol×K	755.73	Joback Method	
cpg	309.03	J/mol×K	719.03	Joback Method	
срд	300.01	J/mol×K	682.34	Joback Method	
cpg	290.31	J/mol×K	645.65	Joback Method	
cpg	279.94	J/mol×K	608.96	Joback Method	
cpg	268.87	J/mol×K	572.27	Joback Method	
cpg	257.09	J/mol×K	535.58	Joback Method	
cps	203.30	J/mol×K	298.00	NIST Webbook	
hfust	14.55	kJ/mol	325.00	NIST Webbook	
hfust	14.56	kJ/mol	325.00	NIST Webbook	
hfust	14.56	kJ/mol	325.00	NIST Webbook	
pvap	0.33	kPa	380.65	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.56	kPa	390.35	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.59	kPa	391.76	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl	
				Carbamate System at Different Pressures	

	0.05	. 5	22425	D () ()	
pvap	0.65	kPa	394.05	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate +	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.72	kPa	395.80	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.31	kPa	379.05	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.79	kPa	397.05	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Hethyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.94	kPa	399.63	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Hethyl-N-phenyl Carbamate System at Different Pressures	

pvap	0.94	kPa	399.83	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	1.06	kPa	402.15	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	1.29	kPa	409.85	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	1.54	kPa	412.90	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	1.97	kPa	415.90	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	

pvap	2.13	kPa	418.45	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate +	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.50	kPa	387.85	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.25	kPa	376.90	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.22	kPa	374.46	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				H Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.21	kPa	372.50	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate	
				H Methyl-N-phenyl Carbamate System at Different Pressures	

pvap	0.45	kPa	385.85	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.39	kPa	383.31	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
pvap	0.79	kPa	397.05	Determination and Modeling of Isobaric Vapor Liquid Equilibria for the Methylcarbamate + Methyl-N-phenyl Carbamate System at Different Pressures	
sfust	44.80	J/mol×K	325.00	NIST Webbook	

Sources

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Determination and Modeling of Isobaric https://www.doi.org/10.1021/je400551d Vapor Liquid Equilibria for the wetage Metage + Methyl-N-phenyl https://en.wikipedia.org/wiki/Joback_me

https://en.wikipedia.org/wiki/Joback_method Carbamate System at Different McGoway Method:

http://link.springer.com/article/10.1007/BF02311772

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C2603103&Units=SI

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Legend

chs: Standard solid enthalpy of combustion cpg: Ideal gas heat capacitycps: Solid phase heat capacity

gf: Standard Gibbs free energy of formation
hf: Enthalpy of formation at standard conditions
hfus: Enthalpy of fusion at standard conditions
hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/38-245-8/Carbamic-acid-phenyl-methyl-ester.pdf

Generated by Cheméo on 2025-12-06 00:50:45.547137065 +0000 UTC m=+4730443.077177736.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.