D-Leucine

Other names: (R)-(-)-Leucine

(S)-(+)-leucine

(S)-2-amino-4-methylpentanoic acid (S)-2-amino-4-methylvaleric acid

(S)-leucine

.alpha.-amino-.gamma.-methylvaleric acid

.alpha.-aminoisocaproic acid

4-methyl-L-norvaline

L-(+)-leucine

L-.alpha.-aminoisocaproic acid

L-leucine Leucine, D-

InChl=1S/C6H13NO2/c1-4(2)3-5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t5-/m0/s1

InchiKey: ROHFNLRQFUQHCH-YFKPBYRVSA-N

Formula: C6H13NO2

SMILES: CC(C)CC(N)C(=O)O

Mol. weight [g/mol]: 131.17 CAS: 328-38-1

Physical Properties

Property code	Value	Unit	Source
chs	-3581.40 ± 0.84	kJ/mol	NIST Webbook
gf	-204.53	kJ/mol	Joback Method
hf	-408.75	kJ/mol	Joback Method
hfs	-637.56 ± 0.84	kJ/mol	NIST Webbook
hfus	15.13	kJ/mol	Joback Method
hvap	62.24	kJ/mol	Joback Method
log10ws	-0.74		Crippen Method
logp	0.444		Crippen Method
mcvol	112.820	ml/mol	McGowan Method
рс	4077.71	kPa	Joback Method
tb	554.38	K	Joback Method
tc	743.19	K	Joback Method
tf	321.39	K	Joback Method
VC	0.413	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	275.71	J/mol×K	554.38	Joback Method
cpg	285.39	J/mol×K	585.85	Joback Method
cpg	294.59	J/mol×K	617.32	Joback Method
cpg	303.34	J/mol×K	648.79	Joback Method
cpg	311.64	J/mol×K	680.26	Joback Method
cpg	319.50	J/mol×K	711.72	Joback Method
cpg	326.94	J/mol×K	743.19	Joback Method
psub	9.00e-04	kPa	420.70	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis
psub	2.90e-03	kPa	440.30	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis
psub	0.04	kPa	469.90	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis
psub	0.53	kPa	499.20	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis
psub	2.16	kPa	517.50	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis

Sources

Intermolecular interactions of alpha.-amino acids and glycyl the paties with the base social acids are green are acids and glycyl the paties of a principal acids and base are green acids and acids are acids and acids and acids are acids and acids acids and acids and acids and acids acids

https://www.doi.org/10.1016/j.jct.2016.06.018 https://www.doi.org/10.1016/j.jct.2013.09.009 https://www.doi.org/10.1016/j.tca.2008.10.023 https://www.doi.org/10.1016/j.jct.2011.01.004 Infinite Dilution Binary Diffusion Coefficients of Several r-Amino Acids Grivager Week ad Temperature Range from (293.2 to 333.2) K with the Taylor Wispersion rechnique:

Joback Method:

Thermodynamic Study of Some Amino Acids, 2-Aminopropanoic Acid, promingles whethy hocianic inversections in planting of the whole in the cartions in planting of the whole in the cartions in planting of the whole in the cartions in the cartions of the carti K: A Viscometric Study: Thermodynamics of the interactions of a homologous series of some amino series of series agtive go expositions in aqueous you do not be the first alaning -, problicity in a difference, and tensions of complete some private of the first and tensions of complete is and disconstitution and the problems of the first and the problems of the problems

Surface tension and UV-visible investigations of aggregation and ริยร์ยาทุสบลาธลกสีพอคอกพลเอรเซาผลDC ครุเมละย่างกับก็โดยเพื่อเหมือน เพื่อเหมือนก็เมื่อเกี่ยงก็เมื่อเลื่อเป็น viscometric studies on sodium Madate/saatiamateasteine anesembo amin paridsione globular psoteimum: Presition wathapeedside selore of Antibiotic Drug Chloramphenicol with I-Leucine and Glycyl-I-leucine in Aqueous Medium at T = (288.15 318.15) K: A Volumetric, Ultrasonic, and UV L'egendiy:

https://www.doi.org/10.1021/je060149b

https://www.chemeo.com/doc/models/crippen_log10ws

http://link.springer.com/article/10.1007/BF02311772

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1021/je100857s

https://www.doi.org/10.1016/j.jct.2011.05.012

https://www.doi.org/10.1021/je8001464

http://webbook.nist.gov/cgi/cbook.cgi?ID=C328381&Units=SI

https://www.doi.org/10.1016/j.fluid.2015.03.012

https://www.doi.org/10.1016/j.tca.2008.10.009

https://www.doi.org/10.1016/j.tca.2015.02.014

https://www.doi.org/10.1016/j.jct.2017.03.025

https://www.doi.org/10.1021/acs.jced.6b00168

chs: Standard solid enthalpy of combustion

Ideal gas heat capacity cpg:

Standard Gibbs free energy of formation gf:

hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressure

psub: Sublimation pressure

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/38-802-9/D-Leucine.pdf

Generated by Cheméo on 2025-12-05 21:17:50.044231889 +0000 UTC m=+4717667.574272544.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.