Acetic acid ethenyl ester

Other names: 1-ACETOXYETHYLENE

Acetate de vinyle

Acetic acid vinyl ester

Acetic acid, ethylene ether

Acetoxyethene

CH3CO2CH=CH2 ETHENYL ETHANOATE

Ethanoic acid, ethenyl ester

Ethenyl acetate

Everflex 81L

NSC 8404

Octan winylu

Plyamul 40305-00

Unocal 76 Res 6206

Unocal 76 Res S-55

VAC

VINYL ETHANOATE

Vinile (acetato di)

Vinnapas A 50

Vinyl A monomer

Vinyl acetate

Vinyl acetate h.q.

Vinyl acetate monomer

Vinyl ester of acetic acid

Vinylacetaat

Vinylacetat

Vinyle (acetate de)

Vinylester kyseliny octove

VyAc

Zeset T

acetic acid, vinyl ester

InChl=1S/C4H6O2/c1-3-6-4(2)5/h3H,1H2,2H3

InchiKey: XTXRWKRVRITETP-UHFFFAOYSA-N

Formula: C4H6O2

SMILES: C=COC(C)=O

Mol. weight [g/mol]: 86.09

CAS: 108-05-4

Physical Properties

Property code	Value	Unit	Source
af	0.3400		KDB
affp	813.90	kJ/mol	NIST Webbook
aigt	699.82	K	KDB
basg	782.90	kJ/mol	NIST Webbook
chl	-2086.00 ± 10.00	kJ/mol	NIST Webbook
dm	1.70	debye	KDB
fII	2.60	% in Air	KDB
flu	13.40	% in Air	KDB
fpc	268.15	K	KDB
fpo	265.37	K	KDB
gf	-163.28	kJ/mol	Joback Method
gyrad	3.0890		KDB
hf	-316.00	kJ/mol	KDB
hf	-313.60	kJ/mol	NIST Webbook
hf	-309.00 ± 10.00	kJ/mol	NIST Webbook
hfl	-346.00 ± 10.00	kJ/mol	NIST Webbook
hfl	-350.80	kJ/mol	NIST Webbook
hfus	7.62	kJ/mol	Joback Method
hvap	37.20 ± 0.84	kJ/mol	NIST Webbook
ie	9.85	eV	NIST Webbook
ie	9.19 ± 0.05	eV	NIST Webbook
ie	9.20	eV	NIST Webbook
ie	9.20	eV	NIST Webbook
ie	9.85 ± 0.05	eV	NIST Webbook
log10ws	-0.71		Crippen Method
logp	0.693		Crippen Method
mcvol	70.360	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=2)		KDB
nfpas	%!d(float64=2)		KDB
рс	4185.00 ± 9.00	kPa	NIST Webbook
рс	4350.00	kPa	KDB
rinpol	560.00		NIST Webbook
rinpol	562.00		NIST Webbook
rinpol	562.00		NIST Webbook
rinpol	562.00		NIST Webbook
rinpol	548.00		NIST Webbook
rinpol	564.00		NIST Webbook
rinpol	527.00		NIST Webbook

rinpol	529.00		NIST Webbook
rinpol	545.00		NIST Webbook
rinpol	548.00		NIST Webbook
rinpol	564.00		NIST Webbook
rinpol	546.00		NIST Webbook
rinpol	551.00		NIST Webbook
rinpol	570.00		NIST Webbook
rinpol	524.00		NIST Webbook
rinpol	570.00		NIST Webbook
ripol	878.00		NIST Webbook
tb	345.95	K	Isobaric Vapor Liquid Equilibrium of Binary Mixtures of Vinyl Acetate and Ethyl Formate with Cumene at 97.3 kPa
tb	345.75	К	Vapor Liquid Equilibrium at p/kPa = 101.3 of the Binary Mixtures of Ethenyl Acetate with Methanol and Butan-1-ol
tb	346.10	К	Vapor-Liquid Equilibrium and Mixing Properties of Methanol + Diethyl Carbonate and Vinyl Acetate + Diethyl Carbonate Systems
tb	346.00	K	KDB
tc	519.13 ± 0.40	K	NIST Webbook
tc	525.00	K	KDB
tf	172.95 ± 0.30	K	NIST Webbook
tf	173.00	K	KDB
tf	180.35	K	NIST Webbook
VC	0.265	m3/kmol	KDB
ZC	0.2640820		KDB
zra	0.26		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	116.32	J/mol×K	363.89	Joback Method
cpg	122.50	J/mol×K	394.42	Joback Method
cpg	128.49	J/mol×K	424.95	Joback Method
cpg	134.29	J/mol×K	455.47	Joback Method
cpg	139.91	J/mol×K	486.00	Joback Method
cpg	145.34	J/mol×K	516.53	Joback Method

cpg	150.58	J/mol×K	547.06	Joback Method	
cpl	169.50	J/mol×K	298.00	NIST Webbook	
dvisc	0.0021165	Paxs	205.24	Joback Method	
dvisc	0.0012203	Paxs	231.68	Joback Method	
dvisc	0.0007877	Paxs	258.12	Joback Method	
dvisc	0.0005515	Paxs	284.56	Joback Method	
dvisc	0.0004102	Paxs	311.01	Joback Method	
dvisc	0.0003197	Paxs	337.45	Joback Method	
dvisc	0.0002583	Paxs	363.89	Joback Method	
hfust	8.46	kJ/mol	180.60	NIST Webbook	
hfust	8.46	kJ/mol	180.60	NIST Webbook	
hvapt	34.40	kJ/mol	320.00	NIST Webbook	
hvapt	31.40	kJ/mol	347.50	NIST Webbook	
pvap	101.30	kPa	346.10	Vapor-Liquid Equilibrium and Mixing Properties of Methanol + Diethyl Carbonate and Vinyl Acetate + Diethyl Carbonate Systems	
pvap	97.30	kPa	344.68	Vapor-Liquid Equilibria and Excess Properties of the Binary System Vinyl Acetate + p-Xylene	
pvap	101.30	kPa	345.75	Vapor Liquid Equilibrium at p/kPa = 101.3 of the Binary Mixtures of Ethenyl Acetate with Methanol and Butan-1-ol	
rfi	1.39253		298.15	Density, Refractive Index, Speed of Sound, and Vapor-Liquid Equilibria for Binary Mixtures of Methanol + Vinyl Propionate and Vinyl Acetate + Vinyl Propionate. Vapor Pressures of Vinyl Propionate	

