Cyclooctane

Other names: 292-64-8

OCTAMETHYLENE

Inchi: InChl=1S/C8H16/c1-2-4-6-8-7-5-3-1/h1-8H2
InchiKey: WJTCGQSWYFHTAC-UHFFFAOYSA-N

Formula: C8H16

SMILES: C1CCCCCC1

Mol. weight [g/mol]: 112.21 CAS: 292-64-8

Physical Properties

Property code	Value	Value Unit	
af	0.2360		KDB
chl	-5265.30 ± 1.60	kJ/mol	NIST Webbook
chl	-5265.70 ± 0.90	kJ/mol	NIST Webbook
chs	-5252.60	kJ/mol	NIST Webbook
gf	24.44	kJ/mol	Joback Method
hcg	5265.56	kJ/mol	KDB
hcn	4913.690	kJ/mol	KDB
hf	-126.10 ± 1.60	kJ/mol	NIST Webbook
hfl	-169.40 ± 1.60	kJ/mol	NIST Webbook
hfus	3.04	kJ/mol	Joback Method
hvap	43.35 ± 0.21	kJ/mol	NIST Webbook
hvap	44.70	kJ/mol	NIST Webbook
hvap	43.30 ± 0.20	kJ/mol	NIST Webbook
hvap	43.50	kJ/mol	NIST Webbook
ie	9.75	eV	NIST Webbook
ie	9.82 ± 0.05	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
ie	10.08 ± 0.05	eV	NIST Webbook
ie	9.74 ± 0.05	eV	NIST Webbook
ie	9.80	eV	NIST Webbook
ie	9.75 ± 0.04	eV	NIST Webbook
log10ws	-4.15		Estimated Solubility Method
log10ws	-4.15		Aqueous Solubility Prediction Method
logp	3.121		Crippen Method
mcvol	112.720	ml/mol	McGowan Method

pc	3560.00 ± 40.00	kPa	NIST Webbook
рс	3560.00 ± 40.53	kPa	NIST Webbook
pc	3550.00 ± 40.00	kPa	NIST Webbook
pc	3560.00	kPa	KDB
rhoc	273.80 ± 4.49	kg/m3	NIST Webbook
rinpol	957.00		NIST Webbook
rinpol	911.00		NIST Webbook
rinpol	932.00		NIST Webbook
rinpol	910.00		NIST Webbook
rinpol	932.00		NIST Webbook
rinpol	932.00		NIST Webbook
rinpol	918.00		NIST Webbook
rinpol	920.00		NIST Webbook
rinpol	947.00		NIST Webbook
rinpol	927.00		NIST Webbook
rinpol	947.00		NIST Webbook
rinpol	948.00		NIST Webbook
rinpol	910.00		NIST Webbook
rinpol	911.00		NIST Webbook
rinpol	926.00		NIST Webbook
rinpol	923.00		
rinpol	965.80		
rinpol	920.00		
rinpol	911.00		
rinpol	912.00		
rinpol	928.00		
rinpol	929.00		
rinpol	946.00		
rinpol	963.90		
rinpol	925.00		NIST Webbook
rinpol	920.00		NIST Webbook
rinpol	946.00		NIST Webbook
rinpol	920.00		NIST Webbook
rinpol	916.00		NIST Webbook
rinpol	965.00		NIST Webbook
rinpol	927.20		NIST Webbook
rinpol	934.00		NIST Webbook
·	925.00		NIST Webbook
rinpol			
rinpol	941.00		NIST Webbook
rinpol	928.00		NIST Webbook
rinpol	920.00		NIST Webbook
rinpol	928.50		NIST Webbook
rinpol	908.00		NIST Webbook
rinpol	925.00		NIST Webbook

