Methyl stearate

Other names: 28:0, Me ester

Emery 2218 Kemester 4516 Kemester 9018 Kemester 9718 Metholene 2218

Methyl ester of octadecanoic acid

Methyl n-octadecanoate

NSC 9418

methyl octadecanoate

n-Octadecanoic acid, methyl ester octadecanoic acid, methyl ester

stearic acid, methyl ester

InChl=1S/C19H38O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19(20)21-2/h3-18H2

InchiKey: HPEUJPJOZXNMSJ-UHFFFAOYSA-N

Formula: C19H38O2

SMILES: CCCCCCCCCCCCC(=O)OC

Mol. weight [g/mol]: 298.50 CAS: 112-61-8

Physical Properties

Property code	Value	Unit	Source
chs	-11962.00 ± 0.40	kJ/mol	NIST Webbook
gf	-124.82	kJ/mol	Joback Method
hf	-680.29	kJ/mol	Joback Method
hfus	66.35	kJ/mol	Heat Capacity Measurements of 13 Methyl Esters of n-Carboxylic Acids from Methyloctanoate to Methyleicosanoate between 5 K and 350 K
hvap	106.20	kJ/mol	NIST Webbook
hvap	109.50 ± 2.70	kJ/mol	NIST Webbook
hvap	105.90 ± 1.40	kJ/mol	NIST Webbook
log10ws	-6.64		Crippen Method
logp	6.421		Crippen Method
mcvol	286.010	ml/mol	McGowan Method
рс	1114.08	kPa	Joback Method

rinpol	362.20	NIST Webbook
rinpol	2111.00	NIST Webbook
rinpol	2104.00	NIST Webbook
rinpol	2112.00	NIST Webbook
rinpol	2129.30	NIST Webbook
rinpol	2109.20	NIST Webbook
rinpol	2138.00	NIST Webbook
rinpol	2106.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2123.10	NIST Webbook
rinpol	2102.00	NIST Webbook
rinpol	2105.80	NIST Webbook
rinpol	2099.80	NIST Webbook
rinpol	2101.00	NIST Webbook
rinpol	351.38	NIST Webbook
rinpol	351.38	NIST Webbook
rinpol	351.30	NIST Webbook
rinpol	362.20	NIST Webbook
rinpol	2110.00	NIST Webbook
rinpol	362.20	NIST Webbook
rinpol	352.84	NIST Webbook
rinpol	349.48	NIST Webbook
rinpol	2115.00	NIST Webbook
-	2112.00	NIST Webbook
rinpol	2098.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol rinpol	2116.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2129.00	NIST Webbook
rinpol	351.38	NIST Webbook
rinpol	2140.00	NIST Webbook
rinpol	2127.00	NIST Webbook
rinpol	2119.00	NIST Webbook
rinpol	2134.00	NIST Webbook
•	2126.00	NIST Webbook
rinpol rinpol	2130.00	NIST Webbook
•	2099.80	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2102.10	NIST Webbook
rinpol	2102.10	NIST Webbook
rinpol		NIST Webbook
rinpol	2104.50	NIST Webbook
rinpol	2105.80	
rinpol	2107.10	NIST Webbook
rinpol	2109.00	NIST Webbook

rinnal	2113.00	NIST Webbook
rinpol rinpol	2114.00	NIST Webbook
	2102.00	NIST Webbook
rinpol rinpol	2113.00	NIST Webbook
·	2113.00	NIST Webbook
rinpol	2126.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2140.00	NIST Webbook
rinpol		
rinpol	2130.00	NIST Webbook
rinpol	2116.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2135.00	NIST Webbook
rinpol	2112.00	NIST Webbook
rinpol	2117.00	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2110.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2133.00	NIST Webbook
rinpol	2138.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2141.00	NIST Webbook
rinpol	2135.00	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2109.49	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2116.00	NIST Webbook
rinpol	2108.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2098.00	NIST Webbook
rinpol	2123.10	NIST Webbook
rinpol	2127.10	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2111.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2139.00	NIST Webbook
rinpol	2110.00	NIST Webbook
		1110 1 110000011

rinnal	2128.00	NIST Webbook
rinpol		NIST Webbook
rinpol	2106.00	
rinpol	2109.00	NIST Webbook NIST Webbook
rinpol	2127.00	
rinpol	2137.00	NIST Webbook
rinpol	2122.00	NIST Webbook
rinpol	2138.00	NIST Webbook
rinpol	2126.00	NIST Webbook
rinpol	2141.00	NIST Webbook
rinpol	2133.00	NIST Webbook
rinpol	2124.00	NIST Webbook
rinpol	2109.20	NIST Webbook
rinpol	2137.00	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2110.00	NIST Webbook
rinpol	2124.00	NIST Webbook
rinpol	2129.30	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2110.00	NIST Webbook
rinpol	2111.00	NIST Webbook
rinpol	2112.00	NIST Webbook
rinpol	2117.00	NIST Webbook
rinpol	2111.00	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2139.00	NIST Webbook
rinpol	2104.00	NIST Webbook
rinpol	2125.00	NIST Webbook
rinpol	2126.00	NIST Webbook
rinpol	2127.00	NIST Webbook
rinpol	2133.00	NIST Webbook
rinpol	2111.00	NIST Webbook
rinpol	2108.00	NIST Webbook
rinpol	2105.00	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2109.00	NIST Webbook
rinpol	2110.00	NIST Webbook
rinpol	2107.00	NIST Webbook
rinpol	2111.00	NIST Webbook
rinpol	2112.00	NIST Webbook
rinpol	2102.00	NIST Webbook
rinpol	2116.00	NIST Webbook
rinpol	2116.00	NIST Webbook
rinpol	2112.00	NIST Webbook
		2 2000000

