Hexamethyldisilazane

Other names:	s: ((CH3)3Si)2NH 1,1,1,3,3,3-hexamethyldisilazane 1,1,1-Trimethyl-N-(trimethylsilyl)silanamine HMDS HMDS (silazane) NSC 93895 OAP SZ 6079 Silanamine, 1,1,1-trimethyl-N-(trimethylsilyl)- TSL 8802 Trimethyl-N-(trimethylsilyl)silanamine bis(trimethylsilyl)amine di(trimethylsilyl)amine disilazane, 1,1,1,3,3,3-hexamethyl-	
Inchi:	hexamethyldisilylamine InChI=1S/C6H19NSi2/c1-8(2,3)7-9(4,5)6/h7H,1-6H3	
InchiKey:	FFUAGWLWBBFQJT-UHFFFAOYSA-N	
Formula:	C6H19NSi2	
SMILES:	C[Si](C)(C)N[Si](C)(C)C	
Mol. weight [g/mol]: CAS:	161.39 999-97-3	

Physical Properties

Property code	Value	Unit	Source
hvap	42.20 ± 0.90	kJ/mol	NIST Webbook
ie	8.55	eV	NIST Webbook
ie	8.79 ± 0.05	eV	NIST Webbook
ie	8.66	eV	NIST Webbook
log10ws	2.37		Crippen Method
logp	2.246		Crippen Method
rinpol	686.00		NIST Webbook
rinpol	717.00		NIST Webbook
rinpol	686.00		NIST Webbook
tb	397.20 ± 0.60	К	NIST Webbook
tb	399.00	К	NIST Webbook
tb	399.00	К	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
hvapt	36.00	kJ/mol	344.50	NIST Webbook	
руар	59.76	kPa	382.20	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
pvap	10.30	kPa	331.80	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	23.41	kPa	352.70	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	45.32	kPa	371.80	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	1.51	kPa	290.80	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	2.68	kPa	301.50	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	4.25	kPa	311.40	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	

	pvap	6.60	kPa	321.20	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
-	pvap	15.35	kPa	341.10	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
	pvap	31.34	kPa	360.50	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
	pvap	4.36	kPa	312.40	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
	pvap	1.54	kPa	290.90	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
	рvар	2.71	kPa	301.10	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
	рvар	10.21	kPa	330.90	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
-	рvар	42.85	kPa	370.00	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
	рvар	30.30	kPa	360.30	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	

рvар	20.68	kPa	349.80	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	14.79	kPa	340.10	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	9.72	kPa	329.70	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	5.93	kPa	320.20	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	1.68	kPa	292.00	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	
рvар	1.73	kPa	293.50	Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	397.45	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Sources

Crippen Method:

Crippen Method:

Synthesis and characterization of organosilicon compounds as novel precessors inparatus processes boiling point determination of small air statifice sand les under inert atmosphere: http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.chemeo.com/doc/models/crippen_log10ws https://www.doi.org/10.1016/j.tca.2015.02.004 https://www.doi.org/10.1016/j.tca.2017.05.005 http://webbook.nist.gov/cgi/cbook.cgi?ID=C999973&Units=SI

Legend

hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
pvap:	Vapor pressure
rinpol:	Non-polar retention indices
tb:	Normal Boiling Point Temperature
tbp:	Boiling point at given pressure

Latest version available from:

https://www.chemeo.com/cid/41-184-2/Hexamethyldisilazane.pdf

Generated by Cheméo on 2024-05-06 06:54:08.464152286 +0000 UTC m=+17267697.384729608.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.