D-Leucine

Other names: (R)-(-)-Leucine

(S)-(+)-leucine

(S)-2-amino-4-methylpentanoic acid (S)-2-amino-4-methylvaleric acid

(S)-leucine

.alpha.-amino-.gamma.-methylvaleric acid

.alpha.-aminoisocaproic acid

4-methyl-L-norvaline

L-(+)-leucine

L-.alpha.-aminoisocaproic acid

L-leucine Leucine, D-

InChl=1S/C6H13NO2/c1-4(2)3-5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t5-/m0/s1

InchiKey: ROHFNLRQFUQHCH-YFKPBYRVSA-N

Formula: C6H13NO2

SMILES: CC(C)CC(N)C(=O)O

Mol. weight [g/mol]: 131.17 CAS: 328-38-1

Physical Properties

Property code	Value	Unit	Source
chs	-3581.40 ± 0.84	kJ/mol	NIST Webbook
gf	-204.53	kJ/mol	Joback Method
hf	-408.75	kJ/mol	Joback Method
hfs	-637.56 ± 0.84	kJ/mol	NIST Webbook
hfus	15.13	kJ/mol	Joback Method
hvap	62.24	kJ/mol	Joback Method
log10ws	-0.74		Crippen Method
logp	0.444		Crippen Method
mcvol	112.820	ml/mol	McGowan Method
рс	4077.71	kPa	Joback Method
tb	554.38	K	Joback Method
tc	743.19	K	Joback Method
tf	321.39	K	Joback Method
VC	0.413	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	275.71	J/mol×K	554.38	Joback Method	
cpg	285.39	J/mol×K	585.85	Joback Method	
срд	294.59	J/mol×K	617.32	Joback Method	
cpg	303.34	J/mol×K	648.79	Joback Method	
cpg	311.64	J/mol×K	680.26	Joback Method	
cpg	319.50	J/mol×K	711.72	Joback Method	
cpg	326.94	J/mol×K	743.19	Joback Method	
psub	9.00e-04	kPa	420.70	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis	
psub	2.90e-03	kPa	440.30	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis	
psub	0.04	kPa	469.90	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis	
psub	0.53	kPa	499.20	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis	
psub	2.16	kPa	517.50	Sublimation and vapour pressure estimation of I-leucine using thermogravimetric analysis	

Sources

Viscosities of I-Phenylalanine, I-Leucine, I-Glutamic Acid, or I-Proline Partiaholem - Shume and Inaction of I-Proline Partiaholem - Shume and Inaction of Inactio

https://www.doi.org/10.1021/je1000878 https://www.doi.org/10.1016/j.jct.2011.01.004 https://www.doi.org/10.1016/j.jct.2010.08.004 https://www.doi.org/10.1016/j.jct.2016.06.026

Volumetric and Viscometric Studies of https://www.doi.org/10.1021/je100909b Some Amino Acids in Aqueous Botantrolecular สังเกราน์ดา Crinterections in https://www.doi.org/10.1016/j.tca.2006.04.004 idencines by standings and mospheric he lighted to the lighted some saccharides of Some Saccharides in week with the lighted some saccharides in week lighted the lighted standard some saccharides in week lighted some saccharidations of Leucine at Different Temperatures: Conductivity and fluorescence studies conductivity and nuorescence studies on the micellization properties of Seventra description properties of Seventra description properties of Seventra description of the micellization of the description of the description

Solvation behaviour of biologically active compounds in aqueous ฟิต**Gดฟส**รา**dfatกสร**acterial drug amoxicillin at different temperatures: Mode of action of betaine on some amino acids and globular proteins: Thermodynamics of the dragged in some amino across are growned from the dragged in some amino across of a homologous series of some amino across of a homologous series of some amino across with the dragged in the some amino across the solution of the sol = (283,15 to 333,15) K: Joback Method:

Study of the interactions of PAMAM-NH2 G4 dendrimer with stream of the interactions of PAMAM-NH2 G4 dendrimer with stream of the interactions of PAMAM-NH2 G4 dendrimer with stream of the interactions of PAMAM-NH2 G4 dendrimer with stream of the interactions of PAMAM-NH2 G4 dendrimer with stream of the interaction of Study of the interactions of https://www.doi.org/10.1021/je900909s
https://www.doi.org/10.1021/je900909s
https://www.doi.org/10.1021/je900909s
https://www.doi.org/10.1021/je900909s
https://www.doi.org/10.1021/je900909s
https://www.doi.org/10.1021/je900909s
https://www.doi.org/10.1021/je200146j
https://www.doi.org/10.1016/j.jct.2013.09.009
https://www.doi.org/10.1016/j.jc austration behavior of the authoritation and interestings and interesting by the holes and interesting the holes and inter

https://www.doi.org/10.1021/je400977r

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.jct.2014.10.014

https://www.doi.org/10.1021/je8001464

https://www.doi.org/10.1021/je060149b

https://www.doi.org/10.1016/j.tca.2008.10.009

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.jct.2014.03.015

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2017.03.025

http://webbook.nist.gov/cgi/cbook.cgi?ID=C328381&Units=SI

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2013.10.022

https://www.doi.org/10.1016/j.fluid.2015.03.012

https://www.doi.org/10.1016/j.jct.2019.06.002

at temperatures from 293.15 K to 313.15 Legena

chs: Standard solid enthalpy of combustion

Ideal gas heat capacity cpg:

Standard Gibbs free energy of formation gf:

hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressure

psub: Sublimation pressure

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/38-802-9/D-Leucine.pdf

Generated by Cheméo on 2024-04-30 10:46:22.466480307 +0000 UTC m=+16763231.387057618.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.