rinnal	2126.00	NIST Webbook
rinpol		NIST Webbook
rinpol	2134.00	
rinpol	2125.00	NIST Webbook
rinpol	2123.00	NIST Webbook
rinpol	2123.00	NIST Webbook
rinpol	2108.00	NIST Webbook
rinpol	2121.00	NIST Webbook
rinpol	2130.00	NIST Webbook
rinpol	2125.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2101.00	NIST Webbook
rinpol	2128.00	NIST Webbook
rinpol	2127.00	NIST Webbook
rinpol	2127.00	NIST Webbook
rinpol	2114.00	NIST Webbook
rinpol	2130.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2410.00	NIST Webbook
ripol	2445.00	NIST Webbook
ripol	2396.00	NIST Webbook
ripol	2389.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2415.00	NIST Webbook
ripol	2426.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2429.00	NIST Webbook
ripol	2419.00	NIST Webbook
ripol	2442.00	NIST Webbook
ripol	2418.00	NIST Webbook
ripol	2429.00	NIST Webbook
ripol	2418.00	NIST Webbook
ripol	2434.00	NIST Webbook
ripol	2405.00	NIST Webbook
ripol	2415.00	NIST Webbook
ripol	2409.00	NIST Webbook
ripol	2417.00	NIST Webbook
ripol	2433.00	NIST Webbook
ripol	2412.00	NIST Webbook
ripol	2422.00	NIST Webbook
ripol	2419.00	NIST Webbook
ripol	2424.00	NIST Webbook
ripol	2445.00	NIST Webbook
ripol	2445.00	NIST Webbook
ripol	2431.00	NIST Webbook

ripol	2426.00		NIST Webbook
ripol	2386.00		NIST Webbook
ripol	2405.00		NIST Webbook
ripol	2386.00		NIST Webbook
tb	710.41	K	Joback Method
tc	785.00	К	Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method
tf	310.00 ± 0.50	K	NIST Webbook
tf	312.15 ± 0.35	K	NIST Webbook
tf	311.20 ± 1.00	K	NIST Webbook
tf	312.10 ± 0.50	K	NIST Webbook
VC	1.123	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	951.34	J/mol×K	879.90	Joback Method
cpg	936.27	J/mol×K	851.65	Joback Method
cpg	848.69	J/mol×K	710.41	Joback Method
cpg	867.91	J/mol×K	738.66	Joback Method
cpg	886.25	J/mol×K	766.91	Joback Method
cpg	903.75	J/mol×K	795.15	Joback Method
cpg	920.41	J/mol×K	823.40	Joback Method
dvisc	0.0026724	Paxs	343.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0024477	Paxs	348.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0029293	Paxs	338.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0032252	Paxs	333.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0020762	Paxs	358.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters

dvisc	0.0019217	Paxs	363.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0035684	Paxs	328.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0039645	Paxs	323.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0044348	Paxs	318.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0049862	Paxs	313.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0022504	Paxs	353.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
hfust	64.40	kJ/mol	310.00	NIST Webbook	
hfust	64.40	kJ/mol	310.90	NIST Webbook	
hfust	71.10	kJ/mol	311.00	NIST Webbook	
hfust	61.70	kJ/mol	310.90	NIST Webbook	
hfust	19.23	kJ/mol	310.93	NIST Webbook	
hsubt	158.20 ± 2.50	kJ/mol	304.50	NIST Webbook	
hvapt	90.20	kJ/mol	353.00	Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds.	
hvapt	107.90	kJ/mol	298.00	A Comparison of Results by Correlation Gas Chromatography with Another Gas Chromatographic Retention Time Technique. The Effects of Retention Time Coincidence on Vaporization Enthalpy and Vapor Pressure	
hvapt	98.00	kJ/mol	350.00	NIST Webbook	
hvapt	90.00 ± 0.30	kJ/mol	401.00	NIST Webbook	
hvapt	75.40	kJ/mol	498.00	NIST Webbook	
hvapt	83.20	kJ/mol	455.50	NIST Webbook	

