1-Decene

Other names:	1-C10H20 1-n-Decene DECYLENE Dec-1-ene Decene-1 Gulftene 10 Linealene 10 N-1-DECENE NSC 62122 Neodene 10 «alpha»-Decene
Inchi:	«alpha»-Decene InChI=1S/C10H20/c1-3-5-7-9-10-8-6-4-2/h3H,1,4-10H2,2H3
InchiKey:	AFFLGGQVNFXPEV-UHFFFAOYSA-N
Formula:	C10H20
SMILES:	000000000000000000000000000000000000000
Mol. weight [g/mol]:	140.27
CAS:	872-05-9

Physical Properties

Property code	Value	Unit	Source
af	0.4910		KDB
aigt	508.15	К	KDB
chl	-6619.60 ± 1.80	kJ/mol	NIST Webbook
fpc	326.48	К	KDB
gf	121.10	kJ/mol	KDB
hf	-123.40	kJ/mol	NIST Webbook
hf	-124.20	kJ/mol	KDB
hf	-124.60	kJ/mol	NIST Webbook
hfl	-173.80 ± 1.90	kJ/mol	NIST Webbook
hfus	20.38	kJ/mol	Joback Method
hvap	50.40 ± 0.20	kJ/mol	NIST Webbook
hvap	50.50	kJ/mol	NIST Webbook
hvap	50.43 ± 0.20	kJ/mol	NIST Webbook
hvap	50.44	kJ/mol	NIST Webbook
ie	9.59 ± 0.01	eV	NIST Webbook
ie	9.42 ± 0.01	eV	NIST Webbook

ie	9.48	eV	NIST Webbook
ie	9.42 ± 0.01	eV	NIST Webbook
log10ws	-5.51		Estimated Solubility Method
log10ws	-5.51		Aqueous Solubility Prediction Method
logp	3.923		Crippen Method
mcvol	147.460	ml/mol	McGowan Method
nfpaf	%!d(float64=2)		KDB
рс	2220.00 ± 100.00	kPa	NIST Webbook
рс	2220.00	kPa	KDB
rhoc	238.45 ± 14.03	kg/m3	NIST Webbook
rinpol	992.00		NIST Webbook
rinpol	982.00		NIST Webbook
rinpol	991.00		NIST Webbook
rinpol	990.00		NIST Webbook
rinpol	986.00		NIST Webbook
rinpol	987.00		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	997.00		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	157.60		NIST Webbook
rinpol	153.90		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	988.80		
rinpol	988.00		NIST Webbook
rinpol	989.00	NIST We	
rinpol	992.00		NIST Webbook
rinpol	985.00	NIST We	
rinpol	982.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	990.00		NIST Webbook
rinpol	985.10		NIST Webbook
rinpol	985.00		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	988.60		NIST Webbook
rinpol	990.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	988.00		NIST Webbook
rinpol	989.00		NIST Webbook

rinpol	982.00	NIST Webbook
rinpol	983.00	NIST Webbook
rinpol	982.00	NIST Webbook
rinpol	990.00	NIST Webbook
rinpol	989.20	NIST Webbook
rinpol	990.10	NIST Webbook
rinpol	982.70	NIST Webbook
rinpol	982.20	NIST Webbook
rinpol	987.00	NIST Webbook
rinpol	988.00	NIST Webbook
rinpol	990.00	NIST Webbook
rinpol	992.00	NIST Webbook
rinpol	988.00	NIST Webbook
rinpol	988.00	NIST Webbook
rinpol	992.50	NIST Webbook
rinpol	993.00	NIST Webbook
rinpol	992.00	NIST Webbook
rinpol	987.00	NIST Webbook
rinpol	993.00	NIST Webbook
rinpol	993.00	NIST Webbook
rinpol	989.20	NIST Webbook
rinpol	989.50	NIST Webbook
rinpol	990.70	NIST Webbook
rinpol	985.00	NIST Webbook
rinpol	989.20	NIST Webbook
rinpol	989.50	NIST Webbook
rinpol	990.70	NIST Webbook
rinpol	988.00	NIST Webbook
rinpol	988.74	NIST Webbook
rinpol	988.81	NIST Webbook
rinpol	988.83	NIST Webbook
rinpol	991.63	NIST Webbook
rinpol	991.76	NIST Webbook
rinpol	991.73	NIST Webbook
rinpol	988.00	NIST Webbook
rinpol	991.00	NIST Webbook
rinpol	982.00	NIST Webbook
rinpol	997.00	NIST Webbook
rinpol	989.00	NIST Webbook
rinpol	989.00	NIST Webbook
rinpol	989.00	NIST Webbook
rinpol	991.00	NIST Webbook
rinpol	991.00	NIST Webbook
rinpol	989.00	NIST Webbook