rinpol	927.00		NIST Webbook	
rinpol	920.00		NIST Webbook	
rinpol	912.00	NIST Webbook		
rinpol	933.00		NIST Webbook	
rinpol	930.00		NIST Webbook	
ripol	1036.00		NIST Webbook	
ripol	1014.00		NIST Webbook	
ripol	1043.00		NIST Webbook	
ripol	1023.00		NIST Webbook	
ripol	1036.00		NIST Webbook	
·	366.80 ± 1.30	J/mol×K	NIST Webbook	
sg	262.00	J/mol×K	NIST Webbook	
Sl	423.85 ± 0.30		NIST Webbook	
tb		K		
tb	416.00 ± 4.00	K	NIST Webbook	
tb	425.15 ± 2.00	K	NIST Webbook	
tb	416.15 ± 5.00	K	NIST Webbook	
tb	423.15 ± 1.00	K	NIST Webbook	
tb	420.80 ± 1.00	K	NIST Webbook	
tb	422.70 ± 1.00	K NIST Webbook		
tb	424.12 ± 0.30	K NIST Webbook		
tb	423.30 ± 0.50	K NIST Webbook		
tb	422.00	K KDB		
tc	647.20 ± 0.50	K NIST Webbook		
tc	674.20 ± 0.60	K	NIST Webbook	
tc	647.20 ± 0.50	K	NIST Webbook	
tc	647.50	К	Gas-Liquid Critical Temperatures of Some Alkenes, Amines, and Cyclic Hydrocarbons	
tc	647.20	K	KDB	
tf	287.74 ± 0.10	K	NIST Webbook	
tf	281.75 ± 4.00	K	NIST Webbook	
tf	286.90 ± 1.50	K	NIST Webbook	
tf	282.90 ± 3.00	K	NIST Webbook	
tf	287.98	K	KDB	
tf	281.90 ± 3.00	K	NIST Webbook	
tf	284.20 ± 5.00	K	NIST Webbook	
tf	287.50 ± 0.60	K	NIST Webbook	
tf	287.65 ± 0.30	K	NIST Webbook	
tf	287.08	K	Aqueous Solubility Prediction Method	
tf	284.90 ± 2.00	K	NIST Webbook	
tf	287.82 ± 0.10	K	NIST Webbook	
tt	287.94 ± 0.07	K	NIST Webbook	
tt	287.98 ± 0.05	K	NIST Webbook	
tt	287.94 ± 0.05	K	NIST Webbook	

tt	288.00 ± 3.00	K	NIST Webbook
tt	287.97 ± 0.02	K	NIST Webbook
VC	0.410	m3/kmol	NIST Webbook
VC	0.411 ± 0.007	m3/kmol	NIST Webbook
VC	0.410	m3/kmol	KDB
ZC	0.2712430		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	298.35	J/mol×K	597.61	Joback Method	
cpg	230.16	J/mol×K	451.68	Joback Method	
cpg	266.16	J/mol×K	524.64	Joback Method	
cpg	248.64	J/mol×K	488.16	Joback Method	
cpg	282.72	J/mol×K	561.12	Joback Method	
cpg	313.06	J/mol×K	634.09	Joback Method	
cpg	210.69	J/mol×K	415.20	Joback Method	
cpl	215.53	J/mol×K	298.15	NIST Webbook	
cpl	215.78	J/mol×K	298.15	NIST Webbook	
cpl	214.53	J/mol×K	298.15	NIST Webbook	
cpl	214.24	J/mol×K	298.15	NIST Webbook	
cpl	215.48	J/mol×K	298.15	NIST Webbook	
cpl	215.46	J/mol×K	298.15	NIST Webbook	
dvisc	0.0016360	Paxs	313.15	Viscometric and Volumetric Properties of 10 Regular Binary Systems at 308.15 K and 313.15 K	
dvisc	0.0018026	Paxs	308.15	Viscometric and Volumetric Properties of 10 Regular Binary Systems at 308.15 K and 313.15 K	
hfust	0.48	kJ/mol	183.80	NIST Webbook	
hfust	6.32	kJ/mol	166.50	NIST Webbook	
hfust	2.41	kJ/mol	288.00	NIST Webbook	
hfust	2.41	kJ/mol	288.00	NIST Webbook	
hsubt	58.70	kJ/mol	166.00	NIST Webbook	
hvapt	40.30	kJ/mol	385.50	NIST Webbook	
hvapt	43.10	kJ/mol	307.00	NIST Webbook	
hvapt	39.30	kJ/mol	403.50	NIST Webbook	

