1-Pentyne

Other names:	Acetylene, propyl-
	C3H7C«equiv»CH
	C3H7C«equiv»CH
	PROPYLACETYLENE
	pent-1-yne
Inchi:	InChI=1S/C5H8/c1-3-5-4-2/h1H,4-5H2,2H3
InchiKey:	IBXNCJKFFQIKKY-UHFFFAOYSA-N
Formula:	C5H8
SMILES:	C#CCCC
Mol. weight [g/mol]:	68.12
CAS:	627-19-0
Inchi: InchiKey: Formula: SMILES: Mol. weight [g/mol]: CAS:	pent-1-yne InChI=1S/C5H8/c1-3-5-4-2/h1H,4-5H2,2H3 IBXNCJKFFQIKKY-UHFFFAOYSA-N C5H8 C#CCCC 68.12 627-19-0

Physical Properties

Property code	Value	Unit	Source
af	0.1640		KDB
dm	0.90	debye	KDB
gf	210.40	kJ/mol	KDB
hcg	3226.62	kJ/mol	KDB
hcn	3050.554	kJ/mol	KDB
hf	144.40	kJ/mol	KDB
hf	144.30 ± 2.10	kJ/mol	NIST Webbook
hfus	11.68	kJ/mol	Joback Method
hvap	28.40	kJ/mol	NIST Webbook
ie	10.10 ± 0.01	eV	NIST Webbook
ie	10.10 ± 0.02	eV	NIST Webbook
ie	10.10 ± 0.01	eV	NIST Webbook
ie	10.05	eV	NIST Webbook
log10ws	-1.64		Estimated Solubility Method
log10ws	-1.64		Aqueous Solubility Prediction Method
logp	1.420		Crippen Method
mcvol	72.710	ml/mol	McGowan Method
рс	4050.00	kPa	KDB
rinpol	484.00		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	484.00		NIST Webbook

rinpol	484.00		NIST Webbook
rinpol	484.40		NIST Webbook
rinpol	484.50		NIST Webbook
rinpol	484.00		NIST Webbook
rinpol	484.40		NIST Webbook
rinpol	484.80		NIST Webbook
rinpol	484.00		NIST Webbook
rinpol	517.00		NIST Webbook
rinpol	510.00		NIST Webbook
rinpol	484.50		NIST Webbook
rinpol	484.00		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	484.00		NIST Webbook
rinpol	484.00		NIST Webbook
tb	313.15 ± 1.00	К	NIST Webbook
tb	313.15 ± 1.50	К	NIST Webbook
tb	312.95 ± 1.00	К	NIST Webbook
tb	312.90 ± 0.80	К	NIST Webbook
tb	313.15 ± 0.70	К	NIST Webbook
tb	312.15 ± 1.00	К	NIST Webbook
tb	312.85 ± 0.60	К	NIST Webbook
tb	313.33	К	KDB
tb	313.00	К	NIST Webbook
tb	313.40	К	NIST Webbook
tb	312.80 ± 2.00	К	NIST Webbook
tb	313.38 ± 0.20	К	NIST Webbook
tb	313.33 ± 0.20	K	NIST Webbook
tb	312.20 ± 1.00	K	NIST Webbook
tb	312.85 ± 1.00	K	NIST Webbook
tb	312.65 ± 2.00	K	NIST Webbook
tb	313.35 ± 0.40	K	NIST Webbook
tb	313.40 ± 0.20	K	NIST Webbook
tb	315.15 ± 2.00	K	NIST Webbook
tb	313.35 ± 0.30	K	NIST Webbook
tb	312.65 ± 1.50	K	NIST Webbook
tb	312.45 ± 0.50	K	NIST Webbook
tb	313.15 ± 1.00	K	NIST Webbook
tc	493.50	K	KDB
tf	167.08 ± 0.20	K	NIST Webbook
tf	183.00	K	KDB
tf	172.48	К	Aqueous Solubility Prediction Method
tf	166.65 ± 0.30	К	NIST Webbook
VC	0.278	m3/kmol	KDB
ZC	0.2743950		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	135.70	J/mol×K	420.17	Joback Method
cpg	141.82	J/mol×K	449.24	Joback Method
cpg	108.43	J/mol×K	303.92	Joback Method
cpg	115.69	J/mol×K	332.98	Joback Method
cpg	122.65	J/mol×K	362.05	Joback Method
cpg	129.31	J/mol×K	391.11	Joback Method
cpg	147.68	J/mol×K	478.30	Joback Method
hvapt	27.74	kJ/mol	313.40	KDB
hvapt	31.80	kJ/mol	272.00	NIST Webbook
rfi	1.38260		298.15	KDB
rhol	690.00	kg/m3	293.00	KDB
srf	0.02	N/m	298.20	KDB