ripol	1046.00		NIST Webbook
ripol	1052.00		NIST Webbook
ripol	1054.00		NIST Webbook
ripol	1055.00		NIST Webbook
ripol	1048.00		NIST Webbook
ripol	1050.00		NIST Webbook
ripol	1047.00		NIST Webbook
ripol	1039.00		NIST Webbook
ripol	1035.00		NIST Webbook
ripol	1043.00		NIST Webbook
ripol	1054.00		NIST Webbook
ripol	1020.00		NIST Webbook
ripol	1061.00		NIST Webbook
ripol	1047.00		NIST Webbook
ripol	1049.80		NIST Webbook
ripol	1048.50		NIST Webbook
ripol	1055.30		NIST Webbook
ripol	1051.70		NIST Webbook
ripol	1049.80		NIST Webbook
ripol	1048.50		NIST Webbook
ripol	1055.30		NIST Webbook
ripol	1051.70		NIST Webbook
ripol	1046.00		NIST Webbook
sl	425.01	J/mol×K	NIST Webbook
tb	443.60	К	KDB
tc	617.00	К	KDB
tc	617.00 ± 2.00	К	NIST Webbook
tf	207.06	К	Aqueous Solubility Prediction Method
tf	206.90	K	KDB
tt	206.89 ± 0.05	К	NIST Webbook
tt	206.47 ± 0.20	K	NIST Webbook
tt	206.88 ± 0.06	К	NIST Webbook
tt	206.89 ± 0.06	К	NIST Webbook
VC	0.584	m3/kmol	NIST Webbook
VC	0.584	m3/kmol	KDB
ZC	0.2527230		KDB
zra	0.25		KDB

Temperature Dependent Properties

Property code

Unit

Source

cpg	378.63	J/mol×K	590.50	Joback Method	
срд	366.70	J/mol×K	562.90	Joback Method	
cpg	299.13	J/mol×K	424.88	Joback Method	
cpg	313.75	J/mol×K	452.48	Joback Method	
cpg	327.80	J/mol×K	480.09	Joback Method	
cpg	341.30	J/mol×K	507.69	Joback Method	
cpg	354.26	J/mol×K	535.29	Joback Method	
cpl	300.83	J/mol×K	298.15	NIST Webbook	
dvisc	0.0006382	Paxs	312.79	Joback Method	
dvisc	0.0003070	Paxs	387.52	Joback Method	
dvisc	0.0002345	Paxs	424.88	Joback Method	
dvisc	0.0004257	Paxs	350.15	Joback Method	
dvisc	0.0053123	Paxs	200.70	Joback Method	
dvisc	0.0020999	Paxs	238.06	Joback Method	
dvisc	0.0010678	Paxs	275.43	Joback Method	
hfust	7.95	kJ/mol	198.30	NIST Webbook	
hfust	13.81	kJ/mol	206.90	NIST Webbook	
hfust	13.81	kJ/mol	206.90	NIST Webbook	
hvapt	43.80	kJ/mol	414.00	NIST Webbook	
hvapt	38.66	kJ/mol	443.70	KDB	
hvapt	45.10	kJ/mol	402.50	NIST Webbook	
rfi	1.42140		293.15	Isobaric Vapor-Liquid Equilibria of Hexane + 1-Decene and Octane + 1-Decene Mixtures	
rfi	1.42139		293.15	Excess Volume of the 1-Propanol + 1-Alkene Systems in Terms of an Equation of State with Association	
rhol	741.00	kg/m3	293.00	KDB	
sfust	40.09	J/mol×K	198.30	NIST Webbook	
sfust	66.73	J/mol×K	206.90	NIST Webbook	
srf	0.02	N/m	298.20	KDB	

Correlations

Information	Value
Property code	pvap

Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.48286e+01
Coeff. B	-3.90202e+03
Coeff. C	-5.78340e+01
Temperature range (K), min.	326.18
Temperature range (K), max.	467.83

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	1.10936e+02
Coeff. B	-9.75380e+03
Coeff. C	-1.41204e+01
Coeff. D	8.63327e-06
Temperature range (K), min.	206.89
Temperature range (K), max.	617.05