hvapt	43.30	kJ/mol	329.00	NIST Webbook
hvapt	39.40	kJ/mol	418.00	NIST Webbook
rfi	1.45598		298.15 1-b	Separation of toluene from cyclic hydrocarbons using utyl-3-methylimidazolium methylsulfate ionic liquid at T = 298.15 K and atmospheric pressure
rfi	1.45598		298.15 1-E	Liquid Extraction of Benzene from Its Mixtures Using thyl-3-methylimidazolium Ethylsulfate as a Solvent
rfi	1.45598		298.15	Extraction of Benzene from Aliphatic Compounds Using Commercial Ionic Liquids as Solvents: Study of the Liquid Liquid Equilibrium at T = 298.15 K
rfi	1.45598		298.15 1-e	(Liquid + liquid) equilibrium data for the ternary systems (cycloalkane + ethylbenzene + thyl-3-methylimidazolium ethylsulfate) at T = 298.15 K and atmospheric pressure
rfi	1.45598		298.15	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures

rfi	1.45598		298.15	Density, Speed	
				of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rfi	1.44877		313.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rfi	1.45598		298.15	Experimental data, correlation and prediction of the extraction of benzene from cyclic hydrocarbons using [Epy][ESO4] ionic liquid	
rfi	1.45624		298.15	Liquid liquid equilibria of lactam containing binary systems	
rfi	1.45598		298.15 1-B	Liquid Liquid Extraction of Aromatic Compounds from Cycloalkanes Using utyl-3-methylimidazolium Methylsulfate Ionic Liquid	
rfi	1.45630		298.15	KDB	
rhol	831.87	kg/m3	298.15 N	Thermodynamics of Mixtures Containing a Very Strongly Polar Compound. 10. Liquid Liquid Equilibria for I,N-Dimethylacetamide + Selected Alkanes	

rhol	831.47	kg/m3	298.15	Evaluation of ionic liquids as solvent for aromatic extraction: Experimental, correlation and COSMO-RS predictions	
rhol	834.00	kg/m3	293.00	KDB	
sfust	8.35	J/mol×K	288.00	NIST Webbook	
sfust	37.94	J/mol×K	166.50	NIST Webbook	
sfust	2.60	J/mol×K	183.80	NIST Webbook	
srf	0.03	N/m	293.20	KDB	
tcondl	0.12	W/m×K	296.09	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	295.88	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	295.85	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	296.21	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.12	W/m×K	289.17	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	288.96	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	288.70	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	311.67	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	311.88	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.12	W/m×K	312.10	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.11	W/m×K	328.99	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.11	W/m×K	329.22	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.11	W/m×K	329.43	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	424.20	K	98.70	NIST Webbook
tbrp	421.70	K	99.90	NIST Webbook

Correlations

Information

Temperature range (K), min.

Temperature range (K), max.

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.45798e+01
Coeff. B	-3.61720e+03
Coeff. C	-5.52360e+01

Value

303.15

445.51

Information	Value	
Property code	pvap	
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$	
Coeff. A	7.82856e+01	
Coeff. B	-7.74858e+03	
Coeff. C	-9.30682e+00	
Coeff. D	5.02648e-06	
Temperature range (K), min.	367.00	
Temperature range (K), max.	647.20	

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	298.15	831.61
Reference		https://www.doi.org/10.1016/j.jct.2017.09.027