rfi	1.39260		293.15	Measurement and Modeling of Liquid Liquid Equilibrium for the Systems Vinyl Acetate + Acetic Acid/Ethanol + Water at 298.15 and 308.15 K	
rhol	913.50	kg/m3	308.15	Density, viscosity, and speed of sound of binary liquid mixtures of vinyl acetate with butyl vinyl ether, diisopropyl ether, anisole and dibutyl ether	
rhol	925.77	kg/m3	298.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K	
rhol	932.00	kg/m3	293.00	KDB	
rhol	913.13	kg/m3	308.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacryliate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K	

rhol	931.95	kg/m3	293.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	919.09	kg/m3	303.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	906.12	kg/m3	313.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	919.40	kg/m3	303.15	Density, viscosity, and speed of sound of binary liquid mixtures of vinyl acetate with butyl vinyl ether, diisopropyl ether, anisole and dibutyl ether	

rhol	913.13	kg/m3	308.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	
rhol	925.77	kg/m3	298.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	
rhol	907.30	kg/m3	313.15	Density, viscosity, and speed of sound of binary liquid mixtures of vinyl acetate with butyl vinyl ether, diisopropyl ether, anisole and dibutyl ether	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.48909e+01
Coeff. B	-3.20824e+03
Coeff. C	-3.33880e+01
Temperature range (K), min.	253.08
Temperature range (K), max.	519.13

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	4.86249e+01
Coeff. B	-5.47773e+03
Coeff. C	-4.86787e+00
Coeff. D	2.36709e-06
Temperature range (K), min.	180.35
Temperature range (K), max.	524.00

Sources

Vapor-Liquid Equilibrium and Mixing Properties of Methanol + Diethyl Callydiay Callydiay Callydiay Callydiay Properties of Methanol + Diethyl **Calventate** Systems: McGowan Method:

Isobaric Vapor Liquid Equilibrium of Binary Mixtures of Vinyl Acetate and Parylines of Marien Dermane at 97.3 reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3

reprinted with Ormeric at 97.3 67 Innam Weterwaty coefficients:

KDB Vapor Pressure Data:

The Yaws Handbook of Vapor Pressure: The study of excess molar volumes The study of excess molar volumes and related properties for binary sanated properties for binar liquid 1-(2-hydroxyethyl)-s-whele-finital/ensitrement for CO2 + Vinyl-Acetate and GO2th Vinylos 61 vales Systems as migh Pressures:

Joback Method:

of binary liquid mixtures of vinyl Aceman with ipnicillingly singstraction of binary liquid s dilution: The use of ionic liquids for separation The use of ionic liquids for separation of binary hydrocarbons mixtures based of binary hydrocarbons mixtures hydrocarbons mixtures based of binary hydrocarbons mixtures hydrocarbons mixtures hydrocarbons mixtures hydrocar

Density, viscosity, and speed of sound

https://www.doi.org/10.1021/je049544x https://www.doi.org/10.1021/je7001094

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je7004402

https://www.doi.org/10.1016/j.tca.2005.06.007

https://www.doi.org/10.1016/j.fluid.2018.07.028

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1167

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.tca.2016.04.001

http://webbook.nist.gov/cgi/cbook.cgi?ID=C108054&Units=SI

https://www.doi.org/10.1021/je0201121

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2019.04.018

https://www.doi.org/10.1016/j.fluid.2018.09.024

https://www.cheric.org/files/research/kdb/mol/mol1167.mol

https://www.doi.org/10.1016/j.jct.2018.07.024

ethyl-dimethyl-(2-methoxyethyl)ammonium trifluorotris-(perfluoroethyl)phosphate:

Thermodynamic study of molecular interaction-selectivity in separation https://www.doi.org/10.1016/j.jct.2008.06.017
geofficient of thermal expansion of the binary system expansion of the binary system with butyl methacrylate allyl https://www.doi.org/10.1016/j.fluid.2008.02.01
with butyl methacrylate allyl https://www.doi.org/10.1016/j.jct.2004.11.012
according to the control of the binary system in the system of the control of the binary system in the system of the control of the binary system in the system of the system of the binary system of the binary system in the system of the binary system of the binary system in the system of the binary system methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T **L(@gend**^{8.15) K:}

https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.fluid.2008.02.010

Acentric Factor af: affp: Proton affinity

aigt: **Autoignition Temperature**

Gas basicity basg:

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity

fII: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method) Flash Point (Open Cup Method) fpo:

Standard Gibbs free energy of formation gf:

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

Log10 of Water solubility in mol/l log10ws: logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating nfpah: NFPA Health Rating nfpas: NFPA Safety Rating pc: Critical Pressure pvap: Vapor pressure rfi: Refractive Index rhol: Liquid Density

Non-polar retention indices rinpol:

ripol: Polar retention indices **tb:** Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

zc: Critical Compressibility

zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/38-615-7/Acetic-acid-ethenyl-ester.pdf

Generated by Cheméo on 2025-12-24 12:05:13.741088985 +0000 UTC m=+6326111.271129650.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.