lead dichloride

Other names:	lead chloride
	lead(2+) dichloride
	lead(II) chloride
	plumbous chloride
Inchi:	InChI=1S/2CIH.Pb/h2*1H;/q;;+2/p-2
InchiKey:	HWSZZLVAJGOAAY-UHFFFAOYSA-L
Formula:	Cl2Pb
SMILES:	CI[PbH2]CI
Mol. weight [g/mol]:	278.10
CAS:	7758-95-4

Physical Properties

Property code	Value	Unit	Source
ie	10.20	eV	NIST Webbook
ie	10.30 ± 0.10	eV	NIST Webbook
ie	11.20 ± 0.20	eV	NIST Webbook
ie	10.34	eV	NIST Webbook
ie	10.11	eV	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
econd	209.60	S/m	913.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2

econd	197.40	S/m	883.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	184.70	S/m	854.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	170.20	S/m	824.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	158.80	S/m	800.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	150.50	S/m	783.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	221.20	S/m	943.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	

econd	232.60	S/m	972.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	243.70	S/m	1001.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	253.80	S/m	1030.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	262.80	S/m	1058.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	272.20	S/m	1090.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	279.00	S/m	1118.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	

econd	285.70	S/m	1149.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	291.70	S/m	1177.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	298.20	S/m	1210.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	302.30	S/m	1230.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	308.60	S/m	1254.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	314.70	S/m	1279.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	

econd	318.40	S/m	1297.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	
econd	321.10	S/m	1320.15	Conductivity of Some Molten Chlorides at Elevated Temperatures I. Experimental and Calculation Techniques for BeCl2, ZnCl2, and PbCl2	

Sources

Conductivity of Some Molten Chlorides	https://www.doi.org/10.1021/je500433d
at Elevated Temperatures I.	http://webbook.nist.gov/cgi/cbook.cgi?ID=C7758954&Units=SI
Techniques for BeCl2, ZnCl2, and Measurement of Mineral Solubilities in the Quaternary Systems KCI MgCl2	https://www.doi.org/10.1021/acs.jced.6b00960
Phase High Harlacin Harlo Qubater marvi 20	https://www.doi.org/10.1021/acs.jced.7b00218
Systems KCI PbCI2 ZnCI2 H2O and MgCI2 Photibbzie Ch2 the Cetrery K: Systems ZnCI2-MgCI2-H2O and ZnCI2-PbCI2-H2O at 323 K:	https://www.doi.org/10.1021/acs.jced.8b00605

Legend

econd:Electrical conductivityie:Ionization energy

Latest version available from:

https://www.chemeo.com/cid/39-802-8/lead-dichloride.pdf

Generated by Cheméo on 2024-05-06 14:57:35.07340786 +0000 UTC m=+17296703.993985193.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.