Sources

```
Thermodynamics and activity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2014.04.024
         coefficients at infinite dilution for
 The first solution for breaking the preserve and the first solution of the first solution in the first solution of the first solutio
                                                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.7b00191
         addining longer the properties of the properties
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
                udrio arbons and sulphur compounds
 https://www.doi.org/10.1021/je100410k
https://www.doi.org/10.1021/je100410k
https://www.doi.org/10.1021/je100410k
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.07.004
https://www.doi.org/10.1016/j.jct.2013.02.004

                                                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je100410k
         ative initiative and a second a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    http://link.springer.com/article/10.1007/BF02311772
         propylaneigly on land methyl 298, 15 K.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.02.006
       of organic solutes in NPBr Maypano Purasanta:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=503
     N-methylpyrrolidone from gas-liquid
The modularics and limiting activity
coefficients measurements for organic
Some sag water mineritality in the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2016.08.008
https://www.doi.org/10.1016/j.jct.2015.08.017
indicative and soften properties and make the properties of the properties for an indicative and properties for an indi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2015.08.017
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2008.02.008
         for organic solutes and water in
     Activity confiction water in Activity confiction of organic solutes in diethylene glycol Markutements glycolvity activity activit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2013.05.011
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2010.10.026
                                                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2005.07.003
 Interpretation activity coefficients at interpretation activity coefficients at interpretation activity coefficients at interpretation and interpretation activity coefficients are included interpretation and interpretation
```

```
Separation of (water/butan-1-ol) binary
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2019.05.011
     systems based on activity coefficients
Thermodynamics of ministresshonium
containing aromatic nitriles:
A 1-alkylcyanopyridinium-based ionic
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2017.09.027
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.01.017
      liquid in the separation processes: (Liquid + liquid) equilibrium data for the https://www.doi.org/10.1016/j.jct.2010.12.014
      ternary systems (cycloalkane +
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2008.10.008
     emyntangesticients at infinite dilution megasurements/inhiproconing solutes in employer in the process of the p
                                                                                                                                                                                                                                                       https://www.cheric.org/files/research/kdb/mol/mol503.mol
                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2013.10.033
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2018.02.014
                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je0498107
      https://www.doi.org/10.1016/j.jct.2018.07.024
https://www.doi.org/10.1016/j.jct.2018.07.024
https://www.doi.org/10.1016/j.jct.2013.05.030
https://www.doi.org/10.1016/j.jct.2013.05.030
https://www.doi.org/10.1016/j.jct.2013.05.030
https://www.doi.org/10.1016/j.jct.2013.07.011
https://www.doi.org/10
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2018.07.024
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2009.12.019
                                                                                                                                                                                                                                                       https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=503
The part is a property of the part of the 
           Properties Retalpantidazolium
Vervacoulo (1986)
Sio-butanol extraction on investigation
                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2018.07.028
                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.fluid.2019.03.023
                                                                                                                                                                                                                                                       https://www.doi.org/10.1007/s10765-009-0667-2
```

water in the new ionic liquid [EMIM][SCN] using GLC:

Activity Coefficients at Infinite Dilution

Activity Coefficients at Infinite Dilution of Organic Solutes in Apiety-Godfinian diagnosis solutes and properties of properties of the complete of properties of the complete of properties of the complete o

ethylbenzene/styrene based on limiting activity coefficients:

https://www.doi.org/10.1021/je0256481

https://www.doi.org/10.1016/j.fluid.2009.01.011

https://www.doi.org/10.1016/j.fluid.2009.08.017

https://www.doi.org/10.1016/j.fluid.2016.02.004

http://webbook.nist.gov/cgi/cbook.cgi?ID=C292648&Units=SI

Legena

af: Acentric Factor

chl: Standard liquid enthalpy of combustion chs: Standard solid enthalpy of combustion

cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf:

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp:

mcvol: McGowan's characteristic volume

pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhoc: Critical density
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/41-023-0/Cyclooctane.pdf

Generated by Cheméo on 2025-12-22 19:30:50.938854038 +0000 UTC m=+6180048.468894705.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.