hvapt	106.10	kJ/mol	298.15	the vaporization enthaplies and vapor pressures of a series of unstaurated fatty acid methyl esters by correlation gas chromatography	
pvap	2.71e-03	kPa	373.95	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.61e-04	kPa	350.90	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.74e-04	kPa	355.89	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.24e-04	kPa	358.52	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	8.97e-04	kPa	360.89	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.13e-03	kPa	363.49	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	1.18e-03	kPa	363.98	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.39e-03	kPa	365.92	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.46e-03	kPa	366.47	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.72e-03	kPa	368.46	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.80e-03	kPa	368.97	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.11e-03	kPa	370.93	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.22e-03	kPa	371.46	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	2.59e-03	kPa	373.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.88e-04	kPa	348.57	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.71e-03	kPa	373.96	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.05e-03	kPa	375.45	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.16e-03	kPa	375.93	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.85e-04	kPa	348.42	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.57e-03	kPa	377.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	4.51e-03	kPa	380.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.50e-03	kPa	380.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.85e-03	kPa	381.43	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.89e-03	kPa	381.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.90e-03	kPa	381.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.24e-03	kPa	382.43	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.90e-03	kPa	383.93	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	5.90e-03	kPa	383.94	Fatty acids	
				methyl esters: Complementary measurements and	
				comprehensive analysis of vaporization thermodynamics	
pvap	6.60e-03	kPa	385.43	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.57e-03	kPa	385.43	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.09e-03	kPa	386.43	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.09e-03	kPa	386.43	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	8.52e-03	kPa	388.93	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	0.01	kPa	391.41	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	0.10	kPa	427.50	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	1.00	kPa	472.20	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	5.00	kPa	512.50	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	10.00	kPa	535.50	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	2.23e-04	kPa	345.93	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.23e-04	kPa	345.93	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.12e-04	kPa	345.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	1.91e-04	kPa	344.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.77e-04	kPa	343.60	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.74e-04	kPa	343.47	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.74e-04	kPa	343.46	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.65e-04	kPa	342.97	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.50e-04	kPa	341.96	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.38e-04	kPa	341.10	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	1.35e-04	kPa	340.98	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.29e-04	kPa	340.47	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.18e-04	kPa	339.50	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.01e-04	kPa	338.02	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	9.04e-05	kPa	336.99	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.76e-05	kPa	335.51	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.00e-05	kPa	334.55	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	4.58e-05	kPa	330.56	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.07e-05	kPa	329.60	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.61e-05	kPa	325.63	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.96e-05	kPa	323.15	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.36e-05	kPa	332.04	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.29e-03	kPa	376.44	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
рvар	6.01e-05	kPa	333.07	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

speedsl	1265.00	m/s	333.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1282.00	m/s	328.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1299.00	m/s	323.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1317.00	m/s	318.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1248.00	m/s	338.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	

Pressure Dependent Properties

Property code Value Unit Pressure [kPa] Source

tbp	475.97	K	1.20	Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P = (1.20 and 2.50) kPa by using DSC technique	
tbp	493.38	K	2.50	Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P = (1.20 and 2.50) kPa by using DSC technique	
tbrp	488.20	K	2.00	NIST Webbook	

Sources

the vaporization enthaplies and vapor pressures of a series of unstaurated faitipped Mattagl esters by correlation

gas chromatography: Vapour liquid equilibria of monocaprylin plus palmitic acid or HARISK Meahare: at P = (1.20 and 2.50) kPa by using DSC technique: Crippen Method:

Density and Speed of Sound Measurements on Five Fatty Acid Methyle Fatty Acid and 10 kPa : NIST Webbook:

Heat Capacity Measurements of 13 Methyl Esters of n-Carboxylic Acids
Pensiver and Carboxylic Acids
Methyl and stativate sters of Fatty Acid
Methyl and stativate sters when the control of high molecular
mass methyl esters in supercritical
Entanacids methyl esters: East hacids methyl esters:
Complementary measurements and Venorities in the complement of the vaporization enthalpies appraisal for the vaporization enthalp Retention Time Technique. The Effects of Retention Time Coincidence on aparination of thalpy and Vapor

https://www.doi.org/10.1016/j.tca.2007.02.008

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.jct.2015.07.033 https://en.wikipedia.org/wiki/Joback_method http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/je8003854

http://webbook.nist.gov/cgi/cbook.cgi?ID=C112618&Units=SI

https://www.doi.org/10.1021/je0499364 https://www.doi.org/10.1021/je100042c

https://www.doi.org/10.1016/j.fluid.2011.08.015

https://www.doi.org/10.1016/j.jct.2019.01.007

https://www.doi.org/10.1016/j.fluid.2014.07.038

chs: Standard solid enthalpy of combustion

Ideal gas heat capacity cpg:

dvisc: Dynamic viscosity gf: Standard Gibbs free energy of formation
hf: Enthalpy of formation at standard conditions
hfus: Enthalpy of fusion at standard conditions
hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressuretbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/43-446-9/Methyl-stearate.pdf

Generated by Cheméo on 2025-12-05 07:57:12.275231847 +0000 UTC m=+4669629.805272502.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.