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.39994e+01
Coeff. B	-2.38534e+03
Coeff. C	-5.90590e+01
Temperature range (K), min.	233.02
Temperature range (K), max.	333.62
Information	Value
Information Property code	Value pvap
Information Property code Equation	Value pvap ln(Pvp) = A + B/T + C*ln(T) + D*T^2
Information Property code Equation Coeff. A	Value pvap ln(Pvp) = A + B/T + C*ln(T) + D*T^2 5.86812e+01
Information Property code Equation Coeff. A Coeff. B	Value pvap ln(Pvp) = A + B/T + C*ln(T) + D*T^2 5.86812e+01 -5.16272e+03
Information Property code Equation Coeff. A Coeff. B Coeff. C	Value $pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^2$ $5.86812e+01$ $-5.16272e+03$ $-6.64398e+00$
Information Property code Equation Coeff. A Coeff. B Coeff. C Coeff. D	Value $pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^2$ $5.86812e+01$ $-5.16272e+03$ $-6.64398e+00$ $6.01492e-06$
Information Property code Equation Coeff. A Coeff. B Coeff. C Coeff. D Temperature range (K), min.	Value $pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^2$ $5.86812e+01$ $-5.16272e+03$ $-6.64398e+00$ $6.01492e-06$ 167.45

Sources

Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and infinite citikition for a geoir solutes and water and the solution of the solution development of the solution of the solution development of the solution of epiperie Maters icon and ethylbenzene/styrene based on limiting Experimental and theoretical study on infinite dilution activity coefficients of Various dynamics and activity coefficients of participation activity coefficients of participation activity coefficients of various dynamics and activity coefficients of participation activity coefficients of participation activity coefficients of participation activity coefficients of organic solutes in the ionic liquid Activity continuents allution means up on a standard activity of activity of activity of activity of activity of activity of a standard activity of a st Activity 3- Activity in the latent in the dilution mean up on the first statent in the dilution of the dilution the dilution of the dilution of the dilution the dilution of the di 1-dodecyl-3-methylimidzolium Blychrochemical ysonertificiande: activity coefficients at infinite dilution

bicyclic guanidinium Symeniase denved guida in oxtractina: of bio-butan-1-ol from water phase Ibargradivianie strictly as a plantie interpotion-selectivity in separation processes of access at initiated without

Arocielisies officients an individe dilution operation solutes in a divide a solutes in a divide a solutes in the individed of the solution of mean of solutes in the individed in solute of the solute and the individed in solute of the solute and solutes civid solution of the solute of the solutes of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solution of the solute of the solute of the solute of the solution of the solute of the solute of the solute of the solution of the solute of the solute of the solute of the solution of the solute of

and with constraintsand water in
and water in
bit with the set in arganistaokutenanduvaten intorpaolinium tignis hokatenavetaen intorpaolinium 3-methylimidazolium trifluorotris(perfluoroethyl)phosphate:

https://www.doi.org/10.1021/je900890u https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2017.03.004 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.jct.2013.01.005 https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.jct.2010.12.019 https://www.doi.org/10.1016/j.fluid.2008.10.008 https://www.doi.org/10.1016/j.jct.2010.12.005 https://www.doi.org/10.1016/j.jct.2008.12.005 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1016/j.jct.2016.08.008 http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1016/j.jct.2012.09.033 KPBrganic solutes and water in a novel https://www.cheric.org/files/research/kdb/mol/mol404.mol https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.jct.2013.02.006 https://www.doi.org/10.1016/j.jct.2009.12.004 https://www.doi.org/10.1016/j.jct.2013.10.017 https://www.doi.org/10.1016/j.jct.2016.07.017 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=404 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1021/acs.jced.8b00080

Activity coefficients at infinite dilution of organic solutes in the ionic liquid AREVIEW 1000 fficients with tribexs let index in the spheric index is the second secon measurements for organic solutes and Agtivity enefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2012.0 and physics of the provide the provide the provide the physics of the provide the provide the provide the physics of Tris(pentafluoroethyl)trifluorophosphate [EMIM][FAP] Using Gas-Liquid **Leasend**^{y:}

https://www.doi.org/10.1016/j.jct.2010.02.006

A strong to solutes in the ionic liquid A strong the hold if the solution of the solute in the ionic liquid astrong the hold if the solution of the solute in the ionic liquid astrong the hold if the solution of the solute in the ionic liquid astrong the hold if the solute in the ionic benery of the solute in the ionic liquid astrong the solute in the ionic liquid and the solutes and the solutes in the ionic and the solutes and the solutes in the ionic and the solutes and the solutes in the ionic and the solutes and the ionic lionic and the solu http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1016/j.jct.2013.02.004 http://webbook.nist.gov/cgi/cbook.cgi?ID=C627190&Units=SI https://www.doi.org/10.1016/j.fluid.2009.08.017 https://www.doi.org/10.1016/j.jct.2012.08.016 https://www.doi.org/10.1016/j.jct.2013.05.030 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1016/j.jct.2013.07.004

af:	Acentric Factor
cpg:	Ideal gas heat capacity
dm:	Dipole Moment
gf:	Standard Gibbs free energy of formation
hcg:	Heat of Combustion, Gross form
hcn:	Heat of Combustion, Net Form
hf:	Enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hvap:	Enthalpy of vaporization at standard conditions

hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhol:	Liquid Density
rinpol:	Non-polar retention indices
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume
zc:	Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/40-192-4/1-Pentyne.pdf

Generated by Cheméo on 2024-05-05 10:57:43.448075172 +0000 UTC m=+17195912.368652485.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.