Sources

Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution of alkanes and alkenes in Activity coefficients at infinite dilution and physicochemical properties for Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.fluid.2009.05.007 Activity coefficients at infinite dilution of the solution of https://www.doi.org/10.1016/j.fluid.2010.02.010 http://webbook.nist.gov/cgi/cbook.cgi?ID=C872059&Units=SI figuid 1-butyl-1-methylmorpholinium frictivity for finite dilution and physicochemical properties for https://www.doi.org/10.1016/j.jct.2012.03.015 MgGAWasoMets and water in the ionic http://link.springer.com/article/10.1007/BF02311772 liquid 1121medwxappinsiand selfctivityofdinium^{ttps://www.doi.org/10.1016/j.jct.2016.06.028} SEPARATION DASED ON DELIVITY Amide: https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Activity condition of hydrocarbons and https://www.doi.org/10.1021/je200628n https://www.doi.org/10.1021/je200628n https://www.doi.org/10.1016/j.fluid.2010. https://www.doi.org/10.1016/j.fluid.2010. https://www.doi.org/10.1016/j.fluid.2010.08.016 at infinite dilution of hydrocarbons and alkanols in 1-alkyl-3-methylimidazolium bis(oxalato)borate:

Activity coefficients at infinite dilution of organic solutes in the ionic liquid Measurements an activity an afficients as ionic context of the organic solution of organic solution for organic solution of the solution of the organic solution of the solution of the organic solution of the solutio of organic solutes in the ionic liquid

Containing Ionic Liquids. 5. Activity Dight Relayiever water (90) antioplof And the second s Weing Gestrift ich Shapmatne and tion and physicochemical properties for Arginitic sentice and a vice interval with the silver of the sentice of the Henorace providents at minine dividion and physicachamical meaparting featium abilities applied and set of the provident of the abilities of the set of the provident of the abilities of the set of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the abilities of the provident of the provident of the provident of the abilities of the provident of the provident of the provident of the abilities of the provident Angeneties and water measurements: of a contract of the second se

Activity coefficients at infinite dilution and physicochemical properties for straning of the strain equation of state model: Activity coefficients at infinite dilution and physicochemical properties for Jheamódynanojcasta dvatermo lereularic organio solutos and water in the enic interaction relactivishing separation processing and the solution for the solution of the solution of and the solution for the solution of a solution for the solution of a solution for the solution of a solution for the solution of the sol

Measurements of activity coefficients at infinite dilution for organic solutes Exercise of the solution of the solut

https://www.doi.org/10.1016/j.jct.2009.12.004 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1016/j.jct.2017.03.004 https://www.doi.org/10.1016/j.jct.2011.06.007 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.cheric.org/files/research/kdb/mol/mol344.mol https://www.doi.org/10.1021/je050125p https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1016/j.jct.2012.08.016 https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1016/j.jct.2013.05.008 https://www.doi.org/10.1016/j.jct.2012.01.004 https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1021/je050134y https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.jct.2008.09.004 https://www.doi.org/10.1021/je700445y http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt https://www.doi.org/10.1016/j.jct.2012.01.019 https://www.doi.org/10.1016/j.jct.2013.01.005 **COMPACTION OF THE INITIAL DIMINISTIC DIMINISTRATICAL DIMINIS** https://www.doi.org/10.1016/j.jct.2010.02.006 https://www.doi.org/10.1016/j.jct.2013.01.007 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1021/acs.jced.8b00635 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=344 https://www.doi.org/10.1016/j.jct.2013.02.004 https://www.doi.org/10.1021/je100595s

Measurement and prediction of activity https://www.doi.org/10.1016/j.fluid.2008.11.013 ARENCE ROEfficients at infinite dilution and abasia chemical properties for another the state of t នុក្ខដូវតុនធុខសូមនេះចុប្រា វង្គគន់ពារការទាប់ទាប់ទាប់ទាប់ទាប់ទាប់ biseries Legend

Measurement and prediction of activity coefficients at infinite dilution (), Assessment of inversion of activity and the prediction of activity because of the prediction of activity and The second secon https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.doi.org/10.1016/j.jct.2016.08.008

af: Acentric Factor aigt: Autoignition Temperature chl: Standard liquid enthalpy of combustion Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity dvisc: Dynamic viscosity fpc: Flash Point (Closed Cup Method) Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions hfl: Liquid phase enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature ie: Ionization energy log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume nfpaf: NFPA Fire Rating pc: Critical Pressure pvap: Vapor pressure rfi: **Refractive Index** rhoc: Critical density rhol: Liquid Density rinpol: Non-polar retention indices ripol: Polar retention indices

sfust:	Entropy of fusion at a given temperature
sl:	Liquid phase molar entropy at standard conditions
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
VC:	Critical Volume
zc:	Critical Compressibility
zra:	Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/40-071-8/1-Decene.pdf

Generated by Cheméo on 2024-05-04 18:56:19.407895393 +0000 UTC m=+17138228.328472780.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.